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Abstract

In an earlier paper we introduced a new concept of dimension for metric
spaces, the so called topological Hausdorff dimension. For a compact met-
ric space K let dimg K and dim;gx K denote its Hausdorff and topological
Hausdorff dimension, respectively. We proved that this new dimension de-
scribes the Hausdorff dimension of the level sets of the generic continuous
function on K, namely sup{dimy f~*(y) : y € R} = dim¢y K — 1 for
the generic f € C(K). We also proved that if K is sufficiently homoge-
neous then dimg f~*(y) = dimyz K — 1 for the generic f € C(K) and
the generic y € f(K). The most important goal of this paper is to make
these theorems more precise.

As for the first result, we prove that the supremum is actually attained,
and also show that there may only be a unique level set of maximal Haus-
dorff dimension.

As for the second result, we characterize those compact metric spaces
for which for the generic f € C(K) and the generic y € f(K) we have
dim g fﬁl(y) = dim;z K — 1. We also generalize a result of B. Kirchheim
by showing that if K is self-similar then for the generic f € C(K) for
every y € int f(K) we have dimg f~*(y) = dim;g K — 1.

Finally, we prove that the graph of the generic f € C(K) has the same
Hausdorff and topological Hausdorff dimension as K.

1 Introduction

We recall first the definition of the (small inductive) topological dimension.

Definition 1.1. Set dim; ) = —1. The topological dimension of a non-empty
metric space X is defined by induction as

dim; X = inf{d : X has a basis U such that dim; U < d—1 for every U € U}.

For more information on this concept see [3] or [6].

We introduced the topological Hausdorff dimension for compact metric
spaces in [1]. It is defined analogously to the topological dimension. However,
it is not inductive, and it can attain non-integer values as well. The Hausdorff
dimension of a metric space X is denoted by dimpy X, see e.g. [5] or [9]. In this
paper we adopt the convention that dimg 0 = —1.

Definition 1.2. Set dim;gz ) = —1. The topological Hausdorff dimension of a
non-empty metric space X is defined as

dim;y X = inf{d : X has a basis U such that dimy 0U < d—1 for every U € U}.

Both notions of dimension can attain the value oo as well.
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Let K be a compact metric space, and let C(K) denote the space of con-
tinuous real-valued functions equipped with the supremum norm. Since this is
a complete metric space, we can use Baire category arguments. If dim; K = 0
then the generic f € C(K) is well-known to be one-to-one, so every non-empty
level set is a singleton.

Agsume dim; K > 0. The following results from [1] show the connection
between the topological Hausdorff dimension and the level sets of the generic

feC(K).

Theorem 1.3. If K is a compact melric space with dim; K > 0 then for the
generic f € C(K)

(i) dimpy f~1(y) < dimyy K — 1 for every y € R,

1) for every € > 0 there exists an interval 1¢. such that dimpg -1 y) >
fs =
dim;g K — 1 — ¢ for every y € If..

Corollary 1.4. If K is a compact metric space with dim; K > 0 then
sup{dimy f~(y) : y € R} = dimyy K — 1 for the generic f € C(K).

If K is also sufficiently homogeneous, for example self-similar, then we can
actually say more.

Theorem 1.5. If K is a self-similar compact metric space with dim; K > 0
then dimg f~1(y) = dimyy K — 1 for the generic f € C(K) and the generic
y € f(K).

Theorems 1.3 and 1.5 are the starting points of this paper, our primary aim
is to make these theorems more precise.

In the Preliminaries section we introduce some notation and definitions, cite
some important properties of the topological Hausdorfl dimension and prove
several technical lemmas.

In Section 3 we prove a partial converse of Theorem 1.5. We show that for the
generic f € C(K) for the generic y € f(K) we have dimg f~!(y) = dim;z K —1
iff K is homogeneous for the topological Hausdorff dimension, that is for every
non-empty closed ball B(z,r) C K we have dim;g B(z,r) = dimyyg K. If K
is (weakly) self-similar then much more is true: For the generic f € C(K) for
every y € int f(K) we have dimy f~!(y) = dimyy K — 1. This generalizes a
result of B. Kirchheim. He proved in [§] that for the generic f € C ([0,1]?) for
every y € int f ([0,1]%) we have dimgy f~!(y) =d — 1.

In Section 4 we prove that the generic f € C(K) has at least one level set
of maximal Hausdorff dimension. Hence the supremum is attained in Corollary
1.4. We construct an attractor of an iterated function system K C R? such that
the generic f € C(K) has a unique level set of Hausdorff dimension dim; g K —1.
This shows that the above theorem is sharp.



Finally, in Section 5 we prove that the graph of the generic f € C(K) has
the same Hausdorfl and topological Hausdorff dimension as K. This generalizes
aresult of R. D. Mauldin and S. C. Williams which states that the graph of the
generic f € C (]0,1]) is of Hausdorff dimension one, see [11].

2 Preliminaries

2.1 Notation and definitions

Let (X,d) be a metric space, and let A, B C X be arbitrary sets. We denote
by int A and 0A the interior and boundary of A. The diameter of A is denoted
by diam A. We use the convention diam () = 0. The distance of the sets A and
B is defined by dist(4, B) = inf{d(z,y) : x € A, y € B}. Let B(z,r) = {y €
X :d(z,y) <r}and U(z,r) ={y € X : d(x,y) < r}. More generally, we define
B(A,r)={zr e X :dist(z,A) <r} and U(A,r) = {z € X : dist(z, A) < r}.

For two metric spaces (X, dx) and (Y, dy) a function f: X — Y is Lipschitz
if there exists a constant C' € R such that dy (f(x1), f(z2)) < C-dx(z1,x2) for
all 1,25 € X. The smallest such constant C is called the Lipschitz constant
of f and denoted by Lip(f). If Lip(f) < 1 then f is a contraction. A function
f: X — Y is called bi-Lipschitz if f is a bijection and both f and f~' are
Lipschitz.

