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Abstract

We say that a metric space (X, d) possesses the Banach Fized Point
Property (BFPP) if every contraction f : X — X has a fixed point.
The Banach Fixed Point Theorem says that every complete metric space
has the BFPP. However, E. Behrends pointed out [2] that the converse
implication does not hold; that is, the BEFPP does not imply completeness,
in particular, there is a non-closed subset of R? possessing the BFPP. He
also asked [3] if there is even an open example in R", and whether there
is a ‘nice’ example in R. In this note we answer the first question in the
negative, the second one in the affirmative, and determine the simplest
such examples in the sense of descriptive set theoretic complexity.

Specifically, first we prove that if X C R" is open or X C R is simulta-
neously F, and Gs and X has the BFPP then X is closed. Then we show
that these results are optimal, as we give an I, and also a Gs non-closed
example in R with the BFPP.

We also show that a nonmeasurable set can have the BFPP. Qur
non-G5 examples provide metric spaces with the BFPP that cannot be
remetrised by any compatible complete metric. All examples are in addi-
tion bounded.

1 Introduction

Converses to the Banach Fixed Point Theorem have a very long history. The
earliest such result seems to be that of Bessaga [4], but see also [1], [5], [8], [9],
[10], [12], [14], [15], [16] and [18]. There are also numerous result of this kind in
linear spaces as well.

The version we consider in this note is the following.

Definition 1.1 We say that a metric space (X, d) possesses the Banach Fized
Point Property (BFPP) if every contraction f: X — X has a fixed point.
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Note that the empty set does not possess the BFPP as the empty function
is a contraction with no fixed point, so this would cause no problem, but for the
sake of simplicity we simply assume that all sets and metric spaces considered
are nonempty.

At the Problem Session of the 34th Winter School in Abstract Analysis
E. Behrends presented the following example, which he referred to as ‘folklore’.

Theorem 1.2 Let X = graph (sin(l/x)[(oﬂu). Then X C R? is a non-closed
set possessing the Banach Fized Point Property.

Proof. X is clearly not closed. Let f : X — X be a contraction of Lipschitz
constant ¢ < 1. For H C (0, 1] define X [ = graph (sin(1/z)[ ;). Choose € > 0

so that diam (X [(o.)) < 2, then diam (f (X1,))) < 2. Hence f (X1(,)
cannot contain both a local minimum and a local maximum on the graph. But

this set is clearly connected, which easily implies that it is contained in at most
two monotone parts of the graph. Therefore there exists §; > 0 such that

f (X [(016)) C Xlis, 1- By compactness f (Xf[s,u) C X(s,,1) for some 5 > 0,

and hence setting § = min{d1, 02} gives f(X) C X5 ). But then the Banach
Fixed Point Theorem applied to X |15 ;) provides a fixed point. O

E. Behrends asked the following two questions.

Question 1.3 ([3]) Is there an open non-closed subset of R™ with the Banach
Fized Point Property for some n € N?

Question 1.4 ([3]) Is there a ‘simple’ non-closed subset of R with the Banach
Fized Point Property?

2 When Banach’s Fixed Point Theorem implies
completeness

First we answer Question 1.3.

Lemma 2.1 Let n € N and X C R" such that there exist y,z € R" so that
y ¢ X but the nondegenerate segment (y,z) C X. Then X does not possess the
Banach Fized Point Property.

Proof. We can clearly assume y = (0,...,0) and z = (1,...,0). Then

f(z) = <%arctan|x,0, ce O) (x eR")

is a contraction, since the absolute value of vectors and arctan are both Lipschitz
functions of constant 1. By our assumptions f(X) C X. As no contraction can
have more than one fixed point, and the origin is clearly a fixed point, we obtain
that f[y has no fixed point. O



Corollary 2.2 For everyn € N every open subset of R possessing the Banach
Fized Point Property coincides with R™, hence it is closed.

Proof. Let U C R™ be open but not closed, then there exists z € U and = ¢ U.
Let y be the closest point of [z,2) \ U to z. O

Now we turn to Question 1.4, the case of X C R. In this section we show
that there is no example that is simultaneously F, and Gj.

Lemma 2.3 Let X C R such that 0 € X \ X and 0 is a bilateral accumulation
point of int(X°). Then X does not possess the Banach Fized Point Property.

