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Abstract

S. Saks and recently R. D. Mauldin asked if every translation invariant
o-finite Borel measure on R? is a constant multiple of Lebesgue measure.
The aim of this paper is to investigate the versions of this question, since
surprisingly the answer is “yes and no”, depending on what we mean by
Borel measure and by constant. According to a folklore result, if the
measure is only defined for Borel sets then the answer is affirmative. We
show that if the measure is defined on a o-algebra containing the Borel
sets then the answer is negative. However, if we allow the multiplicative
constant to be infinity, then the answer is affirmative in this case as well.
Moreover, our construction also shows that an isometry invariant o-finite
Borel measure (in the wider sense) on R? can be non-o-finite when we
restrict it to the Borel sets.

Introduction

It is classical that, up to a nonnegative multiplicative constant, Lebesgue mea-
sure is the unique locally finite translation invariant Borel measure on R®.
R. D. Mauldin [6] asked if we can replace locally finiteness by o-finiteness. Then
he himself gave an affirmative answer in the case when Borel measure means
a measure defined on the g-algebra of Borel sets, and later noticed that this is
actually a folklore result, see (in a more general form) e.g. [3, Theorem B and
Exercise 7]. In fact, the problem already appeared in [8], as an open question
posed by Saks. For the sake of completeness we include a proof here. Let Ag
denote d-dimensional Lebesgue measure, and B+t ={b+¢:b € B}.

Theorem 0.1 Let u be a o-finite translation invariant measure defined on the
Borel subsets of R?. Then there ezists ¢ € [0,00) such that u(B) = cAq(B) for
every Borel set B.
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Proof. First we prove that p is absolutely continuous with respect to Ay. Let
B C R be a Borel set with A\4(B) = 0. Define B={(z,y) e RExR¢:2+y €
B}. This set is clearly Borel, and as both Ay and p are o-finite measures,
we can apply the Fubini theorem to (Agy x p)(B). Note that the z-section
B, ={y: (z,y) € B} = B — 2, and similarly BY = {« : (z,y) € B} = B —y.
So by Fubini A¢(B) = 0 implies (Aq x p)(B) = 0. Hence u(B — z) = 0 for
Ag-almost every z, but u is translation invariant, so u(B) = 0.

Therefore by the Radon-Nikodym theorem there exists a Borel function f :

R? — [0, 00] such that u(B) = [ fdAq for every Borel set B. Clearly

u(B) =u(B+t)=/

B+t

fdrg = /B (@ = t)dAa(2)

for every t and every Borel set B. Hence the uniqueness of the Radon-Nikodym
derivative implies that for every ¢ for Lebesgue almost every z the equation

flz —1t) = f(=) (1)

holds.

In order to complete the proof it is clearly sufficient to show that there is a
constant ¢ € [0,00) such that f(z) = ¢ holds for A;-almost every z. Suppose
on the contrary that there are real numbers 71 < ro such that the Borel sets
{z : f(z) < r1} and {z : f(z) > r2} are of positive Lebesgue measure. Let
dy and ds be Lebesgue density points of the two sets, respectively. But then
equation (1) fails for ¢ = d; — d2, a contradiction. O

However, in the literature there are at least two different notions that are
referred to as Borel measure. The first one is measures defined only for Borel
sets (see e.g. [3], [7]), while the second one is measures defined on o-algebras
containing the Borel sets (see e.g. [1], [5]).

In the rest of the paper we investigate the question of Saks and Mauldin in
the case of the more general notion. As a spin-off, we also show that o-finiteness
is also sensitive to the definition of Borel measure. This question is related to
[2], and was implicitly asked there.

1 The negative result

In this section we prove somewhat more than just a negative answer to our
question.

Theorem 1.1 There exists an isometry invariant o-finite measure p defined
on an isometry invariant o-algebra A containing the Borel subsets of R? such
that, for every Borel set B, if A\g(B) = 0 then u(B) = 0, while if \g(B) > 0
then u(B) = oo.

Before the proof we need a lemma, which resembles some results proven by
various authors, but we were unable to find this version in the literature.



We also need some notation: Isom(R?) is the group of isometries of R?, the
symbol |X| denotes the cardinality of a set X, the continuum cardinality is
denoted by 2¥, A stands for symmetric difference of two sets, and a set P C R?
is perfect if it is nonempty, closed and has no isolated points. Throughout the
proof we use the fact that a countable union of sets of cardinality < 2 is itself
of cardinality < 2 (see e.g. [4, Cor. 1.10.41]).

Lemma 1.2 There ezists a disjoint decomposition R? = UX A, such that
lp(An)AAL|l < 2 for every n € N and every ¢ € Isom(R?), and such that
|A, N P| =2 for every n € N and every perfect set P C R%.

Proof. We say that a set A C R? is < 2“-invariant, if |p(4)AA4| < 2% for
every ¢ € Isom(R?). As Isom(R?) is closed under inverses, this is equivalent to
lp(A) \ 4| < 2¢ for every ¢ € Isom(R?).