If s>0andd > 0, then

H3(X) = inf {Z(diamm)s X c| Ui, Vi diamU; < 5} ,

i=1

The Hausdorff dimension of X is defined as
dimg X =inf{s > 0: H*(X) =0},

we adopt the convention that dimy ) = —1 throughout the paper. For more
information on these concepts see [5] or [9].

We define on X x Y the following metric. For all (x1,y1), (x2,92) € X XY
set

Ay (1, 91), (22, 32)) = ([ (1,2) + & (1, o).

The metric space X is totally disconnected if every connected component is
a singleton.

Let X be a complete metric space. A set is somewhere dense if it is dense
in a non-empty open set, and otherwise it is called nowhere dense. We say that
M C X is meager if it is a countable union of nowhere dense sets, and a set is of
second category if it is not meager. A set is called co-meager if its complement
is meager. By Baire’s Category Theorem co-meager sets are dense. It is not
difficult to show that a set is co-meager iff it contains a dense Gs set. We say



that the generic element x € X has property P, if {x € X : x has property P}
is co-meager. The term ‘typical’ is also used instead of ‘generic’. Our main
example will be X = C(K) endowed with the supremum metric (for some
compact metric space K).

Let X, Y be Polish spaces. We call the set A C X analytic, if it is a
continuous image of a Polish space. We call it co-analytic if its complement
is analytic. The set A has the Baire property if A = UAM where U is open
and M is meager. Both analytic and co-analytic sets have the Baire property.
If a set is of second category in every non-empty open set and has the Baire
property then it is co-meager. f E C X XY,z € X and y € Y then let E, =
{yeY :(z,y) e E}and EY ={r € X : (z,y) € E}. Let pry: X XY — X,
pry(z,y) = z be the projection of X X Y onto X. If E C X x Y is Borel, then
pry (E) is analytic. For more information see [7].

If K is a non-empty compact metric space then we say that K is an attractor
of an iterated function system (IFS) if there exist contractions ¥,;: K — K,
i€ {l,...,m} such that K = U2, ¥,;(K). If the ¥;’s are also similarities then
K is self-similar.

For every o € (0,1) we construct the middle-a Cantor set C,, in the following
way. In the first step we remove the middle-« open interval ((1—«)/2, (1+«)/2)
from [0,1]. After the (n — 1)st step we have 2"~ disjoint, closed (n — 1)st level
intervals. In the nth step we remove the middle-a open intervals from each
of them. We continue this procedure for all n € N, and the limit set is the
middle-a Cantor set. It is well-known that dimpg C, = log2/log(2/(1 — «)).

Let us define the Smith-Volterra-Cantor set S in the following way. In the
first step we remove the open interval of length 1/4 from the middle of [0, 1].
After the (n — 1)st step we have 2”1 disjoint, closed (n — 1)st level intervals.
In the nth step we remove the middle open intervals of length 1/22" from each
of them. We continue this procedure for all n € N, and the limit set is the
Smith-Volterra-Cantor set. Elementary computation shows that S has positive
Lebesgue measure (more precisely its measure is 1/2).

The nth level elementary pieces of C,, are the intersections of C, with the
nth level intervals of C\. This definition is also analogous for S.

We adopt the convention that intervals are non-degenerate.

2.2 Properties of the topological Hausdorff dimension
The next theorems are from [1].
Fact 2.1. For every metric space X
dim;g X =0 < dim; X = 0.
Theorem 2.2. For every metric space X
dim; X < dimy;g X < dimg X.

Theorem 2.3. The topological Hausdor[f dimension satisfies the following prop-
erties.



(i) Extension of the classical dimension. The topological Hausdorff di-
mension of a countable set equals zero, and for open subspaces of R? and
for smooth d-dimensional manifolds the topological Hausdorff dimension
equals d.

(i) Monotonicity. If X CY are metric spaces then dimyy X < dimypy Y.

(iii) Lipschitz-invariance. Let X,Y be metric spaces. If f: X — Y is a
Lipschitz homeomorphism then dimug X < dimyyg Y. If f is bi-Lipschitz
then dimyyg X = dimygy Y.

(iv) Countable stability for closed sets. Let X be a separable metric space
and X = Upen X,, where X,,, n € N are closed subsets of X. Then
dim; g X = sup,,ey dimyg X,

Theorem 2.4. If X is a non-empty separable metric space then
dim; g (X X [0, 1]) =dimg X + 1.

For compact metric spaces the infimum is attained in the definition of the
topological Hausdorff dimension.

Theorem 2.5. If K is a non-empty compact metric space then

dim;g K = min{d : K has a basis U such that dimy OU < d—1 for every U € U}.

2.3 Technical lemmas

The next lemma and its consequence will be very useful throughout the paper.

Lemma 2.6. Let X,Y be complete metric spaces and let R: X — Y be a
continuous, open and surjective mapping.

(i) If A C X is of second category/co-meager then R(A) CY is of second
category/co-meager.

(ii) If B CY is of second category/co-meager then R~Y(B) C X is of second
category/co-meager.

Proof. (i) First we show that if B C Y is meager then R~}(B) C X is also
meager. Clearly it is enough to prove that if B C Y is closed and nowhere
dense then R~!(B) C X is nowhere dense. Since R is continuous R~'(B) is
closed. We show that R~1(B) is nowhere dense. Assume to the contrary that
there is a non-empty open set U C R™!(B). Since the map R is open the set
R(U) is non-empty and open. Then R(U) C B implies that B is of second
category, a contradiction.

Let A C X be of second category. Assume to the contrary that R(A) C Y
is meager. Then by the previous argument R™!(R(A)) is meager and A C
R7Y(R(A)), a contradiction.



Suppose that A C X is co-meager. We want to prove that R(A) C Y is also
co-meager. We may assume that A is a dense G5 set. Assume to the contrary
that R(A) is not co-meager. As a continuous image of a Borel set R(A) is
analytic, and hence has the Baire property. Thus there exists a non-empty open
set U C Y such that R(A) NU is meager. Since R is continuous and surjective
R™Y(U) is open and non-empty. The map R = Rlg-1vy : R (U) — U is
clearly continuous, open and surjective. Since R(A)NU is meager R™! (R(A)ND)
is meager in R~Y(U). The set AN R~ (U) is co-meager in R~(U), and clearly
ANRYU)C R-Y(R(A)N U), a contradiction.