Proof. Let {(an,b,)}nen be a sequence of intervals in X¢ N (0,00) so that
bn+1 < a, for every n and a,,b, — 0. Fix a monotone decreasing sequence
zn, € X such that |z,| < 2259 Now, for z € X, z > 0 let n, be the minimal
number for which b, < z, and define f(z) = z,_. Define f on X N(—00,0) in a
a similar manner. We claim that f is a contraction. First let 0 < x < y be two
points in X. If n, = n, then f(z) = f(y), while if n, > n, then |f(z) — f(y)| <

b
|Zny| < "yf

Iy < Iw_gy|7 hence f is a contraction on X N (0, 00). Similarly, f is
a contraction on X N (—o0,0). Moreover, |f(z)| = |z, | < ZeZ%e < %, which
shows that for every © < 0 < y in X we have |f(z) — f(y)| <
a contraction on X.

Since 0 ¢ X, the above inequality |f(x)| < % also shows that f has no fixed
point. This finishes the proof. O

lx—

yl ;
5, hence f is

A portion of a set is a relatively open nonempty subset. A set that is
simultaneously F, and Gj is called ambiguous (or AY in descriptive set theory).
A set X is ambiguous iff for every nonempty closed set F' either X or X¢ contains
a portion of F' [13].

Theorem 2.4 FEvery simultaneously F, and Gs subset of R with the Banach
Fized Point Property is closed.

Proof. Suppose that X C R is a non-closed ambiguous set with the BFPP. By
applying a translation we can assume that 0 € X \ X. By the previous lemma
0 is not a bilateral accumulation point of int(X¢), so without loss of generality
there exists ¢ > 0 such that X is dense in [0,¢]. Let I be an arbitrary closed
nondegenerate subinterval of [0, e]. As X is ambiguous, either X or X ¢ contains
a portion of I, but as X is dense in I, the second alternative cannot hold. Hence
X contains a subinterval of I, and as I was arbitrary, int(X) is dense in [0, £].

Set F'=[0,e]\int(X). As 0 € F', we have I # (), so either X or X¢ contains
a portion of F, but the first alternative clearly cannot hold, so there exists an
open interval J C [0, ¢] so that the nonempty set F' N J is disjoint from X. Fix
f € J\ X and by the denseness of int(X) also an x € J Nint(X). Let y be
the closest point to x of (int(X))® between x and f. As y € F'N.J, we obtain
y ¢ X, hence by Lemma 2.1 X does not possess the BFPP. O



3 When Banach’s Fixed Point Theorem holds for
strange sets

In this section we give the examples of non-closed sets with the BFPP of lowest
possible Borel classes. For every n > 2 Theorem 1.2 clearly provides an ambigu-
ous example in R™, Corollary 2.2 shows that no open example is possible, and
obviously there is no closed example. In the language of descriptive set theory,
AY is best possible, as there are no ©¢ and 1Y examples. In R Theorem 2.4
shows that there is no ambiguous example, and this will be shown to be optimal
when we prove below that there are F,, and also G5 examples. That is, X9 and
I19 are possible, but AY is not.

The space of compact subsets of R endowed with Hausdorfl metric is a
complete metric space (see e.g. [11] for definitions and basic facts). We say that
a typical compact set has a property if the compact sets not having the property
form a first category (in the sense of Baire) set in the above space.

The following lemma is interesting in its own right. For simplicity we only
prove it in R, but it easily generalises to higher dimensions.

Lemma 3.1 A contractive image of a typical compact K C R cannot contain
a portion of K.

Proof. Recall that if each of a countable set of properties hold for a typical
compact set, then they also hold simultaneously, as first category sets are closed
under countable unions. Therefore it is enough to show that for a fixed pair of
rationals p < ¢, for a typical compact set K either K N (p,q) =0 or K N (p,q)
cannot be covered by a contractive image of K. Similarly, it suffices to check that
for a fixed r < 1if f is a contraction of ratio at most r then either KN (p,q) =0
or KN(p,q) ¢ f(K). As (in fact, in every dimension) every contraction can
be extended to R with the same Lipschitz constant [6, 2.10.43.] we may assume
that f: R — R.

Therefore it suffices to prove that for a fixed » < 1 and for a fixed pair of
rationals p < ¢

N={K CRcpt :3f : R — R contr. of ratio <r, 0# K N(p,q) C f(K)}

is a nowhere dense subset of the space of compact sets. Let B(Kj,eo) be the
open ball of center Ky and radius g9 > 0. We need to find a ball inside this
one that is disjoint from N. It is well known and easy to see that the finite
sets form a dense subset of our space, so we may assume that K is finite;
KQ = {331, ce ,.Z‘n}.

Suppose first that Ko N [p, q] = 0. Define 1 = min{dist(Ko, (p,q)),c0} > 0.
Then for every K € B(Ky,e1) we have KN (p,q) = 0, hence B(Ky,e1) NN = 0.

