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ABSTRACT. The notions of shyness and prevalence generalize the property of
being zero and full Haar measure to arbitrary (not necessarily locally compact)
Polish groups. The main goal of the paper is to answer the following question:
What can we say about the Hausdorff and packing dimension of the fibers of
prevalent continuous maps?

Let K be an uncountable compact metric space. We prove that the preva-
lent f € C(K,R%) has many fibers with almost maximal Hausdorff dimen-
sion. This generalizes a theorem of Dougherty and yields that the prevalent
f € C(K,R?) has graph of maximal Hausdorff dimension, generalizing a result
of Bayart and Heurteaux. We obtain similar results for the packing dimension.

We show that for the prevalent f € C([0,1]™,R%) the set of y € f([0,1]™)
for which dimg f~!(y) = m contains a dense open set having full measure with
respect to the occupation measure A™ o f~1, where dimy and A™ denote the
Hausdorff dimension and the m-dimensional Lebesgue measure, respectively.
We also prove an analogous result when [0, 1]™ is replaced by any self-similar
set satisfying the open set condition.

We cannot replace the occupation measure with Lebesgue measure in the
above statement: We show that the functions f € C[0, 1] for which positively
many level sets are singletons form a non-shy set in C]0,1]. In order to do so,
we generalize a theorem of Antunovié, Burdzy, Peres and Ruscher.

We also prove sharper results in which large Hausdorff dimension is replaced
by positive measure with respect to generalized Hausdorff measures, which
answers a problem of Fraser and Hyde.
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1. INTRODUCTION

Let G be a Polish group, that is, a separable topological group which is endowed
with a compatible complete metric. If G is locally compact then there exists a Haar
measure on G, that is, a left translation invariant regular Borel measure which is
finite on compact sets and positive on non-empty open sets. The concept of Haar
measure does not extend to groups that are not locally compact, but the idea of
Haar measure zero sets does. The following definition is due to Christensen [8] and
was rediscovered by Hunt, Sauer and York [20].

Definition 1.1. For an abelian Polish group G a set A C G is shy or Haar null if
there exists a Borel set B C GG and a Borel probability measure pu on G such that
AC Band p(B+z) =0 for all x € G. The complement of a shy set is called a
prevalent set.

Christensen proved in [8] that shy sets form a o-ideal and in locally compact
abelian Polish groups Haar measure zero sets and shy sets coincide. Later Topsge
and Hoffmann-Jgrgensen [39] and Mycielski [31] extended the definition to all Polish
groups, but here we consider only the abelian case.

Notation 1.2. The Hausdorff and packing dimension of a metric space X is de-
noted by dimyz X and dimp X. We use the convention dimy # = dimp @ = —1.
For a compact metric space K let us denote by C(K,R?) the set of continuous
functions from K to R¢ endowed with the supremum metric. Then C(K,R%) is an
abelian Polish group. We simply write C[0,1] = C([0, 1], R).

Over the last 25 years there has been a large interest in studying dimensions of
various sets related to ‘typical’ continuous functions. If typical means generic in
the sense of Baire category, then the following theorem about level sets is folklore.

Theorem 1.3. For the generic f € C[0,1] for all y € f([0,1])
dimgy f~1(y) = 0.

Mauldin and Williams [27] proved the next theorem.

Theorem 1.4 (Mauldin-Williams). For the generic f € C[0,1]
dim g graph(f) = 1.

As for the higher dimensional analogues, the next result was obtained by Kirch-
heim [25].
Theorem 1.5 (Kirchheim). If m,d € N* and m > d then for the generic f €
C([0,1]™,R%) for all y € int f ([0,1]™)

dimg f~(y) =m —d.
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Now let K be an arbitrary compact metric space. In order to determine the
Hausdorff dimension of the level sets of the generic f € C(K,R), we need a new
notion of dimension, the topological Hausdorff dimension, see [3] and [4]. More
generally, the right concept to describe the Hausdorff dimension of the fibers of the
generic f € C(K,R?) is the so-called d** inductive topological Hausdorff dimension,
see [2].

The case of graphs is much simpler, the strategy of Mauldin and Williams actu-
ally easily yields the following general result.

Theorem 1.6. Let K be an uncountable compact metric space and d € Nt. Then
for the generic f € C(K,R%)

dimy graph(f) = dimpy K.

These theorems indicate that the generic f € C[0, 1] behaves quite regularly in a
sense, e.g. its level sets and graph have minimal Hausdorff dimension, similarly to
the case of smooth functions. It is quite natural to expect more chaotic behavior
from typical continuous functions, which is already a reason to replace genericity
with another notion. Moreover, since these problems are measure theoretic in
nature, it is natural to replace Baire category by the more measure theoretic concept
of prevalence.

In contrast to Theorem 1.3, we show that the prevalent f € C[0,1] has fibers of
maximal Hausdorff dimension. Let us denote by A\ the one-dimensional Lebesgue
measure. (Note that dimgy X < dimp X for every metric space X, so the packing
dimension analogue of the following statement would be weaker.)

Corollary 4.6. For the prevalent f € C|0,1] there is an open set Uy C R such
that X\(f~2(Uys)) =1 (hence Uy is dense in f([0,1])) and for all y € Uy

dimgy f~1(y) = 1.

In general, prevalent continuous maps have many fibers of cardinality continuum,
for the following theorem see [9, Thm. 11] and the remark following its proof.

Theorem 1.7 (Dougherty). Let K be an uncountable compact metric space’ and
let d € NT. Then for the prevalent f € C(K,R%)

int f(K) # 0.
Moreover, there is a non-empty open set Uy C R? such that for all y € Uy

#17 (y) =2%.

The next theorem widely generalizes Corollary 4.6 and Theorem 1.7 in Euclidean
spaces. We can find many fibers not only of cardinality continuum, but also with
almost maximal Hausdorff and packing dimension. (For the definition of dimensions
of measures and their properties see the Preliminaries section.)

Theorem 4.13 (Main Theorem, simplified version). Let m,d € N*. Let K C R™
be compact and let p be a continuous, finite Borel measure on K. Then for the

1Dougherty proved this result only if K is the triadic Cantor set. As every uncountable
compact metric space contains a subset homeomorphic to the triadic Cantor set by [23, Cor. 6.5],
Corollary 3.11 yields this more general result.
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prevalent f € C(K,R?) there is an open set Uy C R? such that p(f=*(Uy)) = p(K)
and for ally € Uy

dimy f~1(y) > dimg p  and dimp f~'(y) > dimp p.

After some technical lemmas in Section 3, we prove the above theorem for K C R
and g = A in Subsection 4.1, which is the most subtle proof of the paper. In
Subsection 4.2 we prove this result for ultrametric spaces using ideas from [24]. In
Subsection 4.3 we finish the proof of the Main Theorem, we trace back the case of
general compact spaces to ultrametric ones by using a theorem of Zindulka [41].
Let us denote by A" the m-dimensional Lebesgue measure.

Corollary 4.14. Let m,d € NT. Then for the prevalent f € C([0,1]™ R?) there is
an open set Uy C R? such that \X™(f~1(Uy)) = 1 (hence Uy is dense in f([0,1]™)
and for ally € Uy

dimgy f~1(y) = m.
Corollary 4.15 (simplified version). Let m,d € NV and let K C R™ be an un-
countable compact set. Then for the prevalent f € C(K,R%) for all s < dimp K
there is a non-empty open set Ug , C R? such that for all y € Uy,s

dimp f~(y) > s.
Corollary 4.16 (simplified version). Let m,d € Nt and let K C R™ be compact.
Then for the prevalent f € C(K,R9)
sup{dimp f~(y) : y € R?} = dimp K.

In the case of Hausdorff dimension we prove more general versions of the above
two corollaries based on a deep theorem of Mendel and Naor [29].

Theorem 4.18. Let K be an uncountable compact metric space and let d € NT.
Then for the prevalent f € C(K,R?) for all s < dimy K there is a non-empty open
set Us,s C RY such that for all y € Uy s

dimgy f~(y) > s.
Corollary 4.19. Let K be a compact metric space and let d € NT. Then for the
prevalent f € C(K,R%)
sup{dimy f~(y) : y € R?} = dimy K.
The supremum is not necessarily attained in Corollaries 4.16 and 4.19.

Theorem 4.22. There is a compact set K C R such that dimyg K = dimp K =1
and
{f € C(K,R) : dimy f~'(y) < dimp f*(y) <1 for all y € R}
is non-shy in C'(K,R).
If K is ‘large in its dimension’ then we can say more. The Main Theorem implies
the next corollary, which we now formalize only for the Hausdorff dimension.

Corollary 4.23 (simplified version). Let m,d € R? and let K C R™ be compact.
Let p be a continuous, finite Borel measure on K such that dimyg u = dimyg K.
Then for the prevalent f € C(K,R%) there exists an open set Uy C RY such that

u(f 1 (Uf)) = u(K) and for all y € U
dimy f~'(y) = dimy K.
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For sufficiently homogeneous spaces we can generalize the Main Theorem. Let
us denote by H® and P° the s-dimensional Hausdorff and packing measure, re-
spectively. For the definitions of packing measure, self-similar set, and open set
condition see [13].

Corollary 4.27. Let m,d € Nt and let K C R™ be a self-similar set satisfying
the open set condition. It is well-known that dimyg K = dimp K = s and 0 <
H(K),P*(K) < co. Then for the prevalent f € C(K,R?) there exists an open set
Ur C R such that H5(f~2(Uy)) = H*(K) (hence Uy is dense in f(K)) and
dimp f~(y) = s for ally € Uy.
Similarly, for the prevalent f € C(K,R%) there exists an open set Vi C R? such
that PS(f~1(Vy)) = P*(K) (hence Vy is dense in f(K)) and
dimp f~(y) = s for all y € V.

For other results in sufficiently homogeneous spaces see Subsection 4.5, where
we describe the compact metric spaces K for which dimy f~!(y) = dimy K for
the prevalent f € C(K,R%) and the generic y € f(K). The characterization is
independent of d.

Corollary 4.6 yields for the prevalent f € C[0,1] that {y : dimg f~*(y) = 1} is
co-meager in f([0,1]) with full Ao f~1 measure. As the main result of Section 5, we
show that this does not remain true if we replace the occupation measure Ao f~!
by the Lebesgue measure A on f([0,1]). Let 3* denote positively many with respect
to A.

Theorem 5.5. The set
{f €C[0,1] : Py € R such that f~'(y) is a singleton}
is non-shy in C[0,1].
Let Z(f) ={z €[0,1] : f(z) = 0}, the next theorem is [1, Prop. 3.3].

Theorem 1.8 (Antunovié¢-Burdzy-Peres-Ruscher). Let pu be the Wiener measure
on C[0,1]. Then there exists a function g € C[0,1] such that

p({f € C[0,1]: Z(f — g) \ {0} is a singleton}) > 0.2
The next theorem generalizes Theorem 1.8 and easily implies Theorem 5.5.

Theorem 5.2. Let u be a Borel probability measure on C[0,1]. Then there exists
a function g € C[0,1] such that

p({f €Cl0,1]: Z(f — g) is a singleton}) > 0.
Theorem 5.2 also yields the following corollary.
Corollary 5.3. The set {f € C[0,1] : Z(f) is a singleton} is non-shy.

As a complement to Theorem 5.5, we prove that all non-extremal level sets can
be large.

Theorem 5.7. The set
{f €C[0,1] : dimy f~*(y) = 1 for all y € (min f, max f)}
is non-shy in C[0,1].

2It is easy to see that if g(z) = #1/3 then Z(f — g) = {0} for positively many f with respect
to the Wiener measure. In order to avoid this degenerate case, we remove the origin.
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Recently, describing the various fractal dimensions of graphs of prevalent con-
tinuous functions has attracted notable attention, this is the topic of Section 6.

First McClure [28] proved that the packing dimension, and thus the upper box
dimension of the graph of the prevalent f € C[0,1] is 2. The analogous result for
the lower box dimension was proved in [14], and [37], independently.

Fraser and Hyde [15] generalized the above results by showing that the prevalent
f € C[0,1] has graph of Hausdorff dimension 2. In contrast to Theorem 1.4 this
means that the prevalent value of dimg graph(f) is as large as possible.

Theorem 1.9 (Fraser-Hyde). For the prevalent f € C]0,1]
dimg graph(f) = 2.
The next result was proved by Bayart and Heurteaux, see [6, Thm. 3].

Theorem 1.10 (Bayart-Heurteaux). If K C R™ is compact with dimyg K > 0 then
for the prevalent f € C(K,R)

dim g graph(f) = dimy K + 1.

The proof of Theorem 1.10 is based on potential theoretic methods, they give a
lower estimate for the Hausdorff dimension of graph(X + f), where X: K — R is
a so-called additive fractional Brownian motion and f € C(K,R) is a continuous
drift. Note that if X: K — R? is a fractional Brownian motion restricted to some
K c[0,1] and f € C(K,R%) then Peres and Sousi [34] determined the almost sure
Hausdorff dimension of graph(X + f) in terms of f and the Hurst index of X. Tt
is not difficult to extend the proof of [6, Thm. 3] to vector valued functions, and
Theorem 1.7 handles the case dimy K = 0. These yield the following theorem.