(i1) Let B C Y be of second category. Assume to the contrary that R~1(B)
is meager. Then R™!(B)¢ is co-meager and its R image R(R™!(B)¢) C B¢ is
not co-meager. This contradicts part (i) of the lemma.

Let B C Y be co-meager. Then B is meager, and hence R~ (B¢) is meager.
This implies that R~}(B) = X \ R~(B¢) is co-meager. O

We need the following special case.

Corollary 2.7. Let K1 C Ko be compact metric spaces and
R: C(K2) = C(K1), R(f) = [lx,-

(i) If Fo C C(K>) is of second category/co-meager then R(Fz) C C(K) is of
second category/co-meager.

(ii) If F1 C C(K1) is of second category/co-meager then R™1(Fy) C C(K3) is
of second category/co-meager.

Proof. Clearly C(K3) and C(K;) are complete metric spaces, R is continuous,
and Tietze’s Extension Theorem implies that R is surjective and open. Thus
Lemma 2.6 completes the proof. O

We need the following theorem, see [10, 6.1. Thm.] for the proof.

Theorem 2.8. Let X,Y be Polish spaces, and let E C X XY be a Borel set.
If E, is o-compact for all x € X then the function h: X — [—1,00] defined by
h(x) = dimpy E, is Borel measurable.

Remark 2.9. Unlike [10], we adopt the convention that dimy ) = —1, hence the
level sets of i may need to be modified by the set {z € X : E, = 0} = (pry E)°.
Therefore we also have to check that pry E is Borel.

Lemma 2.10. Let K be a compact metric space and d € R. Then the set
A={(fy) €C(K) xR :dimg f~(y) <d}

is Borel.



Proof. We check that the conditions of Theorem 2.8 hold for X = C(K) x R,
Y=Kand E = {(f,y,2) € C(K) x Rx K : f(z) =y} C X xY. Clearly
X,Y are Polish spaces and F is closed, thus Borel. For every (f,y) € X
the set B,y = {z € K : f(z) = y} = f~'(y) is compact. Finally, the
set pry B = {(f,y) € X : y € f(K)} is closed, hence Borel. Theorem 2.8
implies that h: X — [0,00], h((f,y)) = dimpy E(s,) = dimg f~'(y) is Borel
measurable. Thus h™! ((—o0,d)) = {(f,y) € C(K) x R : dimy f~(y) <d} =
A is Borel. O

Lemma 2.11. Suppose (K,d) is a compact metric space such that for all x € K
and r > 0 we have dim; B(x,r) > 0. Let C be the set of connected components
of K. Then for the generic [ € C(K)

U int £(C) = int f(K).

ceC

We remark that if Ky is the triadic Cantor set then K = Ky x [0, 1] has
uncountably many connected components but it is a ‘homogeneous’ self-similar
set.

Proof. Consider

F= {f € O(K): | int f(C) :intf(K)},

cec
and for all n € NT let
Fn={f€eC(K):Vye f(K)\B(0f(K),1/n), 3C € C such that y € int f(C)}.

We must prove that F is co-meager in C(K). Since F = N, cn+Fn, it 18 enough
to show that the F,’s are co-meager in C(K). Let us fix n € NT and let
fo € C(K) and € > 0 be arbitrary. It is sufficient to show that there is a
non-empty ball B(go,r0) € Fn N B(fo,4e).

Since foy is uniformly continuous on K there is a §; > 0 such that if z,2z € K
and d(z,z) < & then |fo(x) — fo(2)| < e. By the compactness of K there
is a finite set {z1,...,xx} such that U¥_B(x;,6;) = K. Choose 0 < dy < &1
such that the balls B(xz;,d2) are disjoint. The conditions of the lemma imply
that for every i € {1,...,k} we have dim; B(x;,d2/2) > 0. Thus there exist
non-trivial connected components C; of B(x;,62/2) for all i € {1,...,k}, see [4,
6.2.9. Thm.]. For all i € {1,...,k} let us choose u;,v; € C;, u; # v; and select
€; € [g,2¢] such that the set

E = {fo(l‘z)—F&zZ: 1,...,k‘}U{f0(Ii)—Eii7;: 1,,]{}}
has 2k many elements. Let § = min{d(x,y) : x,y € E,z # y} > 0. Clearly

for all x € B(w;,61), i € {1,...,k} we have fo(x) € [fo(z:) — ¢, fo(z;) + €] C
[folx;) — €4, fo(x;) + €;]. Hence Tietze’s Extension Theorem implies that there



exists a go € C(K) such that go(z) = fo(z) if 2 € K \ UX_,U(2;,82) and for all
i €{1,...,k} we have go(ui) = fo(xi) — &, go(vi) = fo(wi) +¢&; and

9o(2) € [fo(xi) — &iy fo(wi) + &, x € B(xi,01). (2.1)

Therefore, using that the oscillations of fy on the B(x;,d1)’s are at most
e and g; < 2 for all i € {1,...,k}, we have g9 € B(fo,3¢). Set 19 =
min {e,0/6,1/(3n)}. Since B(go,r0) € B(go,€) € B(fo,4¢), it is enough to
prove that B(go,r0) € Fn. Let f € B(go,r0) and yo € f(K) \ B(Of(K),1/n),
that is, B(yo,1/n) C int f(K). It is enough to verify that there is an
i € {1,...,k} such that yo € int f(C;). (Note that every C; is contained in
a member of C.) Let us choose zp € K with f(z0) = yo and fix i € {1,...,k}
such that zp € B(x;,01). Then equation (2.1) and f € B(go,70) imply that
Yo € [fo(xi) —&i — 70, fo(xi) +&i + 70].