It is enough to construct a sequence A,, of disjoint < 2“-invariant sets such
that |4, N P| = 2¢ for every n € N and every perfect set P C R?, since then
clearly R? \ U% (A, is also < 2“-invariant, hence we can simply replace 4y by
Ao U (R?\ UL (An).

Now we construct such a sequence by transfinite induction. Let us enumerate
Isom(R?) = {ps : @ < 2*} and define G, to be the group generated by {¢g :
B < a}. Note that |G| < 2¥. For z € R? let G, () = {p(z) : ¢ € Go}. Let
us also enumerate the perfect subsets of R? as {P, : a < 2“} such that each
perfect set P is listed 2 many times.

Define A% = () for every n € N. At step o we recursively construct a sequence
z2 € Py (n € N) such that for every k # [

|Us<adf UGa(ef)] N [Us<ad? U Galaf)] = 0. @

To see that this is possible, note first that (2) holds whenever for every n the
point z7 is not in the set

UpeGa® " (Umzn Ug<a 45, UUL S Go(2)),

which is of cardinality < 2. As every perfect set is of cardinality 2¢, this set
cannot cover P,, so we can find an z% with the required property and define
A% = Upcq AP UG, (22). Clearly, |A%| < 2. Finally, define 4,, = Ug<2+ A% for
every n. These sets are clearly disjoint, they all intersect every perfect set in a
set of cardinality 2¢.

Finally, in order to check that the A,’s are < 2¥-invariant, let ¢, be given.
First note that A% = Ug<aGs(22) and A, = Ug<ae Go(2%) for every n. Clearly,
for a < 3 the set G5(z?) is p,-invariant (for every n), hence if z € 4, is such
that o () ¢ Ay, thenz € UﬁﬁaGﬁ(zg) = A7. That is; po(4n)\ An C pa(45),
so the A,’s are < 2“-invariant. This completes the proof. |

Proof. (Theorem 1.1) Let A, be the sequence from the previous lemma. Define

A= {[Uy(4, N B,)] AH : Vn B, C R? Borel, H C R?,|H| < 2“}.



Clearly A contains the Borel sets, as B = [US2 (A, N B)] A(.

In order to check that A is closed under complements note that (XAH)¢ =
XCAH, and therefore ([USo(An, N B,)]AH)C = [U2 (4, N B,)]° AH =
(U2, (4, NBY)] AH.

In order to show that A is closed under countable unions, we need to show
U® o(X*AH*) € A, where

Xk =ue (4, N BF). (3)

Using the identity
7 =WAWAZ 4)

(note that A is associative) we obtain

U o (XFAHF) = [U X F] A [URR  XF] A [Uo (XFAHF)] = [Us2, X ] AY,

(5)
where Y = [UR (X *] A [UR ,(X*AHF)]. As
Upto X* = Up2y (An N (UpZeBY)) (6)
it is sufficient to check that
Y| <2, (7)

but this is clear, since Y = [U ( X*] A [U2 ((XFAH*)] c UR  H*, which is
of cardinality < 2¥.
To show that A is isometry invariant, let ¢ € Isom(R?). First note that

p([UnZo(4n N Ba)] AH) = [UzZo(#(An) N ¢(Bn))] Ap(H). (8)

Set
X = UZo(¢(4n) N ¢(Bn)) and ¥ = UZg(An N p(Br)). (9)

We need to show that XAp(H) € A. Using (4) again, write
XAp(H) =[YAYAX]|Ap(H) =YA[(YAX)Ap(H)], (10)
where we use again the associativity of A. Hence it is enough to show that
(Y AX)Ap(H)| < 2¢, (11)

which follows from YAX = [US2 (A4, Np(B,))] A[US,(¢(An) Ne(By,))] C
U (A, Ap(4,)), from |p(H)| < 2, and the < 2¥-invariance of 4,,.
Let us now define

w([Uo(An N BR)] AH) =) Xa(Bn).
n=0
First we have to show that p is well-defined. Let [UX ,(A4, N B,)]AH =

[Ue (4, N B,)]AH'. We claim that Ay(B,) = Aq(Bj,) for every n. Otherwise,
without loss of generality, there exists an ng such that Ag(Bn,) < A¢(By,,), hence



By, \ B, contains a perfect set P (even of positive measure). But [PNA,,| = 2¢
and |H U H'| < 2%, hence there exists an z € (PN 4,,) \ (H U H'), and
then z € [U2 (A, NB,)]AH' but z ¢ [US2,(A, N B,)] AH, a contradiction.
(Recall that the A,,’s are disjoint.)