Theorem 1.11. Let m,d € NT and let K C R™ be an uncountable compact set.
Then for the prevalent f € C(K,R9)

dimg graph(f) = dimyg K + d.

We will show that Theorem 4.18 also easily implies the above theorem. Moreover,
the condition K C R™ is superfluous.

Theorem 6.5. Let K be an uncountable compact metric space and let d € NT.
Then for the prevalent f € C(K,R9)

dimpy graph(f) = dimyg K + d.

Much less was known about the prevalent value of the packing dimension of the
graphs. Corollary 4.15 implies the packing dimension analogue of Theorem 1.11.

Theorem 6.6 (simplified version). Let m,d € N* and let K C R™ be an uncount-
able compact set. Then for the prevalent f € C(K,R?)

dimp graph(f) = dimp K + d.

In Section 7 we indicate how to obtain stronger forms of the main results by
replacing large dimension by positive measure with respect to generalized Hausdorff
measures. Finally, in Section 8 we pose some open problems.
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2. PRELIMINARIES

Let (X, d) be a metric space. For A, B C X let us define dist(A, B) = inf{d(z, y) :
x € A, y € B}. Let B(z,r) and U(z,r) be the closed and open ball of radius r
centered at z, respectively. Set B(A,r) = {z € X : dist({z}, A) < r}. We denote
by cl A, int A and 0A the closure, interior and boundary of A, respectively. The
diameter of a set A is denoted by diam A. We use the conventions diam ) = 0 and
inf ) = oco. For two metric spaces (X,dx) and (Y,dy) amap f: X — Y is s-Holder
for an s > 0 if there is a constant ¢ € R such that dy (f(z1), f(z2)) < c(dx(x1,22))°
for all z1,20 € X. Amap f: X — Y is Lipschitz if it is 1-Holder, and the smallest
¢ in the definition is called the Lipschitz constant of f and is denoted by Lip(f).
We say that f is bi-Lipschitz if it is one-to-one and both f and f~! are Lipschitz.
Let s > 0. The s-dimensional Hausdorff measure of a metric space X is
HI(X) = 51—i>%1+ H;(X), where
oo o0
H3(X) = inf {Z(diamXi)s : X c | JX;, Vidiam X; < 5} .
i=1 i=1
Let dimy § = —1. The Hausdorff dimension of a non-empty X is defined as
dimyg X =inf{s > 0: H*(X) = 0},
for more information on these concepts see [11] or [26]. Now we define the packing
dimension. If X is non-empty and totally bounded then for all § > 0 let Ns(X)

be the smallest number of closed balls of radius § whose union cover X. Then the
upper box dimension of X is defined as

_ log Ns(X
dimp(X) = limsup Lé().
50+ log(1/9)
Let dimg@ = —1 and let dimp(X) = oo if X is not totally bounded. The packing
dimension of X is defined as

oo
dimp X = inf {supdimBXi X C U XZ} .
' i=1
Then clearly dimp(® = —1. Since we do not need the packing measure, it was
more convenient for us to define the packing dimension as the modified upper
box dimension. Note that it is the same as the dimension defined using the so-
called radius-based packing measure, see [30, Section 10.2] for the definition and
the equivalence. The following fact is an easy consequence of the definitions.

Fact 2.1. If X,Y are non-empty metric spaces and f: X — Y is s-Holder then

dimy X dimp X
dimy f(X) < SHEL nd dimp f(X) < SRP2
S

S

Let K be a compact metric space an let i be a finite Borel measure on K, where
we always assume that p(K) > 0. We define

dimpg o = inf{dimy B : B C K is Borel and u(B) > 0},
dimp o = inf{dimp B : B C K is Borel and u(B) > 0}.
For the following theorem see [13, Prop. 10.2] when K is a subset of a Euclidean

space. In fact, the proof of [13, Prop. 2.2] with the covering theorem [26, Thm. 2.1]
works in an arbitrary compact metric space.
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Theorem 2.2. If i is a finite Borel measure on a compact metric space K then

w(B(z,r))
(B(,7))

dimp p = sup {s >0 : liminf H

r—0+ rs

dimH,usup{SZO:limsup < oo for p-a.e. xEK},

r—0+
< o for p-a.e. x EK}.

The next theorem states that we can approximate the dimension of a compact
metric space K by the dimension of measures supported within it. For the proof
see the theorem above with Frostman’s lemma [26, Thm. 8.17] or [21] in the case
of the Hausdorff or the packing dimension, respectively. Moreover, we may assume
that the measures are Hausdorff or packing measures restricted to a compact subset
of K, see [19] or [22]. See also [13, Prop. 10.1] for the Euclidean case.

Theorem 2.3. If K is a compact metric space then
dimpy K = sup{dimg u : p is a finite Borel measure on K},
dimp K = sup{dimp p : p is a finite Borel measure on K}.
If K is uncountable then we may assume that the above measures p are continuous.

The metric space (X, d) is called ultrametric if the triangle inequality is replaced
with the stronger inequality d(z,y) < max{d(z, z),d(y, z)} for all z,y,z € X.

Fact 2.4. If X is ultrametric then for all z,y € X and r > 0 either B(z,r) N
B(y,r) =0 or B(z,r) = B(y,7).

Let X be a complete metric space. A set is somewhere dense if it is dense
in a non-empty open set, and otherwise it is called nowhere dense. We say that
A C X is meager if it is a countable union of nowhere dense sets, and a set is
called co-meager if its complement is meager. By Baire’s category theorem a set is
co-meager iff it contains a dense G5 set. We say that the generic element x € X
has property P if {x € X : x has property P} is co-meager. Our main example will
be X = C(K,R?). See e.g. [23] for more on these concepts.

A metric space X is a Polish space if it is complete and separable. We say that
A C X analytic if it is a continuous image of a Polish space, and co-analytic if
its complement is analytic. A Borel subset of a Polish space is analytic [23, 13.7].
Continuous images, countable unions and countable intersections of analytic sets
are analytic [23, 14.4]. For more on these concepts see [23].

Let u be a o-finite Borel measure on a Polish space X. Then p can be extended
to the o-algebra of the p-measurable sets as a complete measure, see [16, 113C].
Analytic and co-analytic sets are p-measurable [16, 434D (c)]. We denote by supp i
the support of p, the minimal closed subset F' of X so that u(X \ F') = 0. The
measure u is called continuous is u({x}) = 0 for all z € X. For the following
classical theorems see [16, 433C] and [18, Thm. A, p. 54.], respectively.

Theorem 2.5. If X is a Polish space and p is a o-finite Borel measure on X then
there is a compact set K C X with pu(K) > 0.

Theorem 2.6 (Carathéodory’s extension theorem). Any o-finite measure defined
on an algebra A can be uniquely extended to the o-algebra generated by A.

Let G be an abelian Polish group and let u, v be o-finite Borel measures on G.
For a Borel set A C G let us define

(mxv)(A) = (pxv){(z,y) e GxG:x+yecA}),
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where p X v is the product measure on G X G. Then p*v is a o-finite Borel measure
on G called the convolution of p and v.

For all f € C[0,1] let Z(f) = {z € [0,1] : f(z) = 0}. If & = (z1,...,24) € RY
then the mazimum norm of x is defined as ||z|| = maxi<i<q|z;|. Let xa be the
characteristic function of the set A. If A C R then let conv(A4) be the convex hull
of A. We denote by Pr, E and Var the probability, expected value and variance,
respectively.

3. TECHNICAL LEMMAS

Our definition of prevalence follows Hunt, Sauer and York [20] and differs from
Christensen [8] in which the definition is given for so-called universally measurable
sets (without the Borel hulls). These definitions are equivalent for Borel sets, but
they differ in general, see [10]. The following theorem states that the definitions
are also equivalent for co-analytic sets, see [38, Prop. (i)] for the proof.

Theorem 3.1 (Solecki). Let G be an abelian Polish group and let A C G be a co-
analytic set. If there exists a Borel probability measure i on G such that p(A+g) =1
for all g € G then A is prevalent.

The following lemma is basically [4, Lemma 2.11]. It is only stated there in the
special case d = 1, but the proof works verbatim for all d € N*.

Lemma 3.2. Let K be a compact metric space, let d € NT and ¢ € R. Then
A= {(f, y) € C(K,Rd) x R% : dimy f_l(y) < c}
is a Borel set in C(K,R%) x R?.
Lemma 3.3. Let K C R be compact, let d € Nt and c € R. Then
A={feC(K,RY :3 an open set U C R? such that
A (f_l(Uf)) = \(K) and dimg f~*(y) > c for ally € Uy}
is co-analytic in C(K,R?).

Proof. Let V be a countable basis of R? and let ¢ be the family of finite unions of
elements of V. Clearly U is countable and A = |J; ¢y Ny~ An,u, Where

Anu ={f € C(K,RY) : Af(U)) > MNK) = 1/n
and dimg f~!(y) > cfor ally € U}.

As co-analytic sets are closed under countable union and countable intersection, it
is enough to prove that the A,y are co-analytic. Fix n € NT and U € U and let

B={feC(K,R? :dimg f(y) > cfor all y € U},
C={feCKRY) :XN(fH(U)) > \K)—1/n}.

Since A,y = BNC, it is enough to prove that B and C are co-analytic.
First we show that B is co-analytic. By Lemma 3.2 the set

A= {(f, y) € C(K,Rd) x R% : dimy ) < c}
is Borel. Define pr: C(K,R?) x R? — C(K,R?) as pr(f,y) = f. Then
B = (pr (AN (CK,RY) x U)))°

is the complement of the projection of a Borel set. Hence B is co-analytic.
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Finally, we prove that C is Borel. For all r € R let
C(r)={feCHE,R: A(f'(U)) >r}.

It is enough to prove that the C(r) are open. Fix r € R and assume that f € C(r),
that is, A(f~*(U)) > r. We need to find an ¢ > 0 such that U(f,e) C C(r). The
regularity of the Lebesgue measure implies that there is a compact set C C f~1(U)
with A(C) > r. As f(C) C U is compact, we can define ¢ = dist(f(C),R?\ U) > 0.
Clearly g(C) C U for every g € U(f,¢), thus A(g~*(U)) > X\C) > r. Hence
U(f,e) C C(r), and the proof is complete. O

Definition 3.4. Let {a,},en+ be a sequence of positive integers. A compact set
K C Ris an (ap)-type fat Cantor set if A\(K) > 0 and it is of the form

(3.1) Ko (U U K)

where K;, ; C K are compact sets such that for every n € N and for each
distinet (i1,...,%5), (J1,---+Jn) € [Toei {1, -, ar} we have

(1) COHV(K@L__,'”) n COHV(Kjl___jn) = (Z),

(H) Kil»--in+1 - Kil---inv

(i) AN(KGy..,) = 7o

ay-an

We say that the K; are the elementary pieces of K.

1.e0n

Definition 3.5. Let {a,}nen+t, {bn}tnen+ be sequences of positive integers such
that a, > b, for all n € NT. A compact set C C R is an (ay, b, )-type Cantor set if
it is of the form

[e%S) by by
A(D- e)

where C;, . ;, C R are compact sets and there is an (a,)-type fat Cantor set X C R
of the form (3.1) such that for all n € N* and (i1,...,4,) € [[,_,{1,..., b}

(3.2) 0#Ci,..inpr CCiyi, €Kiy,

The compact set C C R is an (an,by,)-type compact set if it satisfies the above
definition after replacing (i) by the weaker property

(1) conv(K;,. 4,) Nconv(K;, ;. ) is either empty or a singleton.
For the following well-known lemma see e.g. [30, Thm. 4.19].

Lemma 3.6 (Mass distribution principle). Let v be a Borel probability measure on
a metric space X. Assume that there are c,s,6 € RT such that u(B) < ¢(diam B)*
for every Borel set B C X with diam B < 6. Then dimg X > s.

Lemma 3.7. Let C C R be an (an,by)-type compact set such that for all n € N

(3.3) W (‘11"'an+1>n+1

by brt1
Then dimg C = 1.
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Proof. Let Cj, .. ;, be the compact sets corresponding to Definition 3.5. Let K C R
be a compact set with elementary pieces K;, ; associated to C. By considering
similar copies of C' and K we may assume that A\(K) = 1.

For all n € N* let Z,, = [[,_,{1,...,bx}. We may suppose that C;, ; C C
for all n € N* and (i1,...,i,) € ., otherwise we intersect them with C. Now we
construct a Borel probability measure u supported on C such that for all n € N*
and (i1,...,1,) € Z,, we have

(3.4) w(Ci,..q,) =

by--by

Choose z;,.. i, € Cy, .4, foralln € NT and (iy,...,4,) € Z,. Define the probability
measures

Mn = Z (bl re. bn)_l(sml.,.in?

(i1,--yin ) ELn

where d, denotes the Dirac measure concentrated on {x}. Let F, be the distri-
bution function of u,. The definitions of C' and u,, easily yield that F), converges
(uniformly) to a continuous distribution function F'. Let p be the Borel probability
measure associated with F. Then p,, converges weakly to p by [30, Thm. 12.7], so
[30, Thm. 12.6] yields that for all n € N* and (i1, ...,i,) € Z, we have

. 1
w(Ci,..i,) = limsup pg(Cyy . i,) = b
k— oo 1°""Un

As p is continuous, we have Z(ih_
holds and p is supported on C.