First assume that yo € (fo(z;)—ei+70, fo(zi)+e;—r0) = (go(ui)+70, g9o(vi)—
r9). Then f € B(go,70) and the connectedness of C; imply yo € (f(u;), f(v;)) C

Finally, suppose that yo € [fo(x;) —&i — ro, fo(xi) — i + ro] or

Yo € [fo(zi) +&i —ro, fo(zi) + & + 7ol (2.2)

We may assume by symmetry that (2.2) holds. Since yo + 3rg € B(yo,1/n) C
int f(K), there exists z; € K such that f(z1) = yo+3rp and j € {1,...,k} such
that z1 € B(zj,01). From f € B(go, 7o) and (2.1) it follows that

Yo + 3rg € [fo(.’l?j)—Ej —r07f0(xj)+5j +’I“0]. (2.3)

Equation (2.2) implies yo + 3rg > fo(zi) + i + 1o, thus we have j # i. Equation
(2.2) also implies |yo — (fo(x;) +&;)| < ro. Therefore the triangle inequality and
the definition of 6 yield

lyo — (fo(xs) =€)l = [(folz;) —&5) — (fo(wi) +&i)| — [yo — (folz:) + &)l
2977‘0>4T0. (24)

Then (2.3) implies yo < fo(x;) +¢&; —ro and yo > fo(z;) — € — 4ro, thus (2.4)
vields yo € (fo(x;) —€; + 10, folzj) + 5 —r0) = (90(w;) +70,90(vj) —10).
Hence f € B(go,r0) and the connectedness of C; imply yo € (f(u; ), f(v;)) C
int f(C;). This completes the proof. O

Lemma 2.12. Let K be a compact metric space with a fived xg € K. Let
K, C K, n €N be compact sets such that

(i) dim; K,, >0 for alln € N and
(1) diam (K,, U{zo}) = 0 if n — oo.

Then for the generic f € C(K) we have xg € f(K,) for infinitely many
n € N.



Proof. Clearly it is enough to show that the sets
Fn={feC(K):z9¢ f(K,) forall n > N}

are nowhere dense in C(K) for all N € N. Let fo € C(K) and € > 0 be
arbitrary, it is enough to find a ball in B(fy,2¢) \ Fn. The compact K,,’s have
positive topological dimension, therefore they are not totally disconnected, see
[4, 6.2.9. Thm.]. Let us choose a non-trivial connected component C, C K,
for every n € N. We can choose by (i7) an ng € N such that ng > N and
diam fo (Cp, U {x0}) < €. Tietze’s Extension Theorem implies that there is an
f € B(fo,¢) such that diam f(Cy,) > 0 and f(xo) is the midpoint of f(Cy,). If
§ = min {e, 2 diam f(C,)} then for all g € B(f,d) we have g(zo) € g(Cp,) C
9(Ky,), so g ¢ Fn. Thus B(f,0) C B(fo,2¢) \ Fn. O

The following lemma is probably known, but we could not find an explicit
reference, so we outline its proof.

Lemma 2.13. The Smith-Volterra-Cantor set S is an attractor of an IFS.

Proof. In the nth step of the construction we remove 2"~ many disjoint open
intervals of length a, = 1/22", the remaining 2" disjoint, closed nth level
intervals are of length b, = 5= (1— > 7,27 1a;) = 1/27+ 4 1/227F1 Let
7: S — {0,1} be the natural homeomorphism, that is, for x € S and n € N we
define 7(z)(n), as follows. There is a unique nth level interval I,, and a unique
(n 4+ 1)st level interval I, such that @ € I, and x € I,,41. Then I, is either
the left or the right hand side interval of I,,. If it is the left hand side interval
then 7(z)(n) = 0, otherwise w(z)(n) = 1. Let

01: 8 = SNI0,1/2], pi1(z) =7 (0w (x)),
0o: S = SN[1/2,1], po(x) =7 (1" (x)) (2.5)

be the natural homeomorphisms onto the left and the right half of S (where "
stands for concatenation). Clearly, S = ¢1(S)Up2(S), so it is sufficient to prove
that 1 and @9 are contractions. By symmetry it is enough to show that ¢; is
a Lipschitz map with Lip(¢1) < 1/2, that is, for all z,z € S
(@) ()] < 22

The endpoints of the intervals at the construction are dense in S. Thus we
may assume for the proof of (2.6) that x, z are both endpoints of some nth level
intervals and x < z. Let us assume that in the interval [z, z] there are 8,, = By.4.2
many intervals of length b, and there are a; = ;. . many open intervals of
length a;, ¢ € {1,...,n}. In the interval [pi(x),p1(2)] there are (3, many
closed intervals of length b,,1 and there are ;; many open intervals of length
ait+1, @ € {1,...,n}. These intervals are disjoint, and their union is [z, z] and
[p1(x), 1(2)] (apart from the endpoints z, z and 1 (), ¢1(2)), respectively. We
obtain |z — 2| = Bpbn + Y iy aa; and |p1(z) — 01(2)] = Brbpy1 + D iy iit1.
Hence for (2.6) it is enough to prove that b,+1 < b,/2 and a;4+1 < a;/2 for all
i € {1,...,n}, but it is clear from the definitions of the b,’s and the a,,’'s. O

(2.6)
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3 Level sets on fractals

Let K be a compact metric space. If dim; K = 0 then it is well-known that the
generic continuous function is one-to-one on K, hence every non-empty level set
is a single point.

Thus in the sequel we assume that dim; K > 0.

Definition 3.1. If K is a compact metric space then let

supp K = {z € K :Vr >0, dimyy B(z,r) = dim;yg K} .
We say that K is homogeneous for the topological Hausdorff dimension if
supp K = K.

Remark 3.2. The stability of the topological Hausdorff dimension for closed
sets clearly yields supp K # 0. If K is self-similar then it is also homogeneous
for the topological Hausdorff dimension.

We proved in [1] that if K is homogeneous for the topological Hausdorff
dimension then for the generic f € C(K) for the generic y € f(K) we have
dimg f~!(y) = dimyyz K — 1. Now we prove the opposite direction.

Theorem 3.3. Let K be a compact metric space with dim; K > 0. The follow-
ing statements are equivalent.

(i) For the generic f € C(K) for the generic y € f(K) we have
dimgy f~1(y) = dimyy K — 1.

(ii) K is homogeneous for the topological Hausdorff dimension.