In order to prove that u is o-additive, let

Uil (X*AH") (12)

be a disjoint union, where X* is as in (3). First we claim that for ev-
ery n and every k # k' we have As(B¥ N B¥) = 0. Otherwise, for
some no there exists a perfect set P C B: N BY, and we can find
¢ € (PN A\ (H*UH¥), hence z € [UXo(4,NBE)] AH* and z €
[ % (A, N Bﬁ')] AH* | but then the union (12) is not disjoint, a contradic-

tion. Therefore A\g(U2 (BE) = 322 Aq(B?) for every n, so by (5), (6) and (7)
we obtain u(URo(XTAH) = % o Xa(UfeBY) = S0 g Aa(BY) =
D0 Dm0 Xa(By) = ko p(X*AH").

Now we show that y is isometry invariant. By (8), (9), (10) and (11) we ob-
tain that pu(p((UXo(An N By)] AH)) = >7° Ag(p(By)), which clearly equals
oo o Ad(Bp), which is p([US2 (A, N B,)] AH) by definition.

The fact that y is o-finite follows from R? = U® , UR_, (4, N [-K, K]?),
since u(4, N[-K, K]?) = M\;([-K, K]?) = (2K)? < oo for every n and K.

Finally, for a Borel set B we have yu(B) = p(US2q(4,NB)) = > 7, Aa(B),
which is zero if A;(B) = 0 and oo otherwise. O

As an immediate corollary we obtain the following.

Corollary 1.3 There exists an isometry invariant o-finite measure p defined
on an isometry invariant o-algebra A containing the Borel subsets of R such
that p restricted to the Borel sets is not equal to c\g for every c € [0, 00).

As R? is not the union of countably many Lebesgue nullsets, the next state-
ment is also a corollary to Theorem 1.1.

Corollary 1.4 There exists an isometry invariant o-finite measure p defined
on an isometry invariant o-algebra A containing the Borel subsets of R such
that p restricted to the Borel sets is not o-finite.

2 The positive result

The measure p constructed in the previous section behaves simply on Borel sets;
if A\g(B) = 0 then pu(B) = 0, while if A3(B) > 0 then u(B) = co. So we can say
that u(B) = coAg(B) for every Borel set B. The next theorem shows that this
is the only possibility.

Theorem 2.1 Let u be a o-finite translation invariant measure defined on a
translation invariant o-algebra containing the Borel subsets of R?. Then there
ezists ¢ € [0, 00] such that u(B) = cAq(B) for every Borel set B.

Moreover, u restricted to the Borel sets is o-finite if and only if ¢ is finite.



The proof of this theorem will be based on the following two lemmas, the
second of which is well known.

Lemma 2.2 Let u be a o-finite translation invariant measure defined on a
translation invariant o-algebra containing the Borel subsets of R?, and sup-
pose that p restricted to the Borel sets is not o-finite. Then for every Borel set
B we have either u(B) =0 or u(B) = oo.

Proof. Let B be a maximal disjoint family of Borel sets of positive finite u-
measure. As y is o-finite (on A), B is countable, hence By = |J B is a Borel set.
Define

u'(B) = u(Bgy N B) for every Borel set B.

Note that this measure is only defined for Borel sets. As p' is clearly o-finite,

we can apply the Fubini theorem for u' x p and the Borel set B = {(z,y) €
R x R : 2 +y € BS}, as in the proof of Theorem 0.1. On one hand, (u' x

1) (BE) = [, cpa ' (B§ —y)du(y) = [, cpa r(BoN(BEF —y))du(y). We claim that

pu(Bo N (B —y)) = 0 for every y, hence (u' x p)(BS) = 0. Indeed, otherwise
(using that By = |J B and B is countable) there is a Borel set B € B such that
0 < (BN (B§ —y)) < co. But then for D = BN (B§ — y) we obtain that
the Borel set D + y is disjoint from By, hence from all elements of B, and is
of positive and finite y-measure (since p is translation invariant), contradicting
the maximality of B.

On the other hand, 0 = (p' x u)(E?) = [era w(B§ — z)dy!(z). As p
restricted to the Borel sets is not o-finite, u(B§ — z) = u(B§) = oo for every
z. Therefore we obtain 0 = p/(R%) = u(By), so B = () and we are done. a

Lemma 2.3 Let piand po be o-finite translation invariant measures defined on
the (not necessarily equal) translation invariant o-algebras A; and Az contain-
ing the Borel subsets of R?, and suppose that pi(R?), uz(R?) > 0. Then for
every Borel set B, u;(B) = 0 iff uz(B) = 0.

Proof. Apply Fubini to p; X pp and B = {(z,y) € R¢ x R¢ : z +y e B}. O

Proof. (Theorem 2.1) The last statement of the theorem is obvious, as count-
ably many Lebesgue nullsets cannot cover R%.

Now we prove the first statement, namely that the constant ¢ € [0, o] exists.
If p restricted to the Borel sets is o-finite, then we are done by Theorem 0.1.
So we can assume that this is not the case. Then applying Lemma 2.2 and
Lemma 2.3 with g3 = g and pus = A4 the theorem follows. O
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