Fix an arbitrary k¥ € Nt and a Borel set B C C with diam B < (ay---ay)"'.
We can choose n > k and t € {1,...,a, — 1} such that

= w(Ci,. i) < 1. These imply that (3.4)

cin

t t+1
(3.5) — ' < damB< T

ay - Qp ay - ap
Property (iii) yields that for all n € N* and (i1,...,4,) € [[1_1{1,...,ax}

1

diam(conv(Kil._in)) Z /\(KHML) =
a/l PR an

)

thus property (1) and (3.5) yield that B can intersect at most ¢+ 3 sets of the form

K, i, . Since C;, 4, C K;, .4, foralln € Nt and (i1, ...,4,) € Z,, we obtain that
B can intersect at most ¢ + 3 sets of the form C;, ;. Therefore
t+3
3.6 B) < .
(3.6) u()_bL”%

Inequalities (3.3) and ¢t + 1 < a,, yield

al e an n al e an
3.7 Qe ) g, B
(3.7) <m-~m> S |
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Inequalities (3.6), (3.7), (3.5) and n > k with diam B < 1 imply

t+3
B) <
A —

4t ai - Qp

<

al...an bl...bn
al DR a 1/"

< 4(diam B) | ———=

< 4(diam B) ( o >

< 4(diam B)(diam B) ™'/

< 4(diam B)' 717k,
Thus Lemma 3.6 yields that dimy K > 1 — 1/k. As k € NT was arbitrary, we
obtain that dimy K = 1. The proof is complete. (Il

Lemma 3.8. Let C' C R be compact with A(C) > 0 and let {ay, }nen+ be an arbitrary
sequence of positive integers. Then there is an (ay)-type fat Cantor set K C C.

Proof. Tt is straightforward to construct an (a,)-type fat Cantor set D C [0, 1], let
D;, i, C D be its elementary pieces. By considering a similar copy of C' we may
assume that A(C) = 1. Let ¢: C' — [0,1] be the onto map defined as

¢(z) = A((—o0,2] N C).
For every Borel set B C [0, 1] we have
(3.8) No™H(B)) = A(B),
since (3.8) holds for intervals in [0, 1] by the definition of ¢, thus Carathéodory’s
extension theorem yields that the Borel measures Ao ¢~ and Aljo,1) coincide.
Let us define K = ¢=1(D) C C and K;, ;, = ¢ 1(D;,..;,) for all n € N* and

(i1, in) € [Tp—1{1,...,ax}. Applying that ¢ preserves the order < and (3.8)
yields that K is an (a,)-type fat Cantor set with elementary pieces K, ;. . [l

Corollary 3.9. Let K C R be a compact set with A(K) > 0 and let {an }nen+ be
an arbitrary sequence of positive integers. Then there exist (a,)-type fat Cantor

sets K; C K such that N(U;=, K;) = A(K).

Lemma 3.10. Let G, H be abelian Polish groups and let ®: G — H be a continuous
onto homomorphism. If S C H is prevalent then so is ®71(S) C G.

For the proof of the above lemma see [9, Prop. 8.]. The following corollary follows
from Lemma 3.10 and the fact that Tietze’s extension theorem holds in R¢.

Corollary 3.11. Let K1 C Ko be compact metric spaces and let d € N, Define
R: C(K2,RY) = C(K1,RY),  R(f) = flk,-
If A C C(Ky,R?) is prevalent then so is R™'(A) C C(Ky, R?).

Lemma 3.12. Let K be a compact metric space and let i be a finite Borel measure
on K. Let K, C K be compact sets with p(K) = p(U;, Ky). If A is an upward
closed family of subsets of K and for all n € NT the

A, ={f € C(K,,R%) : 3 an open set Us C R? such that
p(f 1 (Up)) = p(Kn) and f~(y) € A for all y € Uy}
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are prevalent then so is
A={feC(K,R:3 an open set Uy C R? such that
p(f~H(Uf)) = (K) and f~'(y) € A for all y € Uy}.
Proof. For all n € N* let
R,: C(K,R") = C(K,,RY), Ru(f) = flk,-

Corollary 3.11 implies that the R (A, ) are prevalent in C(K,R%). As a countable
intersection of prevalent sets, (-, R, 1(A,) is also prevalent in C'(K,R%). Thus
it is enough to prove that (-, R;'(A,) C A. For all f € N, R, (A,) let
Ur=U,~, Uflg, - Then Uy C R? is open and for all y € Uy there is an n € N
such that y € Uy, . Then f~'(y) D (f|x,) ' (y) € A implies that f~'(y) € A.

Finally, we need to show that u(f~*(Us)) = pu(K). By u(K) = p(Us_, K,) it
is enough to prove that u(f~'(Ur) N K,) = u(K,,) for an arbitrary fixed n € N*.
The definitions of Uy and A,, yield that

14 (fil(Uf) N Kn) > ((f|Kn)71(Uf|Kn)) = ,U(Kn)a

and the proof is complete. (I

We will apply the above lemma for families of the form A = {A : dimy A > ¢}
and A = {A :dimyg A > ¢; and dimp A > ¢o}.

Lemma 3.13. Let u,v € NT and 0 < p < 1/v. Assume that &1,...,&, are in-
dependent random variables such that Pr(&§; = j) = p for alli € {1,...,u} and
jeA{l,...,v}. Then
4
Pr(#{i: & =j} <up/2 for some j € {1,...,v}) < u—;

Proof. Let us fix j € {1,...,v} arbitrarily and for all ¢ € {1,...,u} let X; =1
if & = j, and let X; = 0 otherwise. Set X = Y " | X;. Then E(X;) = p and
Var(X;) =p—p?> <pforallie€ {l,...,u}, thus E(X) = up and the independence
of X; yields Var(X) = Y_i" , Var(X;) < up. Then Chebyshev’s inequality (7, (5.32)]
implies

Pr(#{i : & = j} < up/2) = Pr(X < up/2)

<Pr(|X —E(X)|>E(X)/2)
< Var(X)/(B(X)/2)" < —
up
Hence
Pr(#{i: & =j} <up/2 for some j € {1,...,v}) < 4—07
up
and this concludes the proof. ([

Lemma 3.14. If X,Y are independent R*-valued random variables and v > 0 then

Pr(|X —=Y| <r) < sup Pr(|X —y| <r).
y€eRd
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Proof. Let pux, py and pxy be the distribution measure of X, ¥ and (X,Y),
respectively. The independence of X and Y yields px y = px X py, thus

PI‘(‘X - Y| < 7”) = //]R?d X{(;c,y): |lz—y|<r} d/LX,Y(.T,y)
- / / X{(z,y): lz—y|<r} dpx (z) dpy ()
R4 JR4

— /R Pr(|X —y| <r)duy(y)

< sup Pr(|X —y| <r).
yeRd

The proof is complete. U

4. DIMENSIONS OF FIBERS OF PREVALENT CONTINUOUS MAPS
4.1. The real case. First we prove the Main Theorem for K C R and p = A.

Theorem 4.1. Let K C R be a compact set with A(K) > 0 and let d € N*. Then
for the prevalent f € C(K,R%) there exists a non-empty open set Ur C R? such
that \(f~2(Uy)) = M(K) and for all y € Uy

dimgy f~1(y) = 1.
Proof. Consider
A={f € C(K,R% : 3 an open set U; C R? such that
M HUy)) = MK) and dimpg f~'(y) =1 for all y € U}}.

Lemma 3.3 with ¢ = 1 yields that A is co-analytic. By Theorem 3.1 it is enough
to show that there exists a Borel probability measure p on C(K,R?) such that
w(A—g) =1 forall g € C(K,R%).

Now we construct the measure u. Let us endow R? with the maximum norm,

which we simply denote by |-|. Let s = 2¢ and let S, = {—27",27"}¢ for all
n € N, then #S,, = s. Clearly for all z € R and n € N
(4.1) B(z,2") = |J BG+y2 ")

YESnt1

For all n € NT let us define the positive integers a,, and b, by
an = (25)*" and b, = (25)""g,,
easy calculations show that there is an ng € NT such that for all n > ny we have
al DRI a n+1
(4.2) an > max < (28)%"(ay - an_1), <1n+1> .
by bpit

For all n € N7t let
7, = H{la R ai}'
i=1

Let us recall Definition 3.4. Corollary 3.9 implies that there exist (a,)-type fat
Cantor sets K; C K such that A({J;2, K;) = A(K). Therefore, by Lemma 3.12 we
may assume that K is an (a,)-type fat Cantor set with elementary pieces K, ;. .
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By considering a similar copy of K we may suppose that A(K) = 1. Then for all
n € Nt and (iy,...,i,) € Z, we have

MEiy.in) =

al...an.

For all Borel sets A, B C K with A(B) > 0 let us use the notation

AMANB)
MA|B)= ————
(418) = 25
For all n € N* and (i1,...,i,) € Z, let us define countable many independent
random variables X;, ; and Y;  ; such that for all y € S,
(4.3) Pr(X;, 4, =y)=Pr(Yi, ., =y)=1/s.
For every n € NT and z € K there exists a unique (i1, ...,4,) € Z, for which

x € K;, ;.. Then let us define the random function f, € C(K,R%) as
fn(ﬁU) = Xil-u’in -Y

G1eaing

Note that the dependence of the right hand side on z is simply that the indices
depend on z. Let P, be the probability measure on C(K,R?) corresponding to
this method of randomly choosing f,,, and let S,, C C(K,R%) be its finite support.
Clearly for all f,, € S,, and x € K

(4.4) ful)] < 2.

Thus Y7, fn always converges uniformly. Let P = [[ 2, P, be a probability
measure on the Borel subsets of S = [[°2; S,, and let

m: 8= C(K,RY, 7((fn) = fn.

Let us define
p=Porx L

Now we prove that u(A —g) = 1 for all g € C(K,R?). Let g € C(K,R%) and
¢ > 0 be arbitrarily fixed, it is enough to show that u(A —g) > 1 —¢e. As g(K)
is compact, we can fix an integer m > ng such that 2™ > 1/¢ and g(K) can be
covered by 2™ closed balls of radius 1, it is sufficient to prove that

(4.5) WA —g) =B(x ' (A—g) >1-2"".

For all n € N consider

m—+n
i=1

Tp = (28)—(m+n+2),

n =

(28)m+n+5
Am+n+1 '

Statement 4.2. Letn € N and assume that z € R and for alli € {1,...,m+n}
the functions f; € S; and o € Ly 4y are fized. Let A C h ' (B(z,27 (™M) with

MA|K,) > .
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For all y € Spyn+1 let us define the random set I(y) C {1,...,amins1} as
I(y) = {l i A (A Nhy iy (B (Z +y,27(m+n+1))) | Kai) > 7’n+1} )

where oi is the concatenation of o and i. Then
Print1 (#I(Y) < bmgny1 for some y € Spini1) < pn-
Proof of Statement 4.2. Let us define I C {1,...,amint1} as
= {is MA|Kp2) = ra/2}.
First we prove that

(4.6) #1 > 7’""‘“”; il
Our assumption and the definition of I imply that
Am+4n+1
raMKy) SMANK,) = > MANK,))
i=1
Am+4n+1 r
< X MK ;A(Kﬂ)
1= 7

= AK) + (1) )

Am+4n+1

which easily yields (4.6). Then A C h;,*(B(z,2~ (™)) and (4.1) imply that
Ac U m(B(zrn2 ).