Proof. (ii) = (i): See [1, Thm. 6.22.].

(i) = (i1): Assume to the contrary that K \ supp K # 0. Then there
exist fo € C(K) and g9 > 0 such that for all f € B(fy,c0) we have f(K)\
f (supp K) # 0. Let us choose for all f € B(fo,£0) an interval Iy such that
Iy f(suppK) =0 and Iy N f(K \ supp K) # 0. Let us define for all n € N*

K, ={z € K : dist(z,supp K) > 1/n}.

Then the K,’s are compact and U,cn+ K, = K \ supp K. The definition of
supp K and the compactness of K,, imply that K,, can be covered with finitely
many closed balls of topological Hausdorff dimension less than dim;z K. Then
the stability of the topological Hausdorff dimension for closed sets implies

dimg K,, < dimyy K (n € NT). (3.1)
For all n € N7 let
Fn = {f € C(K,) : dimy f~(y) < dimyy K,, — 1 for all y € R} )
Define R,,: K — K,, R,(f) = flk, and let F = Nyen+ R, 1 (F,). Theorem

1.3 yields that the F,’s are co-meager in C(K,,), and it follows from Corollary
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2.7 that the R, '(F,)’s are co-meager in C(K). As F is the intersection of
countable many co-meager sets, it is also co-meager in C(K). If f € B(fo,¢)
and y € Iy N f(K) then the definition of I; and the compactness of f~!(y)
imply that there is an ny, € N* such that f~'(y) C K, . If f € F then for
all y € Iy N f(K) the definition of ny ,, the definition of F and (3.1) imply

dimy f~'(y) = dimp (f ' (y) N Ky,,) < dimyg Kpp ) — 1
< dith K —1.
This contradicts (7), and the proof is complete. O

B. Kirchheim showed in [§] that for the generic f € C ([0,1]¢) for every
y € int f ([0,1]?) we have dimpy f~'(y) = d — 1. We generalize this result for
weakly self-similar compact metric spaces.

Definition 3.4. Let K be a compact metric space. We say that K is weakly
self-similar if for all € K and r > 0 there exist a compact set K, , C B(z,r)
and a bi-Lipschitz map ¢, ,: K, , — K.

Remark 3.5. If K is self-similar then it is also weakly self-similar. If K is
weakly self-similar then it is also homogeneous for the topological Hausdorff
dimension.

Theorem 3.6. Let K be o weakly self-similar compact metric space. Then for
the generic f € C(K) for any y € int f(K) we have

dimy f~(y) = dimyy K — 1.

Proof. If dim; K = 0 then the generic f € C(K) is one-to-one, and f(K) is
nowhere dense. Thus int f(K) = 0, and the statement is obvious.

Next we assume dimy; K > 0. Theorem 1.3 implies that for the generic
f € C(K) for all y € R we have dimg f~1(y) < dimyz K — 1, thus we only need
to verify the opposite inequality.

Fact 2.1 implies dim;z K > 0. It follows from the weak self-similarity of K
that for all z € K and r > 0 we have dim;g B(x,r) = dim;g K > 0. Then
applying Fact 2.1 again we obtain that dim; B(x,r) > 0. If C denotes the set
of connected components of K then Lemma 2.11 yields that for the generic
f € C(K) we have Ucec int f(C) = int f(K).

Thus it is enough to prove that for the generic f € C(K) for every y €
Ucec int f(C) we have dimg f~1(y) > dimyg K — 1.

Let us choose a sequence 0 < d,, /* dim;z K and let us fix n € N*. Theorem
1.3 implies that for the generic f € C(K) there exists an interval I(f,n) =
I¢ dim,y K—d, such that for all y € I(f,n) we have dimpg f~'(y) > d,, — 1. By
Baire’s Category Theorem there are my < my < My < Ms such that

Mo ={f € O(K) : f(K) C [m2, Ma), Yy € [my, My], dimy f~'(y) > dy — 1}
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is of second category. Note that d,, > 0 implies that for every f € H, we have
[mi1, My] C f(K). Let us also define the following set.

{fGC VyEU CHY\ B(Of( )l/n)),dime_l(y)zdn—l}.

cec

It is sufficient to verify that G, is co-meager, since by taking the intersection
of the sets G, for all n € NT we obtain the desired co-meager set in C(K). In
order to prove this we show that G,, contains ‘certain copies’ of H,. First we
need the following lemma.

Lemma 3.7. H,, and G, have the Baire property.

Proof of Lemma 3.7. Lemma 2.10 implies that T';, = {(f,y) € C(K) xR :
dimpg f~(y) < d,, — 1} is Borel. Then H,, = {f € C(K) : f(K) C [ma, Ma]} N
{f € C(K) : Yy € [my, M;], dimy f~(y) > d,, — 1}. The first term of the
intersection is clearly closed. It is sufficient to prove that the secor(}d one has
the Baire property. It equals (prC(K) ((C(K) X [my, Mi]) N Fn)) , which is
the complement of the projection of a Borel set. Hence it is co-analytic, and

therefore has the Baire property.
The set

An={(f,y)€(3( ) xRiye | (fo)\ Bosc >1/n>)}

ceC

is clearly open. Then G, = (prC(K) TN An)) ', which is the complement of

the projection of a Borel set. Thus it is co-analytic, and therefore has the Baire
property. U

Now we return to the proof of Theorem 3.6. Consider G, (note that we
already fixed n), our aim is to show that G, is co-meager. Since G, has the
Baire property, it is enough to prove that G, is of second category in every
non-empty open subset of C(K). Let fo € C(K) and 0 < € < 1/n be fixed. We
want to show that G, N B(fo,¢) is of second category.