So we can assume that Ko N [p,q] # 0, e.g. x5, € [p,q]. Let (a,b) be a
subinterval of (p, q) N (x;, — €0, xi, + €0). Choose an integer

n+2

k>
1—7’

(1)



and choose two arithmetic progressions {y1,...,yx} and {z1,..., 2} in (a,b),
each of length k and of some difference d > 0 so that

dist({y1, ..., yrt, {71, ., 2 }) > kd. (2)

Define
Kl = KOU{yl,...,yk}u{zl,...,zk},

then K; € B(Ky,£0). Choose
; ) d
g1 = min  dist (K1, B(Ko,€0)¢) , 1[0

then clearly B(K1,e1) C B(Kyp,ep). It is also easy to see that the intervals
Y= (yj —e1,yj+e1), Zi = (25 —€1,2;+¢1) for 1 < j <k are all disjoint. Also
put X; = (x; —e1,x; + &1) for every 1 < i < n.

Now we claim that B(Kj,e1) N N = (), which will finish the proof. Let
K € B(K1,e1) be arbitrary. Clearly K C J!; X; U U§:1 Y; U U§:1 Z;, and K
intersects all these intervals. Let f : R — R be a contraction of ratio at most 7.
Denote by my (resp. mz) the number of intervals Y; (resp. Z;) met by some
f(I), where I ranges over the X,’s, Y;’s and Z,’s. We will be done once we show
that my < k or myz < k.

Using e, < 4 and (2) we obtain

k k

diam | f Y)) | <diam Y| =(k-1)d+2e1 <kd—2s1 < (3)
j j

j=1 j=1

k k
<dist({yr, ...y} {21, 2 }) — 20 = dist(|J Y5, | Z)),
j=1 j=1

so f (Uf:1 YJ) cannot intersect both Ule Y; and Ule Zj. Of course, the same

holds for f (Ule Zj), so without loss of generality we may assume that

k k k

vi|lnflUYy =0 [UY|nr{Uz|=0 (4)

j=1 j=1 j=1 j=1

=

For 1 < j1 < jo < k we have dist(Y;,,Y},) > d—2e1 > 21, so if I is an interval
of length 2e; then f(/) cannot intersect both Y;, and Yj,. Moreover, if H C R
intersects ¢ many distinct Y; intervals, then clearly diam(H) > d(t — 1) — 21 >
d(t —1) —d =d(t — 2), hence

diam(H
- iam(H)

2. (5)



We would like to apply this to f (U?:l Y]) and f (U§:1 Z]-). Clearly

k
diam | f(|J Y;) | < rdiam Y | = r[(k — 1)d + 2e1] < rkd,
J J

j=1 j=1

so by (5) f (Uf:1 Y]) can only meet at most rk + 2 many Y;’s, and similarly

for f (Ule Zj). In fact, by (4) we only need to calculate with one of these two
amounts, and altogether we obtain

my <rk+2+n,

where n comes from the X;’s. But by (1) rk + 2 + n < k, which finishes the
proof. O

Remark 3.2 Note that if every contraction f : X — X is constant, then X
clearly has the Banach Fixed Point Property.

Theorem 3.3 There exists a non-closed Gs set X C R with the Banach Fixed
Point Property. Moreover, X C [0,1] and every contraction mapping X into
itself is constant.

Proof. Let K C R be a nonempty compact set such that no portion of K can
be covered by a contractive image of K. Then K is clearly nowhere dense. Let

X = (K +Q)°n[o,1],

then X is G5. As K + Q is a nonempty set of the first category, it is not open
in [0, 1], hence X is not closed. ~

Now, let f : X — X be a non-constant contraction. As above, let f: R — R
be a contraction extending f. As X is dense in [0,1], we have f([0,1]) C
[0,1]. We can clearly assume that f is constant on (—oo, 0] and [1,00), hence
ran(f) c [0,1]. Then ran(f) is a nondegenerate interval I C [0, 1]. Pick q €Q
so that (K + qo) Nint(I) # 0. As f(X) C X, we have X° N1 C f(X°),
S0 (K +q0) N1 C(K+QnNTC fK+Q U{F0), ()} = Uyeq FIK +
q) U{f(0), f(1)}. Since K is nowhere dense, there is a nondegenerate interval
[a,b] C int(I) intersecting K + qo such that a,b ¢ K + qo. The closed set
[a,b] N (K +q0) C U,eq f(K +q)U{f(0), f(1)}, which is a covering by countably
many closed sets, hence by the Baire Category Theorem one of them covers a
portion of K + qg, which contradicts the choice of K. O

Theorem 3.4 There exists a non-closed F, subset of [0,1] with the Banach
Fized Point Property.