YESmint1

Thus the definition of I and r,41 = r,/(2s) yield that for all ¢ € I there exists
y(i) € Sptn+1 such that

(4.7) A (A Nht (B (z + y(4), 2*“”“””)) | Km») e
Let Sp4nt+1 = {y; : 1 < j < s}. Define for all i € I independent random variables

g if Xy =y, and Y, = y(i),
(48) 6 = -~ v
0 otherwise.
For all j € {1,...,s} let us define the random set
Now we show that for all j € {1,...,s} we have
(4.9) I; C I(y;).
Assume that i € I; and x € K, then
hni1(2) = ha(2) + frs1(2) = ha (@) + Xoi = Yoi = hn(2) +y; — y(i),
therefore
(4.10) A1 (B (z +y(d), 2*<m+”+1>)) N Ky Chyly (B (z +y;, 2*<m+”+1>)) .
Formulae (4.10) and (4.7) imply

(4.11) A (A nhl (B (z +y, 2—<’”+”+1>)) | Kgi) > it
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thus 7 € I(y;), so (4.9) holds. The definitions yield that

Tna 8s3
(4.12) LJ;"H =bpint1 and ———— =p,.
4s TnQm+n+1

Clearly, we have Pr(¢§; = j) = 1/s? for all i € I and j € {1,...,s}. We apply
Lemma 3.13 for & with u = #I, v = s and p = 1/s%. Then (4.6) and the first part
of (4.12) yield that by,4ne1 < up/2. Therefore (4.9), Lemma 3.13, (4.6) and the
second part of (4.12) imply that

Prgnt1 (F#I1(y) < byyntr for some y € Syypny1)
< Pr(#I; < bypqn1 for some j € {1,...,s})
<Pr(#{iel: & =7} <up/2forsomeje{l,...,v})
4v 8s3
<—<———— =pp.
up T'nm+n+1
The proof of the statement is complete. O

Now we return to the proof of Theorem 4.1. For all k € N let Vi, = Ji.r = {0}
For all natural numbers & < n let

yk,n: H Sm+i and jk,n: H {Lybm-H}

i=k+1 i=k+1
Let (f1,..., fm) € S1 X --- X Sy, be arbitrary. By the definition of m we can cover
B(g(K),2) by 2™ closed balls of radius 3, and so by 2™s™%2 < (25)™*+2 closed balls
of radius 27™. Let T, C R? be the set of their centers, that is, #7T}, < (25)™*+?2
and B(g(K),2) C U,ep, B(y,27™). Let
To = {yo € Ton : Mg (B(y0,27™))) = 70}
As (4.4) yields ho = g + X1, fi € B(g,2), we have ho(K) C U,eq, B(y,27™).
Therefore 79 = (25)~(™*2) and #T}, < (25)™*? imply that Ty # 0. Let us fix
(f1,-.., fm) and for all yo € Ty fix oy, € Z,, such that
Ao ' (B(y0,27™)) | Ko, ) = 7o

Let n € N and suppose that f; € S; are fixed for all i € {1,...,m +n}. Assume
by induction that for all k € {0,...,n} the sets Ty, C T, X Hle Smas and for all
(yOa s ayk) € 774)7 (yk+17 LR ayn) S yk,n and (jk+17 DR 7]71) S jk,n the index sets
(4'13) 0 = Oyg...yx (yk+17 e Y Tkl - 7]n) € Limtn
are already defined (we use the convention that oy,. 4, (0;0) = oy,. 4, ) such that

MAZ (Yo, .-y Yn) | Ky) > 1y, where
(4.14 . N —(meti
) Ak(y07"'vyn):mhi1(3<(y0+"'+yi)a2 ( “)).
i=k

Let us consider the functions fy,4n+1 € Smin+1 for which for every o from (4.13)
and for every yni+1 € Smant1 and joy1 € {1,...,bmint1} we can define ¢ as the
Jnt1st smallest element of {1,..., amint1} that satisfies

A (Ag(y()? s 7y’ﬂ) N h;—}-l (B ((yO + 4+ yn+1>7 2—(m+n+1))) ‘ Ko’i) Z Tn+1,
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and let us define

Tyooyg Ykt 15+ s Ynt13 k15 -+« Jnt1) = 00 € Dy
Statement 4.2 implies that the P, ,41-probability that f,,+n+1 € Smant1 does
not have this property is at most

n

Z(#ﬂc)(#yk,n)(#jk,n)pn < 2(25)m+25n(bm+k+1 T bm+n)pn

k=0 k=0
(4.15) < (28)" 2 (by - brngn)Pn
< (25)7(m+n+1)(a1 T am+n)(am+n+1)_1
< 2—(m+n+l)’

where we used n +1 < 2", b, < a, and (4.2). Let us fix f,4n+1 with the above
property and define 7,11 C T}, X H?:Jrll Sm+i as

Ty = {(yo, ceYng1) P A (hﬁ}ﬂ (B ((yo +- +yn+1)727(m+n+1)))) > Tn+1},

and for all (yo,...,Yn+1) € Tng1 let us fix oy .y, 1 € Ty such that

A (h;hlLl (B ((yo +- 1+ yn+1)7 2—(m+"+1))) | K"yo«-«yn+1) 2 Tnt1-

Let F be the set of sequences (f;) € S which can be defined by this process. Then
(4.15) yields

(4.16) P(F)>1-Y 27(mnt =1 g=m,

n=0

For all (f;) € Slet h=g+ Y .o, f; and for all (f;) € F let

Un = [j U Ulwo+-+uw),27m).

k=0 (yo,-...yx) €Tk

Now we are ready to prove (4.5). By (4.16) it is enough to show that for P-
almost every (f;) € F we have (f;) € 7~ 1(A— g). Therefore it is sufficient to prove
that dimy h=1(y) = 1 for every (f;) € F and y € Uy, and A(h=2(Up)) = A(K) for
P-almost every (f;) € F. Therefore the following three lemmas will complete the
proof of Theorem 4.1.

Lemma 4.3. For all (f;) € F and y € Uy, we have dimg h=1(y) = 1.

Proof. Fix k € N and (yo,...,yx) € Tr such that y € U((yo + -+ + yk))g—(m—&-k)).
Then (4.1) yields that for all n € NT we can fix yx1n € Smikin such that

(4.17) y € B((yo+ -+ Yrtn), 27(m+k+"))~
For all n € N* and (j1,...,Jn) € Thktn = Loy {1s- - bmtiti} let

U(jla cee 7jn) - Uyo...yk (yk+17 ... ,ykJrn;jla e 7jn) S IerkJrn

and

Cirjn =Koty VAT (Yos -y Yhon)s
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where we recall (4.13) and (4.14). Let us define

bintkt1 bmtktn

AU U e

n=1 \ ji=1 Jn=1

Then (4.14) yields that hgyn(Cjy ;) € B((yo + -+ + Yrin), 27" HEF2)) for all
n € Nt and (j1,...,0n) € Tk ktn. Thus (4.17) and uniform convergence imply
h(z) =y for all z € C, so

(4.18) C ch™'(y).

Let us recall Definitions 3.4 and 3.5. Let ¢, = amik4n and d, = bpq g4y for
alln € NT. As K is an (ay,)-type fat Cantor set, the (m + k)th level elementary
pieces of K are (c,)-type fat Cantor sets. Inequality (4.14) yields that C, . ; # 0
for all n € N* and (ji,...,jn) € [[/=1{1,...,d;}, thus K witnesses that C is a
(cn,dy)-type Cantor set. Then (4.2) easily implies that

therefore Lemma 3.7 yields that dimy C' = 1. Hence (4.18) implies that
(4.19) dimg h™*(y) > dimy C = 1,
which completes the proof. O

Lemma 4.4. Let (f;) € F be fized such that X o h™! is absolutely continuous with
respect to A%, Then A\(h=1(Up)) = A(K).

Proof. There exists a measurable function ¢: R — [0, 00) such that for every Borel
set B C R?

(4.20) AN (B)) = /B () N (y).

Assume to the contrary that A(h=1(h(K)\Up)) > 0. Then there exist a measurable
set E C h(K)\ Uy and ¢ > 0 such that AY(E) > 0 and ¢|g > c¢. By Lebesgue’s
density theorem [16, 261D] we can fix a density point z € E. As z is a density point
of E, there is an n € NT such that r = 27"+ satisfies r < c and if B C B(z,2r)
is a ball with radius at least r/4 then

(4.21) M(BNE)>\{(B)/2.

Asz e FE C h(K) C B(g(K),2), there exists (Yo, -, Yn) € Tm X Spmt1 X+ X Span
with z € B((yo+ -+ yn),r). Let y =90+ -+ 4+ y, and D = B(y,r/2), then we
have B(D,r/2) = B(y,r) C B(z,2r). Then (4.20), the definition of ¢ and (4.21)
yield

@2 AUD) = [ )N = AP E) 2 (¢2XD).
D
Let B = {B(Y + Yni1 + Yns2,7/4) : Ynsi € Smansi}, clearly #B = s2. If z € K
and h(z) € D then (4.4) and the definition of D imply

hng2(x) € B(h(z), 27"ty ¢ B(D,r/2) = B(y.r) = | JB.



20 RICHARD BALKA, UDAYAN B. DARJI, AND MARTON ELEKES

Hence there exists a B € B such that A(h,1,(B)) > s~ 2A(h~!(D)). Then (4.22),
M(D) = s~ (M) and ¢ > 27 m+7) yield

B\ (D)) _ exY(D)

52 - 252

A(h,{o(B)) > > (28) ") =g .

Let yo+- - -+ynaio be the center of B. The definition of 7,12 and )\(h;}rQ(B)) > Ipao
imply that (yo,...,Yn+2) € Tn+e. Hence the definition of Uj, yields that B C Uy,.
Then (4.21) implies that AY(BNE) > A4(B)/2 > 0, thus ENB # (), so ENU}, # 0.
This contradicts the definition of E, thus A\(h=*(Up)) = A(K). O

Lemma 4.5. For P-almost every (f;) € S the measure X o h™! is absolutely con-
tinuous with respect to \°.

Proof. For all (f;) € S and n € Nt let F,, = > 72 fi. For all distinct z,z € K
let i(z,2) be the minimal number ¢ such that « and z are in different ith level
elementary pieces of K. Fix n € NT and z,2 € K with i(z,z) = n and also fix
r > 0. Pick indexes i) such that z € K;, _;, for all K € NT and define

X ( ZX“ 4, and  Yi( ZY“

k=n

where we recall (4.3). Then clearly X,,(z) is uniformly distributed in B(0,2!="),
therefore for all y € R? we have

(4.23) P(| Xn(z) —y| <r) < (7‘2”_1)d < (r2")d.

Then i(x, z) = n implies that X,,(x) and Y,,(z)—g(z)+F,(2)+g(z) are independent.
Since f;(x) = fi(z) for all ¢ < n, the difference of the above two variables equals
h(z) — h(2). Thus Lemma 3.14 and (4.23) imply

P(h(z) — h(z)] < 1) = P(|Xn(2) — (Vu(z) — g(2) + Fa(2) + 9(2))| < 7)
(4.24) < sup P(|X,(x) —y| <7) < (r2)"
yeRd

Let A, = {(r,2) € K X K :i(x,2) = n} for all n € N*, then

a1~--an(an—1)< 1

(al...an)Q 7(11...01"_17

(4.25) (A x \)(A4,) =

where a; - - - ag = 1 by convention. Let us use the notation A\;, = Ao h™! and define
the random function q: R — [0, 00] as

An(B(y. 7))
ay) = imint G By )

By [26, Thm. 2.12] it is enough to show that g(y) < oo for A;, almost every y € R9.
Therefore it is enough to prove that the following expected value is finite. Applying
Fatou’s lemma, the substitution formula fRd PdA, = f x YohdA, Fubini’s theorem,



DIMENSIONS OF FIBERS AND GRAPHS OF PREVALENT CONTINUOUS MAPS 21
(4.24), (4.25) and a,, > s%" = 229" yield

B[ ) dn) < limint B [ (Bl )

o1
:hmme/K/KIPUh(x)—h(z)\gr)d)\(x)dA(z)

r—04

r—04

R .
= lim inf @i ; //An P(|h(z) — h(2)] < 7)dA(z) dA(2)

1 = (r2m)d
< liminf
= o (Qw)d;al---an,l

> B oy

= < 27" < o0,

n=0 ai---Gn n=0

and the proof is complete. ([

Therefore the proof of Theorem 4.1 is also complete. U

Corollary 4.6. For the prevalent f € C[0,1] there is an open set Uy C R such
that \(f~Y(Uys)) =1 (hence Uy is dense in f([0,1])) and for ally € Uy

dimgy f~1(y) = 1.

4.2. The ultrametric case. Before turning to the general case, we prove the Main
Theorem for ultrametric spaces. The key step is the following lemma, where the
construction of the map h is based on the proof of [24, Thm. 2.1].

Lemma 4.7. Let (K,d) be a compact ultrametric space and let pu be a continuous,
finite Borel measure on K. Then there is a map h: K — [0,1] and there are
compact sets K,, C K such that if h,, = h|k, and D,, = h(K,,) then for alln € N*

(Z) M(UZO:I Kn) = /’L(K) and /\(Dn) > 0;

(i) the maps h,: K, — D, are homeomorphisms;

(iii) for every Borel set B C D,, we have u(h,*(B)) = A\(B);

(iv) for every non-empty B C D,, we have dimy h,}(B) > dimy p - dimy B;

(v) for every non-empty B C D,, we have dimp h;}(B) > dimp p - dimg B.

Proof. We may assume that p(K) = 1. By [24, Lemma 2.3] we obtain that K
is a 1-monotone metric space, that is, there exists a linear order < on K such
that diam[a,b] = d(a,b) for all a,b € K, where [a,b] denotes the closed interval
{r € K :a <Xz = b}. It is easy to show (see also in [32]) that any open interval
(a,b) = {z € K : a < x < b} and every open half-line (—co,z) = {z € K : z < z},
(x,00) ={z € K : x < z} is open in K, so every interval is Borel. Let us define

h: K —[0,1], h(x) = p((—o0,x)).
Then for every Borel set B C [0,1]
(4.26) u(h1(B)) = A\(B),

since it holds for intervals in [0, 1] by the definition of h, so Carathéodory’s extension
theorem yields that the Borel measures p o h~! and Aljo,1) coincide.