The continuity of fy and the compactness of K imply that there are finitely
many distinct x1, ..., xx € K and positive rq, ..., such that

k

K = B(ai,m) (3.2)

i=1
and for each ¢ € {1,...,k} the oscillation of fo on B(z;,r;) is less than

&‘(Ml — ml) <

9
- 2(]\/.{2 — TTLQ) 5 (33)

Choose positive 1, ..., 7, such that the balls B(x;,r}) C B(x;,r;) are disjoint.
Using the weak self-similarity property we can choose for every ¢ € {1,...,k} a
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set K; C B(z;,7}) and a bi-Lipschitz map ¢;: K; — K. Let usfix i € {1,...,k}.
We define the affine function 9;: R — R such that

Vi ([ma, M1]) = [fo(z:) — w, fo(xi) + w]. (3.4)

Suppose f € H,, and consider ﬁ € C(K;) defined by

o~

fi=1viofod.
The form of ;, (3.4) and (3.3) imply

diam f;(K;) = diam ¢;(f(K)) < diam ¢; ([ma, Ma))

Mo —
= ﬁdlamm ([ml,Ml])
_My—ma,
a M1 — ma o

Then fo(K;) C ﬁ(Kz) and the above inequality yield for all z € K;
folw) = filz)| < =. (3:5)

Set R

Fi=A{viofogi: feMHa}
It follows from (3.5) that 7; € B (fo|x,,). Themaps ¢;: K; — K and 1;: R —
R are homeomorphisms, hence the map G;: C(K) — C(K;), G;(f) = ;0 fod;
is also a homeomorphism. Since H,, is of second category in C'(K) we obtain
that F; = G;(H,) is of second category in C(K;). Set

Fi={reBfo.e): flic € 7}
The map R;: B(fo,€) — B (folx,,¢), Ri(f) = flk, is clearly continuous, and

by Tietze’s Extension Theorem it is also surjective and open. Thus Lemma 2.6
(#i) implies that F; = I:Bi_l (]?Z) is of second category in B(fo, ). Set

Clearly F C B(fo, ).
Lemma 3.8. F is of second category in B(fo,e).
Proof of Lemma 3.8. Let

R: B(fo,2) = B (folye, x02) » BUD = fle
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and for all i € {1,...,k}

R;: B (f0|U:f:1 Kivg) — B(fO‘ng)’ Rl(f) = f|K1

Clearly the map R is continuous, open and surjective. Since F =
R™! (ﬂleRi_l (ﬁ)), it follows from Lemma 2.6 (ii) that it is enough to prove

that NF_, R; ! (]-i) is of second category in B (f0|u,’.~‘=1Ki , 5). Lemma 3.7 implies

that H,, and hence F; has the Baire property for every i € {1,...,k}. Thus
there is a non-empty open set U; C C'(K;) such that F; is co-meager in U;. The
sets K;, i € {1,...,k} are disjoint. Hence Nf_,R;'(U;) C B (,f0|uy_c=1Ki,5) is a

non-empty open set, and N, R;* (]?1) is co-meager in N_, R; ' (U4;). There-
fore, it is of second category in B (f0|ul_€:1Ki, 5). O

Now we return to the proof of Theorem 3.6. We prove that F C G,, and then
Lemma 3.8 will imply that G, is of second category in B(fo,€). Assume that g €
F. Let yo € Upee (9(C) \ B(09(C),1/n)) be arbitrary. Then there is a Cp € C
such that B(yo,1/n) C int g(Cy). The connectedness of Cy and g € B(fo,¢)
yield yo € fo(Co) C fo(K). Hence the definition of w and (3.2) imply that there
isan ¢ € {1,...,k} such that yo € [fo(x;) — w, fo(zi) + w]. The definition of F
yields that there exists an f € H,, such that g|x, = ;0 fo¢p; = ﬁ Then (3.4)
implies 1; ' (yo) € [m1, M1], and f € H,, implies dimp £~ (¢; *(y0)) > dy, — L.
By the bi-Lipschitz property of ¢; we infer

dimp g~ (yo) > dimp J?i_l(?lo) =dimg ¢; " (f 7" (¥; (o))
=dimy £~ (¢; (o)) > dn — L.
Therefore g € G,,, and hence F C G,,. This completes the proof. O

It is natural to ask what we can say about the level sets of every f € C(K).
Clearly we cannot hope that for every y € int f(K) the level set f~!(y) is of
small Hausdorff dimension, since f can be constant on a large set. The opposite
direction is less trivial, it is easy to prove that for every f € C ([0, 1]?) for every
y € int f ([0,1]?) we have dimp f~'(y) > 1 = dimy[0,1]> — 1. This is not true
in general even for connected self-similar metric spaces. We have the following
counterexample.

Example 3.9. Set K = [-1,0]> U[0,1]2. Clearly K is a connected compact
metric space, and Figure 1 shows that K is self-similar with 4 contractions. Let
f: K= R, f(z,y) =z +y. Tt is straightforward that f € C(K), 0 € int f(K)
and f~1(0) = (0,0). Clearly dim;y K = 2, but dimy f~1(0) = 0 < 1 =
dith K —1.

Does at least some weaker statement hold?

Question 3.10. Let K be a connected self-similar compact metric space. Is it
true that for every f € C(K) there ezists a ys € R such that dimpy f~'(yr) >
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Figure 1: Illustration to Example 3.9

4 Level sets of maximal dimension

Let K be a compact metric space. If dim; K = 0 then the generic f € C(K) is
one-to-one, and every non-empty level set is a single point.

Assume dim;(K) > 0. Corollary 1.4 states that for the generic f € C(K) we
have sup, e dimy f~!(y) = dim;y K — 1. First we prove that in this statement
the supremum is attained.

Theorem 4.1. Let K be a compact metric with dim; K > 0. Then for the
generic f € C(K)

max dimg f_l(y) =dim;g K — 1.

yeR
Proof. By Theorem 1.3 it is sufficient to prove that for the generic f € C(K)
there exists a level set of Hausdorff dimension at least dim;yy K — 1. Let us
fix 29 € suppK. We will show that for the generic f € C(K) we have
dimg f~(f(w)) > dimyy K — 1. The following lemma is the heart of the
proof.

Lemma 4.2. Let K1 C K be compact metric spaces with xg € K \ Ky. Let
d € R be such that dim; gy B(x,r) > d for all x € K7 and r > 0. Then for the
generic f € C(K) either dimpg f~1(f(x0)) >d —1 or f(xo) & f(K1).