Proof. Again, let K C R be a nonempty nowhere dense compact set such that
no portion of K can be covered by a contractive image of K. Then clearly K
has no isolated points, so K is homeomorphic to the Cantor set [11, 7.4]. We
can clearly assume that min(K) = 0 and max(K) = 1. Let {I,, }nen be the set
of contiguous open intervals of K. Set

X = UnENE-

That is, X is ‘[0, 1] \ K plus the endpoints’. This set is clearly F,, and it is not
closed, as it is dense in [0, 1] but only contains countably many points of K.

In order to show that it has the BFPP let f: X — X be a contraction, and
as above, let f : R — [0, 1] be a contraction extending f (here we use again that
X is dense in [0, 1]) that is constant on (—oo, 0] and [1, c0). If f is constant then
we are done, otherwise ran(f) is a nondegenerate interval I C [0,1]. If ] ¢ X
then (by connectedness) we have I C I,,, for some ng € N, and therefore f Fm
has a fixed point.

So we can assume X°N I # (. Then using again that X is a union
of closed intervals we obtain that X°¢ N int(I) # 0. Choose a nondegener-
ate interval [a,b] C int(I) intersecting K so that a,b ¢ K. Similarly as
above, X N1 C f(X¢) C f(K). As this last set is closed, XcNI c f(K).
Set E = U,en (In \ In); that is, the set of endpoints. Then K N [a,b] =
(K\ E)N[a,b] = X¢NJa,b] € X¢NI C f(K), which is impossible by the
choice of K. 0

It is well known [11, 3.11] that there is a complete metric equivalent to the
usual one on a set X C R” iff X is Gs. Combining this fact with the above
theorem and Theorem 2.4 we obtain the following.

Corollary 3.5 There is a bounded Borel (even F,) subset of R with the Banach
Fized Point Property that is not complete with respect to any equivalent metric.

Finally we show that even a nonmeasurable set can have the BFPP. A set
B C [0,1])" is called a Bernstein set if BN F # () and B° N F # () for every
uncountable closed set F' C [0,1]™. It is well known that every Bernstein set is
nonmeasurable [17, 5.3] (which works for [0, 1] instead of R).

Theorem 3.6 For every integer n > 0 there exists a nonmeasurable set in R™
with the Banach Fized Point Property. Moreover, there exists a Bernstein set
in [0, 1]™ with the BFPP, such that every contraction mapping this set into itself
1§ constant.

Proof. It suffices to prove the second statement. Enumerate the uncountable
closed sets F' C [0,1]™ as {F,, : @ < 2“}, and also the non-constant contractions
f i R* - R" as {f, : @ < 2¥}. We define a characteristic function ¢ :
[0,1] — {0,1}, and the Bernstein set with the required properties will be
X ={z€[0,1]": p(z) =1}.

Suppose we have already defined ¢ on a set D, C [0,1]™ of cardinality
< 2%. We define it for four more points. As every uncountable closed set is



of cardinality 2, we can pick two distinct points z4,ys € F \ D, and define
©(xo) = 0, p(ya) = 1. This will make sure that X will be a Bernstein set in
[0,1]™.

Asran(f,) is a nondegenerate connected set, its projection on every line is an
interval, and for a suitable line this interval is nondegenerate. Hence |ran(f,)| =
2¢. Therefore [ran(fo) \ (Do U {Za, Yo, Fiz(fa)})| = 2%, where Fiz(f,) is the
(unique) fixed point of f,. As the inverse images of the points of this set form a
disjoint family of size 2¢ of nonempty sets, and |Dy, U {24, Yo, Fiz(fa)}] < 2%,
there exists uq € 7an(fo)\ (Do U{Za, Yo, Fiz(fa)}) such that f,1(us)N (D U
{Za, Yo, Fiz(fa)}) = 0. Pick an arbitrary v, € f;!(uq), then vy # u,. Finally,
define p(uq) =0, p(vy) = 1.

After finishing the induction define ¢ to be 0 outside |J, oo Da- As we
mentioned above, X is easily seen to be a Bernstein set in [0,1]". In order
to get a contradiction, let f : X — X be a non-constant contraction. Then
it can be extended to R", so f = f, for some . But then v, € X and
f(va) = fa(va) = ua ¢ X, a contradiction. O

Remark 3.7 It is not hard to see that if X = sin(1/x)[ ) then there exists
a function f : X — X with no fixed points such that |f(z) — f(y)| < |« — y| for
every =,y € X. (Just ‘map each wave horizontally to the next one’.) It would
be interesting to know what happens if we replace the class of contractions with
this larger class of strictly distance-decreasing functions.

Question 3.8 Is there for some n € N a non-closed F, subset X C R™ with
the Banach Fized Point Property such that every contraction f : X — X 1is
constant? Is there such a simultaneously I, and Gs set?
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