Now we show that h(K) = [0, 1]. The continuity of x implies that h is continuous,
so h(K) is compact. Since K is compact and the intervals of the form (—oo,b)
and (a,00) are open, there exists a minimal element z_ and a maximal element
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x4 in (K, <). Then h(z_) = p(D) = 0, and the continuity of p yields h(zy) =
w((—oo0,zy)) = p(K\{z4+}) = p(K) = 1. Hence {0,1} C h(K) and h(K) is a subset
of [h(z_),h(xz4)] = [0,1]. Thus it is enough to prove that there are no u,v € h(K)
with v < v and (u,v) Nh(K) = (. Assume to the contrary that there exist such u
and v. Let S be a countable dense subset of K and let S; = {s € S : h(s) < u} and
So={t €S :h(t) >v}. Then (u,v) Nh(K) =0 implies that S = S; U Sa. Since
Sp and Sy are countable and h(z) = p((—o0,z)), we obtain pu(U,cg, (—00,5)) <u
and p((,eg,(—00,1)) > v. Let B = (,cg,(—=00,1) \ Useg, (—00, 5), then we have
w(E) > v—wu > 0. But E can contain at most two points: If a,b,c € E and
a < b < ¢, then (a,c) would be a non-empty open set not containing any point of
the dense set S = S; US3. Then the continuity of x implies that p(F) = 0, which
is a contradiction. Thus h(K) = [0,1].
We prove that Y = {y € [0,1] : #h~(y) > 2} is countable. For all n € NT let

Y, = {y €[0,1] : diam h "' (y) > 2/n}.

AsY =J,_,Y,, it is enough to show that Y,, is finite for all n € N*. Let us fix n
and for all y € Y,, pick a,,b, € h™'(y) such that a, < b, and d(ay,b,) > 1/n. Let
us say that a set is 1/n-separated if the distance between every pair of its points is
at least 1/n. Since a compact metric space does not have an infinite 1/n-separated
subspace, it is enough to prove that A, = {a, : y € Y,,} is 1/n-separated. Let
y,w € Y, such that y < w. Then the definition of h yields a, < by = a,,. Thus the
definition of the order < implies

1/n < d(ay,b,) = diam[ay, b,] < diam[ay, a,] = d(ay, a),

so A, is 1/n-separated.
Let us define

X:{zeK:limsupu(B(W

. <oof0ralls<dimH,u},
r—0+4 r

7 = {xEK:liminfﬂ(B(x’T)) < oo for alls<dimpp}.
r—0+ rs

Theorem 2.2 yields that p(X N Z) = 1. Since Y is countable and y is continuous,
(4.26) implies that u(h=*(Y)) = 0. Therefore we can choose compact sets K, C
(XNZ)\h™1(Y) such that u(K,) > 0 for all n € N* and p(|J,2, K,,) = 1. Clearly,
the h,, are one-to-one, so (ii) holds. Then (4.26) yields (iii) and A(D,,) > 0, thus
(i) is satisfied.

Now we prove (iv). We may assume that dimpg g > 0, otherwise we are done.
Let us fix 0 < s < dimg u. As K,, C X for all n € NT, it is enough to show that
for each non-empty A C X we have

(4.27) dimy h(A) < ,
s

then letting s 7 dimpy p yields (iv). Fix a non-empty A C X and for all i € NT let
X, ={z € X :u(B(z,r)) <ir’® for all r > 0}.

The definition of X clearly implies that X = (J;—; X;. The definitions of h and the
linear order < yield that for all x, z € X; with £ < z we have

Ih(x) = h(2)| = p(lz, 2)) < p(B(z,d(z, 2))) < i(d(z, 2))°,
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so the h|x, are s-Holder. By Fact 2.1 we have dimy h(ANX;) < (dimpg(ANX;))/s
for all i € N*. Therefore A C X = [J;2, X; and the countable stability of the
Hausdorff dimension imply that

dimg h(A) = sup dimpg h(AN X;) < sup dimpr (A0 Xi) _ dims A
iENT iENT § §
thus (4.27) holds. Hence (iv) is satisfied.

Finally, we show (v). We may assume that dimp p > 0, otherwise we are done.
Let us fix an arbitrary 0 < s < dimp . As K,, C Z for all n € NT, it is enough
to show that for each fixed non-empty A C Z we have dimpy h(A) < (dimp A)/s,
then letting s 7 dimp p yields (v). We may suppose that dimp A < oo, otherwise
we are done. It is enough to show that for each fixed t > dimp A we have

)

(4.28) dimg h(A) <t/s,

then letting ¢ \, dimp A finishes the proof. The definition of the packing dimension
implies that there are sets A; such that A = Ufil A; and dimpA; < tforalli € NT.
For all j € N7 let

Z;j={x € Z : u(B(z,27")) < j27 " for infinitely many n € N*}.

The definition of Z implies that Z = U;’il Z;. Let us fix i,j € NT and let D =
A; N Z;. Now we show that

(4.29) dimgy h(D) < t/s.

Since dimgD < t, we can fix u such that dimgD < u < t. For all n € N7 let
N, ={B(z,27") : z € D},
Sp={B(®,27"):x € D and u(B(z,27")) < j27"}.

Then clearly S,, C NV,,. Fact 2.4 and the compactness of K yield that N, consists of
finitely many pairwise disjoint balls, so #M,, = Ny—n (D) for all n € NT, where we
recall that Ny—n (D) is the smallest number of closed balls with radius 2=™ whose
union cover D. Thus dimpD < w and the definition of the upper box dimension
yields that for all n € N

(4.30) #8, < No-n(D) < 127",

where ¢; € RT. Let S € S, for some n € N*. For all 2,z € S with z < 2 the
definition of < implies that [z, z) C B(z,d(x,2)) C B(x,2™™). Thus the definition
of h and x € Z; yield

Ih(x) = h(z)] = p(le, 2)) < p(B(x,27")) < 27",
where ¢y = j. Therefore for alln € NT and S € S,
(4.31) diam h(S) < 22777
Since D C Zj, we have D C ;Z y Uges, S for all N € N*. Thus for all N € N*

(4.32) h(D) C G U n(s).

n=N S€S§,,
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For all N € N* let 0 = j27V¢. Then (4.32), (4.30), (4.31) and u < ¢ imply

HY S (WD) < Y Y (diam h(S))"®

n=N S€S§,,
oo
< Z Cl2nu<022—n3)t/s — 032N(u—t)’
n=N

where ¢35 = c1e2/*(1 — 2¢7%)~1. Then u < t yields limpy_, o0 ’Hf;{f(h(D)) =0, so
H/#(h(D)) = 0. Therefore dimg h(D) < t/s, thus (4.29) holds.

As A =2, Uj2,(Ai N Z)), the countable stability of the Hausdorff dimension
and (4.29) imply

dimH h(A) = Sup dlmH h(Az n Zj) S t/S7

i,jENT

thus (4.28) holds. This implies (v), and the proof is complete. O

Theorem 4.8. Let K be a compact ultrametric space and let v be a continuous,
finite Borel measure on K. If d € Nt then for the prevalent f € C(K,R%) there is
an open set Uy C R? such that u(f~1(Uy)) = uw(K) and for all y € Uy

dimg ffl(y) >dimgpu  and dimp ffl(y) > dimp p.

Proof. For all n € N7 let us choose compact sets K,, C K and D,, C R and
homeomorphisms h,,: K,, — D,, according to Lemma 4.7. As u(J,—; K,) = u(K),
Lemma 3.12 yields that it is enough to prove that the sets

A, = {f € O(K,,R%) : 3 an open set Uy C R such that u(f~*(Uy)) = u(K,)
and dimp f~'(y) > dimg g and dimp f~(y) > dimp p for all y € Uy}
are prevalent in C(K,,R%). As A\(D,,) > 0 by (i), Theorem 4.1 implies that
B, = {f € C(D,,R%) : 3 an open set U; C R? such that
MfHUp)) = A(Dy,) and dimy £~ (y) = 1 for all y € Uy}
are prevalent in C(D,,,R?). Fix n € N* and define
H,: C(K,,RY) — C(D,,R?), H,(f)=foh,"

Then H,, is a continuous group isomorphism, so Lemma 3.10 yields that H'(B,)
is prevalent in C(K,,, R?). Therefore it is enough to prove that H;'(B,) C A,. Let
us fix f € H, 1 (B,), we need to prove that f € A,. Let g = H,(f) = foh,! € B,,
then there exists a non-empty open set U, C R? such that A\(g~1(U,)) = A(D»)
and dimg g~ '(y) = 1 for all y € U,. Let Us = U,. Applying (iii) twice with
K, = h,;'(D,) implies that

p(f7HUy)) = plhy (971 (Uy))) = Mg~ (Uy)) = M(Dn) = p(Ky).
Let us fix y € Uy. Then (iv) and (v) yield that
dimp £~ (y) = dimp by, (97" (y)) 2 dimp - dimpr g~ (y) = dimp p,
dimp f~(y) = dimp h, (g7 (y)) > dimp p - dimy g~ *(y) = dimp p.
These imply that f € A,,, and the proof is complete. a
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4.3. The Main Theorem. We prove the Main Theorem after some preparation.

Definition 4.9. Let X be a metric space. For all r > 0 let N(r) be the minimal
number such that every closed ball B(z,r) can be covered by N(r) closed balls of
radius /2. Then X is called doubling if sup{N(r) : r > 0} < co. We say that X is
non-exploding if
. log N(r)
lim ——=

=0.
r—0+ logr

Every subspace of R is doubling, and every doubling space is non-exploding.

Definition 4.10. Let X,Y be metric spaces. A map f: X — Y is called nearly
Lipschitz if f is s-Holder for all s < 1. We say that f is nearly bi-Lipschitz if it
is one-to-one and both f and f~! are nearly Lipschitz. The spaces X and Y are
nearly Lipschitz equivalent if there exists a nearly bi-Lipschitz ontomap f: X — Y.

Fact 4.11. If X|Y are metric spaces and f: X — 'Y is a nearly bi-Lipschitz map
then dimpy f(A) = dimg A and dimp f(A) = dimp A for all A C X.

The above fact follows from Fact 2.1. For the following theorem see [41].

Theorem 4.12 (Zindulka). Let K be a non-exploding compact metric space and
let p be a finite Borel measure on K. Then there exists a compact set C C K such
that w(C) > 0 and C is nearly bi-Lipschitz equivalent to an ultrametric space.

Theorem 4.13 (Main Theorem). Let K be a non-exploding compact metric space,
let u be a continuous, finite Borel measure on K and let d € NT. Then for the
prevalent f € C(K,R?) there is an open set Uy C RY such that u(f~1(Uy)) = p(K)
and for ally € Uy

dimy f~*(y) > dimg p  and dimp f~(y) > dimp p.

Proof. By Theorem 4.12 there exist compact sets K,, C K such that u(K,) > 0 for
all n € N* and p(U,—; K,) = p(K), and there are compact ultrametric spaces C,,
and nearly bi-Lipschitz onto maps h,,: K,, — C,,. Define the finite Borel measures
tn = t|x, on K, and v, = poh,* on C, for all n € N*. Then dimzg p,, > dimg p
and dimp p,, > dimp pu by the definition, thus Lemma 3.12 yields that it is enough
to prove that the sets

A, ={f € O(K,,R?% : 3 an open set Uy C R? such that p,(f~(Uy)) = pn(K»)
and dimg f~'(y) > dimg p, and dimp f~*(y) > dimp p,, for all y € Uy}

are prevalent in C(K,,R?). Clearly, the v,, are continuous Borel measures such
that v, (Cy,) = p(K,) > 0, thus Theorem 4.8 implies that the sets

B, = {f € C(Cn,RY) : 3 an open set U; C R? such that v,(f 1 (Uy)) = v, (Cy)
and dimg f~'(y) > dimy v, and dimp f~*(y) > dimp v, for all y € Ur}
are prevalent in C(C,,R%). Fix n € N* and define H,,: C(K,,,R?) — C(C,,,R?) as
H,(f) = foh,!. Then H, is a continuous isomorphism, so Lemma 3.10 yields that
H;1(B,) is prevalent in C(K,,,R%). Since h,, is nearly bi-Lipschitz, by Fact 4.11 we
have dimg h;!(B) = dimg B and dimp h;}(B) = dimp B for all B C C,,. Hence

J7Re h;l = v, yields that dimg p, = dimg v, and dimp p,, = dimp v,,. These easily
imply that H,1(B,) = A,, so A, is prevalent. The proof is complete. O
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Corollary 4.14. Let m,d € N*. Then for the prevalent f € C([0,1]™,R%) there is
an open set Uy C RY such that A™(f~1(Uy)) = 1 (hence Uy is dense in f([0,1]™)
and for ally € Uy

dimgy f~1(y) = m.

Corollary 4.15. Let K be an uncountable, non-exploding compact metric space
and let d € NT. Then for the prevalent f € C(K,R%) for all s < dimp K there is
a non-empty open set Us s C R such that for all y € Uy

dimp f~!(y) > s.