Proof of Lemma 4.2. If d < 0 then the statement is vacuous, so we may assume
d > 0. We must prove that the set

F={fecCK):dimy f(f(z0)) >d—1or flzo) ¢ f(K1)}

is co-meager in C(K). Let Ky = B(Kj,e9) with such a small g > 0 that
zo ¢ Ks. Consider

I'={(f,y) € O(K2) x R:dimpy f'(y) >d —Lory ¢ f(K1)}.

First assume that I" is co-meager in C'(K2) x R. Then we prove that F C C(K)
is also co-meager. Let R: C(K) — C(K2) xR, R(f) = (f|k,, f(x0)). Clearly R
is continuous, and Tietze’s Extension Theorem implies that R is surjective and
open. Thus Lemma 2.6 implies that 7 = R~!(T') is co-meager.
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Finally, we prove that I' is co-meager in C'(K2) x R. Lemma 2.10 easily
implies that I" is Borel, thus has the Baire property. Hence it is enough to prove
by the Kuratowski-Ulam Theorem |7, 8.41 Thm.| that for the generic f € C'(K3)
for the generic y € R we have (f,y) € I'. Let {z,}ren+ be a dense set in K
and for Z,j € N+ let us define Bi,j = B(Zl,]./J) if ]./J S €0, and Bi,j = K2
otherwise. Then for all i, j € N we have B; ; C K5 and the conditions of the
lemma yield dimgg Bi’j > d. Let Ri’ji C(KQ) — C(Bi7j>, Rl)J<f) = f B, and
let

Gij={f€C(Bi;): 3 interval s.t. Vy € I dimy f~'(y) >d—1}.

Set
G= ) Rij(Gi):
i,jENT

It follows from Theorem 1.3 that G, ; is co-meager in C(B; ;) for every i,j € NT.
Corollary 2.7 implies that R;jl(gi,j) is co-meager in C(K3), and as a countable
intersection of co-meager sets G is also co-meager in C(Ky). We fix f € G. Tt
is sufficient to verify that I'y = {y € R: (f,y) € I'} is co-meager. Let U C R
be an arbitrary open interval. It is enough to prove that I'y N U contains an
interval. If there exists yo € U such that yo ¢ f(K1) then there is a 6 > 0 such
that B(yo,d)N f(K1) =0, so B(yo,d)NU is an interval in I'f NU. Thus we may
assume U C f(K1). Then there exist i, jo € N* such that By = B;, j, satisfies
f(Bo) C U. The definition of G implies that there is an interval I, C U such
that for all y € Iy, we have

dimyr £~ (y) > dimp (f[5,) ' (y) = d — 1.
Hence Iy, CT'yNU, and this completes the proof. O

Now we return to the proof of Theorem 4.1. It follows from Fact 2.1
that dimyy K > 0. Since dimyy B(zo,1/n) = dimyy K for all n € NT, the
countable stability of the topological Hausdorff dimension for closed sets im-
plies the following. For all n € NT there exist r,, > 0 such that the sets
C,, = B(zo,1/n)\ U(zo, r,) satisfy dim;g C,, > 0 and dim; gy C,, — dim; gy K as
n — oo. For all n € NT we put

K,={xe€C,:Vr >0, dimpg(C, N B(z,r)) >dimy C, —1/n}.

Clearly, the K,,’s are compact. First we prove that for all n € NT we have
dim;y K,, = dimyg C,, > 0. The definition of K, and the Lindeldf property of
Cp \ K,, imply that there are closed balls B;, ¢ € N in C), such that dim;g B; <
dim;yg C,, — 1/n and U;enB; = C,, \ K,,. Applying the countable stability of the
topological Hausdorff dimension for the closed sets {B; : i € N} U {K,,} yields
dith Kn = dith Cn

Then Fact 2.1 implies dim; K,, > 0, and the K,,’s satisfy the conditions of
Lemma 2.12. Applying Lemma 2.12 for the sequence (K, ), cn+ and the compact
set K, and applying Lemma 4.2 for all K,, C K with d,, = dimyyg C,, — 2/n
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simultaneously imply that for the generic f € C(K) we have zo € f(K,,) for
infinitely many n € NT, and for every n € N* either dim;z f~1(f(z0)) > d,, — 1
or zg ¢ f(K,). Hence there is a subsequence (n;);en (that depends on f) such
that dimyy f~1(f(20)) > dn, — 1 for all i € N, that is

dimygr f~H(f(z0)) > lim (dimyy Cp, — 2/n; — 1) = dimyy K — 1.
21— 00

This concludes the proof. U

Remark 4.3. Note that we proved the following stronger statement. Let K be
a compact metric space with dim; K > 0. Set for all x € K

Fo={f € C(K) : dimy f(f(2)) = dimyy K — 1} .
Then F, is co-meager in C(K) for every x € supp K.

The following example shows that the sets F,, x € supp K depend on z
indeed in general.

Example 4.4. Let K be a self-similar compact metric space with dim; K > 1.
Tt is well-known and easy to prove that for the generic f € C'(K) the maximum
is attained at a unique point, say xy. By Theorem 2.2 for the generic f € C(K)
we have dimy f~(f(zf)) = 0 < dimy K — 1 < dimyy K — 1, thus f ¢ F,,.
Clearly, supp K = K, therefore Nyecsupp k Fo = Neck Fz is of first category in
C(K).

The following theorem shows that we cannot strengthen Theorem 4.1 in
general. Since the counterexample is an attractor of an iterated function system,
it is ‘homogeneous’ to some extent.

Theorem 4.5. There exists a compact set K C R? such that K is an attractor
of an iterated function system and the generic f € C(K) has a unique level set
of Hausdorff dimension dim;g K — 1.

Proof. Let S and C be the Smith-Volterra-Cantor set and the middle-thirds
Cantor set, respectively. Let

wli C—=0CnN [0,1/3], 1/)1(1‘) = $/3,
Ua: C— CA2/3.1], alz) = /3 +2/3 (4.1)

be the natural similarities of C.