Proof. Fix s =0 if dimp K =0 and s € (0,dimp K) if dimp K > 0. Theorem 2.3
implies that there is a continuous, finite Borel measure p on K with dimp pu > s.
Applying the Main Theorem for p yields that

A(s) = {f € O(K,R%) : 3 a non-empty open set Uy C R?
such that dimp f~'(y) > s for all y € Uy}

is prevalent in C(K,R%). If dimp K = 0 then we are done, otherwise choose a
sequence s, / dimp K, then (2 A(s,) is the desired prevalent set. O

Corollary 4.16. Let K be a non-exploding compact metric space and let d € NT.
Then for the prevalent f € C(K,R%)

sup{dimp f~(y) : y € R?} = dimp K.

In the case of Hausdorff dimension we generalize the above two corollaries. For
the following theorem see [29, Thm. 1.4].

Theorem 4.17 (Mendel-Naor). If K is a compact metric space and s < dimpy K
then there exists a compact set C' C K such that dimg C > s and C is bi-Lipschitz
equivalent to an ultrametric space.

Theorem 4.18. Let K be an uncountable compact metric space and let d € NT.
Then for the prevalent f € C(K,R?) for all s < dimy K there is a non-empty open
set Ups C R such that for all y € Uy s

dimgy [~ (y) > s.
Proof. By Theorem 1.7 we may assume dimyg K > 0. Fix s € (0,dimy K) and let
A= {f € C(K,R? : 3 anon-empty open set Uy C R?
such that dimg f~'(y) > s for all y € Uy}.

It is enough to prove that A = A(s) is prevalent, since we can choose a sequence
s/ dimy K and ()2, A(s,) will be a prevalent set in C(K,R?) satisfying the
theorem. By Theorem 4.17 there is a compact set C' C K such that dimyg C > s and
there exist a compact ultrametric space D and a bi-Lipschitz onto map h: C — D.
By Fact 4.11 we have dimg D > s, so Theorem 2.3 yields that there exists a
continuous, finite measure p on D such that dimgy p > s. Therefore Theorem 4.8
implies that

B ={g € C(D,R% :3 anon-empty open set U, C R?
such that dimg g~ '(y) > s for all y € U, }
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is prevalent in C(D,R%). Consider
R: C(K,RY) > C(D,RY, R(f) = flooh™".

As h is a homeomorphism, R is a composition of two continuous onto homomor-
phisms, so R is a continuous onto homomorphism. Thus Lemma 3.10 implies that
R™Y(B) Cc C(K,R%) is prevalent, so it is enough to prove that R~*(B) C A. Let
us fix f € R71(B), we need to prove that f € A. Let g = R(f) = flcoh™! € B,
then there exists a non-empty open set U, C R? such that dimg g~!(y) > s for all
y € Uy. Let Uy = Uy and fix y € Us. Then b= (g7 1(y)) = (flc) " y) C F1(y),
so applying Fact 4.11 for the bi-Lipschitz map h yields that

dimg [~ (y) > dimg b~ (g™ (y)) = dimp g~ (y) > 5.
Hence f € A, and the proof is complete. O

Corollary 4.19. Let K be a compact metric space and let d € NT. Then for the
prevalent f € C(K,R?)

sup{dimy f~(y) : y € R} = dimy K.

4.4. Fibers of maximal dimension. First we prove that one cannot replace
supremum with maximum in Corollaries 4.16 and 4.19. For the following well-
known lemmas see e.g. [41, Lemma 4] and [5], respectively. Note that Lemma 4.21
is stated in [5] only in the case K = [0, 1], but the proof works verbatim for all K.

Lemma 4.20. Let G be an abelian Polish group and let A C G. If for all compact
set K C G there exists a g € G such that K + g C A then A is non-shy.

Lemma 4.21. Let K C [0,1] and K C C(K,R) be compact sets. Then there is a
strictly increasing function h € C[0,1] such that h(0) = 0 and for all f € K and
x,z € K, x # z we have

[f (@) = f(2)] < h(lz —2]).

Theorem 4.22. There is a compact set K C R such that dimyg K = dimp K =1
and

A={f € CK,R):dimy [ (y) < dimp f'(y) <1 for ally € R}
is non-shy in C'(K,R).

Proof. For all n € N* let K,, C [0,1/n] be compact sets such that dimy K, =
dimp K,, =1 —1/n and let K = J,-; K,, U{0}. Then K C [0,1] is compact and
dimy K = dimp K = 1. Define

B={feC(K,R): f7(f(0) ={0}}.

Now we show that B C A, that is, dimg f~!(y) < dimp f~1(y) < 1 for every
f € B and y € R. The first inequality clearly holds, so it is enough to prove
that dimp f~1(y) < 1. Let us fix f € B, by definition f~1(f(0)) = {0}. For all
y € R\ {f(0)} the level set f~1(y) C K \ {0} is compact, thus it can be covered
by finitely many sets K,. Therefore the countable stability of packing dimension
yields that dimp f~1(y) < 1.

Finally, it is enough to show that B is non-shy in C(K,R). Let K C C(K,R) be
an arbitrary compact set, by Lemma 4.20 it is enough to prove that there exists
ag € C(K,R) with £ +¢g C B. By Lemma 4.21 there is a strictly increasing
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function h € C]0, 1] such that h(0) = 0 and |f(x) — f(0)| < h(z) for all f € K and
x € K\ {0}. Let g = h|k, then for all f € K and z € K \ {0} we have

f(@) +9(z) = f(z) + h(x) > f(0) = £(0) + h(0) = f(0) + 9(0),
thus f 4+ g € B. This completes the proof. (I

If K is ‘large in its dimension’ then the maximum is attained in Corollaries 4.16
and 4.19. The Main Theorem easily implies the next corollaries.

Corollary 4.23. Let K be a non-exploding compact metric space and let d € NT.
Let p be a continuous, finite Borel measure on K such that dimg p = dimg K.
Then for the prevalent f € C(K,R%) there exists an open set Uy C R? such that

u(f~H(Uy)) = u(K) and for all y € Uy
dimy f~'(y) = dimy K.

Corollary 4.24. Let K be a non-exploding compact metric space and let d € NT.
Let p be a continuous, finite Borel measure on K such that dimp p = dimp K.
Then for the prevalent f € C(K,R?) there exists an open set Uy C R? such that

w(f~1(Uyp)) = u(K) and for ally € Uy
dimp f~!(y) = dimp K.

Remark 4.25. Note that the compact set K in Theorem 4.22 can be decomposed
as K = UZO:l A, such that dimg A,, < dimg K. Assume that K is a non-exploding
compact metric space with dimy K < oo and such a decomposition does not exist,
then we sketch that K satisfies the assumption of Corollary 4.23. By [36, Thm. 2]
there is a gauge function (see Section 7 for the definition) ¢: [0, 00) — [0, 00) such
that

limimfM =dimyg K and H¥(K) >0,

r—0+ logr
where H? denotes the ¢-Hausdorff measure (see Section 7 for the definition). As
dimyg K < oo, we may assume that ¢ is of finite order, that is, p(2r) < cp(r) for
some ¢ € RT and for all » € [0,00). Thus [19] yields that there is a compact set
C C K such that 0 < H¥(C) < co. Then p = H?|¢ is a finite Borel measure on K
with dimyg g = dimyg K. Therefore Corollary 4.23 holds for K.

4.5. The homogeneous case. Let us now consider continuous, finite Borel mea-
sures i on K such that supp p = K. Then the larger dimy p or dimp p can be, the
more homogeneous K is. The Main Theorem yields the following corollary.

Corollary 4.26. Let K be a non-exploding compact metric space and let d €
NT. Let p be a continuous, finite Borel measure on K such that suppp = K.
Then for the prevalent f € C(K,R?) there exists an open set Uy C RY such that
w(f~1(Uyp)) = u(K) (hence Uy is dense in f(K)) and for all y € Uy

dimg f~'(y) > dimygp  and dimp £~ (y) > dimp p.

If K C R™ is a self-similar set satisfying the open set condition, we can say
more.

Corollary 4.27. Let m,d € Nt and let K C R™ be a self-similar set satisfying
the open set condition. It is well-known that dimy K = dimp K = s and 0 <
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H*(K),P*(K) < oo. Then for the prevalent f € C(K,R%) there exists an open set
Ur C R such that H*(f~1(Uy)) = H*(K) (hence Uy is dense in f(K)) and

dimgy f~Y(y) = s for all y € Uy.

Similarly, for the prevalent f € C(K,RY) there erists an open set Vi C R? such
that PS(f~1(Vy)) = P*(K) (hence Vy is dense in f(K)) and

dimp f~(y) = s for all y € Vy.

Proof. For the fact that dimyg K = dimp K = s and 0 < H*(K),P*(K) < oo see
[13, Thm. 2.7]. Applying the Main Theorem for p = H?® and p = P* concludes the
proof, we need to show only that Uy and V; are dense in f(K). Let U be a non-
empty open set in K, then it is enough to prove that H*(U) > 0 and P*(U) > 0.
As K is self-similar, U contains a similar copy of K, and the above statement
follows. O

Finally, we prove two characterization theorems.

Theorem 4.28. If K is a compact metric space and d € Nt then the following
statements are equivalent:
(i) dimy f~1(y) = dimy K for the prevalent f € C(K,R%) and for the generic
y € f(K);
(i) dimy U = dimy K for every non-empty open set U C K.

Proof. (ii) = (i): We may assume that dimy K > 0, otherwise the statement is
trivial. Choose a positive sequence s; ~ dimy K and let V = {V,, : n € N*}
be a countable basis of K consisting of non-empty open sets. For all n € NT let
K, = clV,, then dimyg K, = dimg K. For all i,n € NT consider

Ain = {f € C(K,,R%) : 3 a non-empty open set Uy ;, C R?
such that dimg f~'(y) > s; for all y € Uy, }.
Theorem 4.18 implies that the A; ,, are prevalent. For all n € N* let us define
R,: C(K,RY) = C(Kn,RY), Ru(f) = flk,-
Corollary 3.11 yields that the R, 1(A;,,) are prevalent in C'(K,R?) for all i,n € N*.

As a countable intersection of prevalent sets, A = ;2 (o, R, (Ain) is also
prevalent in C(K,R?). For all f € A let

oo oo

WZﬂ(UWm@>
i=1 \n=1

As a countable intersection of dense open sets, Uy is co-meager in f(K). Let us

fix f € A and y € Uy, it is enough to prove that dimpy f~!(y) = dimy K. For all

i € NT there is an n € N* such that y € Uy therefore

dimg f~(y) > dimg (flr,) " (y) > si.

As s; /dimg K, we obtain that dimg f~1(y) = dimg K. Hence (i) holds.

(i) = (i7): Assume to the contrary that there exist + € K and r > 0 such
that dimgy U(x,r) < dimg K. Tietze’s extension theorem implies that there is a
g € C(K,R%) such that g(K \ U(z,7)) and g(B(x,r/2)) are distinct points in R9.
Then there exist an ¢ > 0 and an open set U C R¢ such that f(B(z,r/2)) C U and
F(K\U(z,7)) C R4\U for all f € B(g,¢). Clearly, B(g,¢) is non-shy in C(K,R%).
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If f € B(g,e) then U N f(K) is a non-empty open set in f(K) such that for all
y € U we have dimy f~!(y) < dimy U(z,r) < dimg K, which contradicts (i). O
Theorem 4.29. If K is a non-exploding compact metric space and d € NT then
the following statements are equivalent:
(i) dimp f~1(y) = dimp K for the prevalent f € C(K,R?%) and for the generic
y € f(K);
(i) dimp U = dimp K for every non-empty open set U C K.

Proof. Repeat the proof of Theorem 4.28, only replace Hausdorff dimension with
packing dimension, and apply Corollary 4.15 instead of Theorem 4.18. d

5. POSITIVELY MANY LEVEL SETS CAN BE SINGLETONS

The main goal of this section is to prove Theorem 5.5. The heart of the proof is
the following theorem, which generalizes a result of Antunovié¢, Burdzy, Peres and
Ruscher [1, Prop. 3.3], see also Theorem 1.8. First we need an easy lemma. Recall
that Z(f) ={z €[0,1] : f(x) = 0}.

Lemma 5.1. The set A= {f € C[0,1] : Z(f) is a singleton} is Borel.
Proof. Clearly A = By \ Bz, where B; = {f € C[0,1] : #Z(f) > i}. Since B is
closed, it is enough to prove that By is Borel. If 7 denotes the pairs of disjoint
closed rational subintervals of [0,1], then By = Uy, 1,)ez Br 1., where

B, ={f€C[0,1]:0€ f(I1)N f(I2)}.
Clearly By, 1, are closed, therefore By is F,,, thus Borel. O

Theorem 5.2. Let u be a Borel probability measure on C[0,1]. Then there exists
a function g € C|0,1] such that

w{f €Cl0,1]: Z(f — g) is a singleton}) > 0.

Proof. Lemma 5.1 implies that A = {f € C[0,1] : Z(f) is a singleton} is Borel, so
{f €Cl0,1]: Z(f — g) is a singleton} = A + g is Borel for all g € C[0,1].

By Theorem 2.5 we may assume by shifting, restricting and normalizing p that
there is a compact set K C C0,1] such that u(K) = 1 and f(x) € [0,1] for all
f €K and x € [0,1]. For each compact set I' C [0,1]? let us define the compact set

7(T)={f € K:3(x,y) € T such that f(z) = y}.
First assume that there exists a point (zo,yo) € [0, 1]? with u(m({(x0,%0)}))
By Lemma 4.21 there is a strictly increasing function h € C[0, 1] such that h(0)
and for all f € K and z,z € [0,1], x # 2
(5.1) [f(z) = f(2)| < (]l — 2]).
Let us define g € C[0,1] as g(x) = yo + h(Jx — zo|). Then clearly Z(f — g) = {zo}
for all f € m({(z0,¥0)}), thus

p{f e K2 Z(f — g) is asingleton}) > u(7({(0,0)})) > 0,

which concludes the proof.
Therefore we may assume that u(m(A)) = 0 for every finite set A C [0, 1]2. We
prove that it is enough to find a function g € C[0,1] such that

(5.2) uw({f € K: Z(f — g) has an isolated point}) > 0.

> 0.
=0
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Indeed, by (5.2) we may assume that there are rationals 0 < a < b < 1 with
(5.3) w{f eK:Z(f—g)Nla,b] is a singleton, g(a) < f(a), f(b) < g(b)}) >0,

since the other three cases with reversed inequalities are similar. Define g € C0, 1]
as
(a) = h(a—z) ifzel0a),
(x) if x € [a, b)],

g(b) + h(z —b) ifze (b1].
Then for all f € K we have g(x) < f(z) if x € [0,a) and f(x) < g(z) if x € (b,1].
Thus Z(f —9) = Z(f — ¢g) N[a,b] for all f € K, so (5.3) implies that

p({f € Cl0,1]: Z(f —9) is a singleton}) > 0,

=
B
Il
Q@ @

and we are done.
Now we show (5.2). First we define the function g € C|0,1]. Let {ay, }nen be a
sequence of positive reals such that

(5.4) ap =1/2 and apt1 < @y, /2 for all n € N,

the exact values will be given later. For all n € N* and (ky,...,k,) € {—1,1}" let

1 n
Zhik, = 5 > kio.
=1

Consider
Z ={0yU{zk,.k, : (k1,... . kn) € {-1,1}", n e N*}.
Let g(0) = 0, and for all n € N* and (k:l, cooykn) € {—1 13" let

(55) g(zkl kn, + Z 9+l

For all x € [0, 1] let

(5.6) g(x) =sup{g(z) : z € Z, z < x}.

Then (5.4) and (5.5) easily imply that g|z is well-defined and non-decreasing, so g
is also well-defined and non-decreasing. Therefore the definitions yield g([0,1]) C
[9(0),¢(1)] = [0,1]. As a monotone function can have only jump discontinuities and
9(Z) is dense in [0, 1] by (5.5), we obtain that g: [0,1] — [0, 1] is continuous.

We prove that if the numbers «, are small enough then g satisfies (5.2). For all
neNtandie {1,...,2"} let ¢(i,n) be the ith element of {—1,1}" with respect to
the lexicographical ordering. Note that ¢(i,n) precedes ¢(j,n) with respect to this
ordering iff 24(; n) < 2¢(j,n) With respect to the usual ordering of the real numbers.
Let Cy = [0,1] and T'y = {1/2} x [0, 1]. For the definition of h recall (5.1). Assume
by induction that «,,, C, and T',, are already defined for some n € N and let

ontt
(5.7) Cny1=Cn )\ U U <2n+1,h(4an+1))

=0
gn+1

69 Tun= U (T} ([t g n0wn ) ).

i=1



32 RICHARD BALKA, UDAYAN B. DARJI, AND MARTON ELEKES

We show that if o, 1 € (0, a, /2] is small enough then
1
(59) M(W(Fn-i-l) N W(Fn)) > ,U(W(Fn)) - W

For all m € N* let CJ’ | and I'}, | be the sets Cp,41 and I', 41 defined by the value
a1 = 1/m. For (5.9) it is enough to prove that

(5.10) Tim_p(e(T7) 1 7(T,) = a(r(T,).
Observe that I',, consists of finitely many vertical line segments and let

A, ={(x,y) €T, : 2"y € Nor (z,y) is an endpoint of a segment of T',,}.
As A, is finite, u(7(A,)) = 0 by our assumption. Since h(4/m) — 0 as m — oo, it
is easy to see that for every given (z,y) € I';, \ A, there is a constant ¢ = ¢(x,y) > 0
such that if m is large enough then I'7, | contains either the vertical line segment
{z—=1/m}x[y—c,y+c] or {z+1/m}x[y—c,y+c]. Thus for every f € m(T',)\7(A,)
there exists an M(f) € NT such that for all m > M(f) we have f € 7(I'?, ;). Let
us define for all m € NT

A ={f € (r(T71) N () \ w(An) : M(f) < m},

then clearly for all m € Nt we have A, C n(I'}%,) N 7(I',). The definition of
M (f) implies that A,,, C A,,+1 and the existence of M (f) yields that | J,._; Ay =
m(Tp) \ 7(A,,). Therefore p(n(A,)) = 0 implies that

lim inf (7 (7% ) O7(Tn)) > Tim p(Ap) = p(r(Cn) \ 7(An)) = (7 (L)),

so (5.10) is satisfied. Thus «,, C, and I';, can be defined for all n € N such that
(5.7), (5.8) and (5.9) hold. Then (5.9) and pu(w(Iy)) = 1 imply that

(5.11) u (ﬂ w(rn)> >1-%) 2n1+1 _ % > 0.

n=1 n=1

Let us consider

C=()Cn and K=g'(C).
n=1

We show that for all f € I
(5.12) Z(f — g) N K C {isolated points of Z(f —g)}.
First we check that if for all n € N* and 7 € {1,...,2"}

i—1 ¢
Ii,n:<2na2n)a

(5.13) diamg™'(Lin) =2 Y o < 4danyr.
k=n+1

then

The inequality is clearly implied by (5.4), so we only need to check the equality.
Note that it is important that the I;, are open, otherwise the constant pieces of
the graph would make the pre-image much bigger. If y = 3};} is the midpoint of
I; ,, then it is easy to see that g7 (y) = {zk,. x, } for some (k1,...,k,) € {—1,1}".
Then I; , = Ul(y, ZZ’;”H ﬁ), and one can check using the definition of g that

this corresponds to ¢~ (Iin) = U(2ky..kp» Dopens1 @), Which proves (5.13).
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Let z € Z(f —g)NK, it is enough to show that if z € [0, 1] with 0 < |z — 2| < 4oy
then f(z) # g(z). As a,, \( 0, there exists a unique number n € N such that
(5.14) dog1 < |z — 2| < day,.

Since z € K implies that g(x) € C,,, there exists an ¢ € {1,...,2"} such that
(5.15) g(x) € I; , and dist({g(x)}, 0L ) > h(4daw,).

Then (5.13) and (5.14) imply that |z — 2| > diam g~'(1; ), so © € g~ *(I;,,) yields
that z ¢ g='(I;,,). Therefore g(z) ¢ I, and (5.15) imply that

(5.16) lg9(z) — g(2)| = dist({g(2)},01;,n) = h(dow).
The monotonicity of h and (5.14) yield that
(5.17) h(lz — 2|) < h(4an).

Therefore f(x) = g(x), the triangle inequality, (5.16), (5.1) and (5.17) imply that

1f(2) = 9(2)| = [(9(z) — 9(2)) = (f(z) = f(2))]
> lg(x) —g(2) = [f(z) = f(2)]
> h(day) — h(|lz —z|) >0,

thus f(z) # g(z). Hence (5.12) holds.
By (5.11) and (5.12) it is enough to show that

(5.18) () #(Tn) C{feK:Z2(f—g)NK #0}.

Let us fix f € ,—, 7(I's), we need to find an = € K such that f(z) = g(z). For
every n € NT we can select points (z,, f(z,)) € T',. We can choose a convergent
subsequence limg_,o0 ,, = x for some z € [0,1]. Then (5.8) yields that for every
k € Nt we have z,, = Zp(in,ny) A f(2n, ) € Ijy p, for someidp € {1,...,2"}. The
definition of ¢ implies that g(z,, ) is the midpoint of I;, n,, 50 | f(@n,) — 9(zn, )| <
2 < 27k for all k € Nt. Therefore

f(fE) = klir& f(xnk) = klggog(xnk) = g(x)

Then (5.8) yields f(zy, ) € Cy, for all k € N*. By (5.7) we have C,,+1 C C,, for all
n €Nt s0 f(2) € Mhey Cnp =Mrey Cr =C. Thus z = g7 1(f(z)) € g7 1(C) = K,
hence (5.18) holds. The proof is complete. O

Hence the definition of shyness readily implies the following.
Corollary 5.3. The set {f € C[0,1] : Z(f) is a singleton} is non-shy and Borel.
Now we turn to the question concerning positively many level sets.
Lemma 5.4. Let A be a family of subsets of [0,1] and consider
A={feC0,1]: f71(0) € A},
B={fe€C[0,1]: 3y € R such that f*(y) € A}.
If A is a non-shy Borel set then B is a non-shy Borel set, too.
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Proof. Let L be the one-dimensional Lebesgue measure defined on the constant
functions of C]0, 1], then clearly

(5.19) B={feC[0,1]: LA~ f) >0}

As Ais a Borel set, the function f — L£(A— f) is Borel measurable by [16, 417A], so
B is Borel. Assume to the contrary that B is shy. Then there is a Borel probability
measure g on C[0,1] such that u(B — g) =0 for all g € C[0,1], so (5.19) yields

u({f €Cl0,1]: LA+g—f) > 0}) = u(B—g)=0.
Therefore we obtain by Fubini’s theorem that for all g € C[0, 1]
peD)Atg = [ Erg- () =0
1
Although p * L is only o-finite, by restricting and normalizing it we obtain a prob-

ability measure witnessing the shyness of A. This is a contradiction, thus the proof
is complete. ([

Theorem 5.5. The set
B={fecC0,1]: 3y € R such that f~ (y) is a singleton}
is non-shy in C[0,1].
Proof. Corollary 5.3 yields that A = {f € C[0,1] : #f71(0) = 1} is a non-shy Borel

set. Lemma 5.4 with A = {{z} : € [0,1]} implies that B is also a non-shy Borel
set. d

Remark 5.6. Similar arguments yield that for all n € N* the sets
A, ={feC[0,1]: #fﬁl(o) =n},
B, ={f€C[0,1]: 3y € R with #f ! (y) =n}
are non-shy, the details are left to the reader. The sets A,, are pairwise disjoint.

For the prevalent f € C[0, 1] the sets f~!(min f) and f~!(max f) are singletons,
see e.g. [5]. The next theorem states that all other non-empty level sets can be
large, which can be considered as a complementary result to Theorem 5.5.

Theorem 5.7. The set
C={fecC0,1]:dimy f~(y) =1 for all y € (min f, max f)}
is non-shy in C[0,1].
Proof. Let L C C[0,1] be an arbitrarily fixed compact set. By Lemma 4.20 it is
enough to construct a g € C[0,1] such that K + g C C. First we construct g. By

Lemma 4.21 there is a strictly increasing function h € C0, 1] such that h(0) = 0
and for all f € K and z,z € [0, 1] we have

[f (@) = f(2)] < h(lz — 2)).

For all n € NT fix positive integers a,, > b, such that

1 5n2 _ an
(5.20) ap > max {hl(Q(nJrQ))’2 } and bn = ’7372—‘ )
where [-] denotes the upper integer part. For all n € N¥ let
1
Pn =

ai---an
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Define g, € C[0,1] for all n € NT as

(z) (=127 ifrx=ip, and 0 <i < ay---ap,
’ affine on [(i — 1)pp,ipy] for all 1 <i < ay---ay.

Let us define g € C[0,1] and G,, € C[0,1] for all n € N* as
9=> g and G,=) g
i=1 i=1

Now we prove that K+¢g C C. Let us fix f € K and y € (min(f +g), max(f+yg)),
we need to prove that dimg(f + ¢)~'(y) = 1. As f + G,, uniformly converges to
f+g, the intermediate value theorem implies that there is an m € N* and zy € [0, 1]
such that (f + Gpn)(zg) =y. For all n € N let

I, = H{l, ceybmyi} and
=1
jn = {[(Z - 1)pm+naipm+n} 01 < 1 < aj - 'am+n}a

where we use the convention Zg = {@} and (i1,...,79) = 0. Let Iy € Jo such that
xg € Iy. We construct for each n € N and (i1, ...,4,) € Z, an interval I;,, , € J,

and a point z;,. ;, € I;, .4, such that for all (i1,...,9,41) € Znt1
(1) Liy.ipyy C Ly oiys

2) (f + Gmpn) (@i, i) = y-

Then x4 and Iy are already constructed such that (2) holds. Assume by induction
that for some fixed n € N for each (i1,...,4,) € Z, the interval I;, ; and the
point x4, 4, € I;,. are defined. Let us fix (i1,...,i,) € Z,. We can choose
bm+n+1 distinct elements of 7,41 which are subsets of I;, ;. NU (x4, 4, , Pm+n/16),
let us enumerate them as I;, ;. ., (1 < 441 < bpgny1), then (1) holds. Fix
int1 €{1,..., bmgns1} and define w;, i, .15 Vi iy, € Ly such that

L

Slintl

727(m+n+1)

)= 9—(m4n+1)

gm+n+1(uil.,.in+1) and gm+n+1(vi1...in+1

It is enough to prove that

(521) (f + GernJrl)(’U/il,,,i"Jrl) < Yy < (f + Gm+n+1>(7}i1...in+1)a

then by the intermediate value theorem we can choose an z;,..;,,, € Ii. 4,
satisfying (2). We prove the second inequality of (5.21) only, the proof of the first
one is analogous. As (f + Gptn)(®i,...i,,) =y and gmant1(Viy.inyy) = 9~ (m+nt1)
it is enough to prove that

(5.22) [(f + ) (@iyi) = (f + Ginn) (V4 )| < 277D,

Since 24,4, Viy..cinss € Liy...i,, the definition of A, pp 4, and ap,qrn imply that

(5.23) (@) = i) S BPmtn) < AL agngn) < 2700042
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It is easy to show that for all i € NT the function g; is Lipschitz and Lip(g;) =
21=ip b = 217q; .- a;. Thus Gy is Lipschitz and a1, > 27" implies that

m—+n m—+n

i=1

i=1
S 2a1 C o Qmgn—1 + 21_(m+n)a1 © o Qmgn

227(m+n)

S 227(m+n)a1 cQmgn =

pern
Therefore I;,. ;. C U(i,.. 4. Dm+n/16) yields that
|Gm+n(xi1~-in) - Gm+n(vi1~-in+1)| < Lip(Gm+n)|xi1---in - Ui1<~-7;n+1|
2—(m+n
(5.24) < 2 (mn) .pern _ 27(m+n+2).
o Pm+n 16

Equations (5.23) and (5.24) imply (5.22), and the induction is complete. For all
n € NT let ¢, = aman and d,, = byyyp. Set

A (0 ()

n=1 \i1=1  i,=1

Then C is a (¢, dy,)-type compact set, see Definition 3.5. Then (5.20) implies that
a; > 25" and 32 > a;/b;, so for all n € NT we have

n+1
6 > 25man)? 5 9541 5 (W) .
- - T \didpt

Therefore Lemma 3.7 implies that dimy C' = 1.

Finally, in order to prove dimy(f + g)~'(y) = 1, it is enough to show that
C C (f+9) Yy). Let us fix z € C, we prove that f(z) = y. For all n € N* pick
indices i, € {1,...,d,} such that « € I;, ; , then clearly lim,, o z;, i, = x. As
f + Guin converges uniformly to f + g, property (2) implies that

(f +9)(@) = lim (f + Groin) (i i) = ¥
and the proof is complete. ([l
Corollary 5.8. The sets
B={fecC0,1]: Iy € R such that f~'(y) is a singleton},
C={feC0,1]:dimg f(y) =1 for all y € (min f, max f)}

are disjoint non-shy sets in C[0,1], so they are neither shy nor prevalent.

6. DIMENSIONS OF GRAPHS OF PREVALENT CONTINUOUS MAPS

By product of two metric spaces (X,dx) and (Y, dy) we will always mean the
I2-product, that is,

dxxy ((x1,91), (22,92)) = \/dﬁg(xl,xz) + d3 (y1,92).

FrECXxYandyeYlet EY={zec X :(x,y) € E}.
The following lemma is basically [26, Thm. 7.7]. It is only stated there in the
special case X = A C R™, but the proof works verbatim for all metric spaces X.
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Lemma 6.1. Let X be a metric space and let d € Nt. If f: X — R? is Lipschitz
and t > d then

S () AN () < efd) Lin() A (X),
R
where f* denotes the upper integral and c(d) is a finite constant depending on d

only.

Let £ C X x R? and define f: E — R? as f(x,y) = y. Applying Lemma 6.1 for
f yields the following lemma.

Lemma 6.2. Let X be a metric space and let d € NT. If E ¢ X x R? then for
\-almost every y € R?

dimg (EY) < max{0,dimy F — d}.
Recently Orponen [33, Cor. 1.2] has shown that Lemma 6.1 does not remain true

if we replace Hausdorff measures by packing measures. The analogous version of
Lemma 6.2 holds, see the proof of [12, Lemma 5] with the natural modifications.

Lemma 6.3. Let X be a metric space and let d € NT. If E ¢ X x R? then for
M-almost every y € R?

dimp(EY) < max{0,dimp E — d}.
For the following lemma see [26, Thm. 8.10]. It is only stated there for subsets
of Euclidean spaces, but the same proof works here as well.
Lemma 6.4. If X|Y are non-empty metric spaces then
dimg(X xY) <dimpyg X + dimp Y,
dimp(X xY) < dimp X + dimp Y.
Theorem 6.5. Let K be an uncountable compact metric space and let d € N7T.
Then for the prevalent f € C(K,R%)
dimy graph(f) = dimyg K + d.
Proof. Lemma 6.4 and dimp R? = d yield that for all f € C(K,R?)
dimy graph(f) < dimpg (K x R?) < dimy K + d,

so it is enough to prove the opposite inequality for the prevalent f.

If dimy K = 0 then Theorem 1.7 yields that for the prevalent f € C(K,R%) we
have int f(K) # 0, so dimpg f(K) = d. As f(K) is a Lipschitz image of graph(f)
and Hausdorff dimension cannot increase under a Lipschitz map, we obtain

dim g graph(f) > dimy f(K) = d = dimy K + d,
and we are done. Hence we may assume that dimgy K > 0. Consider
A={f e C(K,R?) :for all s < dimy K there exists a non-empty
open set Us s C R? such that dimpg f~'(y) > s for all y € Uy ,}.

Theorem 4.18 yields that A is prevalent in C(K,R?), so it is enough to show that
dim g graph(f) > s+ d for an arbitrary given f € A and s € (0,dimy K). Let E =
graph(f) C K x RY, then for all y € Uy s we have dimy EY = dimpy f~*(y) > s. As
A(Ugs) > 0 and s > 0, Lemma 6.2 implies that dimy graph(f) = dimy E > s +d.
The proof is complete. O
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Theorem 6.6. Let K be an uncountable, non-exploding compact metric space and
let d € N*. Then for the prevalent f € C(K,R%)

dimp graph(f) = dimp K + d.

Proof. We can repeat the proof of Theorem 6.5, only replace Hausdorff dimen-
sion with packing dimension, and apply Corollary 4.15 and Lemma 6.3 instead of
Theorem 4.18 and Lemma 6.2, respectively. ]

7. FINER RESULTS WITH GENERALIZED HAUSDORFF MEASURES

In this section we indicate how to obtain sharper versions of the main results.
Since the proofs were quite technical already, we decided not to include these
stronger forms in the main body of the paper, only give a brief sketch in this
separate section.

A function ¢: [0,00) — [0,00) is defined to be a gauge function if it is non-
decreasing and ¢(0) = 0. For a metric space X let

HA(X) = hm 'f’-lf(X)7 where

mf{Zcp diam A;) : X C UA"’ Vi diam A; < 5}.

=1

We call H¥ the p-Hausdorff measure, which extends the concept of classical Haus-

dorff measure. There are examples when this finer notion of measure is needed, this

is the case when we want to measure the level sets of the linear Brownian motion

or the range of a d-dimensional Brownian motion. For more information see [35].
Let G be the set of gauge functions and for all s > 0 let

g(s):{apegz lim W:oo}.

r—0+ 1S

Now we show how to generalize Theorem 4.1, Theorem 5.7 and Theorem 1.9. First
we need to extend Lemma 3.7.

Lemma 7.1. Let ¢ € G(1) be a gauge function. Let us define the non-decreasing
function ®: [1,00) — [1,00) as

(7.1) ®(z) =sup{r e R" : rp(1/r) <z} + 1,
where sup® = 0 by convention. Let C C R be an (an, by)-type compact set such

that for all n € NT
*An41
> ——— ).
o (bl “bnt1 )

Proof. Let p be the same measure as in the proof of Lemma 3.7, then similar
arguments yield that all Borel sets B C C' with diam B < 1 satisfy

w(B) < 4p(diam B).

Then H?(C) > 0.

Therefore the mass distribution principle for generalized Hausdorff measures implies
that H?(C) > 0, see also [30, Prop. 6.44 (i)]. O

Instead of Theorem 4.1 we can prove the following stronger form.
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Theorem 7.2. Let K C R be a compact set with A\(K) > 0 and let d € N*. Let

© € G(1) be a gauge function. Then for the prevalent f € C(K,R%) there erists a

non-empty open set Uy C RY such that A\(f~1(Uy)) = M(K) and for all y € Uy
HO(fH(y)) > 0.

Proof. Let ®: [1,00) — [1,00) be the function defined in (7.1). Let us follow the
proof of Theorem 4.1, the only difference is that we define the numbers a,, by
induction such that b, = (2s)~("*3)q,, are integers and for all n € Nt we have

4y, > max {(25)8"(a1 an_y),® (al"'a”+1> } .
by bpyt
Then applying Lemma 7.1 instead of Lemma 3.7 concludes the proof. O

Instead of Theorem 5.7 we can prove the following stronger form.
Theorem 7.3. Let ¢ € G(1) be a gauge function. The set
C={fecCo,1]: H?(f~ (y)) > 0 for all y € (min f, max f)}
is non-shy in CI0,1].
Proof. Let ®: [1,00) — [1,00) be the function defined in (7.1). Let us follow the
proof of Theorem 5.7, the only difference is that in (5.20) we replace 25m” by ®(257)
and we apply Lemma 7.1 instead of Lemma 3.7. (]

Fraser and Hyde proved in [15] that the prevalent C[0, 1] has graph of Hausdorff
dimension 2. They observed that H?(graph(f)) = 0 for all f € C[0,1] by Fubini’s
theorem, and raised the problem what we can say using different gauge functions.
The following theorem solves this problem by stating that the graph of the prevalent
f € C[0,1] is as large as possible according to this finer scale, too.

Theorem 7.4. Let d € NT and let o) € G(d+ 1) be a gauge function. Then for the
prevalent f € C([0,1],R%) we have

HY (graph(f)) > 0.
Before sketching the proof of Theorem 7.4 we need two lemmas.

Lemma 7.5. Let d € Nt and let 1 € G(d+ 1) be a gauge function. Then there is
a gauge function ¢ € G(1) such that for all r € [0,1] we have

p(r)rd < (r).
Proof. Let ¢(0) =0 and ¢(r) = (1) for all 7 > 1. Define (r) = infsef. 1) ¥(s)s™?
if 0 < 7 < 1. Then clearly ¢(r)r? < ¢(r) for all r € [0, 1], and it is easy to check
that ¢ is a gauge function with ¢ € G(1). O

For the following lemma see the proof of [26, Thm. 7.7] with the natural modi-
fications.

Lemma 7.6. Let X be a metric space and let d € NT. Let p,0 be gauge functions
such that o(r) = p(r)r? for allr > 0. If g: X — R? is Lipschitz then

JHE(97 () AX(y) < e(d) Lip(g)"H7(X),

R

where f* denotes the upper integral and c(d) is a finite constant depending on d
only.
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Proof of Theorem 7.4. By Lemma 7.5 there is a gauge function ¢ € G(1) such that
o(r)rd < ap(r) for all r € [0,1]. Let us define o(r) = ¢(r)r? for all » > 0. Consider

A={feC(0,1],R?) : there exists a non-empty open set
U; € RY such that H#(f~'(y)) > 0 for all y € Uy }.

Theorem 7.2 yields that A is prevalent in C(K,R%). Let us fix f € A, it is enough
to prove that HY¥(graph(f)) > 0. Let g: [0,1] x R? — R? g(z,y) = y be the
natural projection onto R? and let X = graph(f). Applying Lemma 7.6 for X and
g|x implies that H? (graph(f)) > 0. Since o(r) < 3 (r) for all r € [0, 1], we obtain
that HY (graph(f)) > 0. The proof is complete. O

8. OPEN PROBLEMS

The following problem asks whether the Wiener measure witnesses the prevalence
of a somewhat weaker statement than Corollary 4.6. The motivation comes from
[1], where the zero set of Brownian motion with variable drift is investigated.

Problem 8.1. Let {B(t) : t € [0,1]} be the standard one-dimensional Brownian
motion and let f € C[0,1]. Does there exist almost surely an open set Upiy C R
such that (B + f)"*(Up+¢)) =1 and for ally € Up4¢

dimg (B + f)"'(y) > 1/2?

Problem 8.2. Can we omit the condition that K is non-exploding from the Main
Theorem, or more generally, from Theorem 4.127

We would like to describe the compact metric spaces K for which Corollary 4.19
can be strengthened. Here we consider only the one-dimensional case.

Problem 8.3. Let us characterize the compact sets K C R such that for the preva-
lent f € C(K,R) there exists a non-empty open set Us C R so that dimpy [~ (y) =
dimyg K for all y € Uy.

Problem 8.4. Let us characterize the compact sets K C R such that for the preva-
lent f € C(K,R) there exists a yy € R such that dimg f~(ys) = dimpy K.

Acknowledgments. We are indebted to Y. Peres, M. Vizer and O. Zindulka for
numerous illuminating conversations.
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