Let us define ay, < 1 (n € N*) such that oy, \(1/3 as n — oo. Let C), =
C,,, n € NT be the middle-cv,, Cantor sets. Then clearly dimy C,, /* dimy C
as n — oo. It is easy to verify that the natural homeomorphisms ¢, : C — C,,
n € Nt are Lipschitz maps. For r > 0 we denote by C” the set that is similar
to C, furthermore C;, C [0,7] and diam C], = r. We define positive numbers
Tn, n € NT such that the following conditions hold for every n € N*.

(i) There are Lipschitz maps with Lipschitz constant at most 1/2 which map
the nth level elementary pieces of S onto [0, r,].
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(ii) There are Lipschitz maps with Lipschitz constant at most 1/2 which map
the nth level elementary pieces of C onto C; .

(iif) Y00 7y < 1/22nF2,

The nth level elementary pieces of S are isometric. They are of positive Lebesgue
measure, since S is of positive measure. It is well-known that every measurable
set with positive measure can be mapped onto [0,1] by a Lipschitz map [1,
Lemma 3.10.], hence (i) can be satisfied if 7, is small enough. Moreover, (i7)
follows from the Lipschitz property of ¢, for small enough r,, and (iii) is
straightforward.

Figure 2: Hllustration to the construction of K

Let Ko =S xC, 2o = (2+ > 2, 7;,0) and for all n € N* let
I, = [2 +3 24 rl} ,
K,=1,xC",
oo
K= | Kn,U{zo},
n=0

K, = D K; U{zso},

i=n
N n
K, = U K;.
i=0
Clearly, all the sets defined above are compact.
First we prove that K is an attractor of an IFS. Recall that the ¢;’s and

¥;’s are the natural homeomorphisms of S and C, respectively. For the more
precise definition see (2.5) and (4.1) again. Let us define for 4,5 € {1,2} the
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maps ¥; ; : K — Ky such that

o (0,0) if z € K\ Ko,
Ui () {(w(ﬂf)’%(ﬂf)) if € K.

Clearly the W;;’s are Lipschitz maps with Lip(¥;;) < 1/2, and
Uije(1,23¥i;(K) = Ko. For all n € Nt and (i,7) € {(1,2),(2,1),(2,2)} let
us define the sets K; ;, to be the top left, the top right and the bottom right
nth level ‘elementary pieces’ of the bottom left (n — 1)st ‘elementary piece’ of
Ky, that is,
Kijn = (pio@l 1) (S) x (¢ 07~ H(O).

These are clearly disjoint subsets of Ky. It follows from (i) and (4¢) that for all
n € Nt and (i,7) € {(1,2),(2,1),(2,2)} there exist surjective Lipschitz maps

@in: (Piol ™) (S) = I, and i, (Y;ov] ) (C)—C

with Lipschitz constant at most 1/2. Let ¥: K — K\ Kj be the following map.

U(z) = Too %foK\Koorm:(0,0),
(goln(x), ’Q[Jj’n(l‘)) ifx e Ki,j,n~

The K, ;»’s, K\ Ky and {(0,0)} are disjoint sets with union K, so ¥ is well-
defined. Clearly ¥ maps K, ;, onto K,, and hence V(K) = K \ K. Thus
K = U jeq1,23¥i;(K) U¥(K). Therefore, it is enough to prove that ¥ is a
Lipschitz map with Lip(¥) < 1/2, that is for all z,z € K

i) ) < 22 (4.2
If x,z2 € K\ Kg then ¥(z) = ¥U(z) = 2, thus (4.2) follows.
If z € Ky and z € K \ Ko, then clearly |[x — z| > 1. On the other hand, (4i%)
implies

|U(2) — ¥(2)| < diam(K \ Ko) < <Zri> + (r1)?
=1

< Qiri <1/8,
=1

therefore (4.2) follows.
If © = (x1,22) € Ko and z = (21, 22) € Ky then we may assume that

max{[z1], [z} < max{[z1], [z2]}. (4.3)

) and we are done. We may assume = € K ; ,, where

If = (0,0) then z = (0,
1,2),(2,1),(2,2)}. If z € K; j,, then (4.2) follows, since

0
n € N* and (4,7) € {(1,2
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VU is Lipschitz on K ;. with Lipschitz constant at most 1/2. Hence we may
assume z € K \ K; j,,. Then (4.3) implies ¥(x), ¥(z) € K,,. By the definition
of K, and (i)

U () — ¥(z)| < diam K, <2 r; < 1/22"F
The minimum distance between distinct nth level elementary pieces of S and C
is 1/2%" and 1/3", respectively. Since Ko = S x C,
|£C - Z| 2 dist (Ki,j,na K \ Ki,j,n)
> dist (K jn, Ko \ K; jn) > 1/22"

These imply (4.2), and hence K is an attractor of an IFS.

Finally, we prove that the generic f € C(K) has a unique level set of Haus-
dorfl dimension dim;g K — 1.

By Theorem 4.1 the generic f € C'(K) has at least one level set of Hausdorff
dimension dimyz K — 1. Hence it is enough to show that for the generic f €
C(K) for all y # f(2) we have dimy f~'(y) < dimyy K — 1. From Fact
2.1 follows dim;zy Ko = 0, clearly dim;g{2zo} = 0 and Theorem 2.4 implies
dimsg K,, — 1 = dimy C,,. This, together with the countable stability of the
topological Hausdorff dimension for closed sets and the definition of C,, yield

dim;gy K — 1 = sup dimyy K,, — 1 = sup dimgy C,, = dimgy C.
neNTt neNTt

Assume to the contrary that there exists F C C(K) such that F is of second
category and for every f € F there exists Y5 # f(zoo) such that dimgy f~!(ys) =
dimy C. Then f~'(ys) € K \ {z}, and by the compactness of f~!(y;) there
exists an ny € NT such that f~!(ys) C IA{n_f. Set

]:n:{fe]-‘:f’l(yf)gf(n}.

Since F = U2, F,, Baire’s Category Theorem implies that there exists no € N
such that F,, is of second category in C'(K). We obtain from Corollary 2.7 (7)
that

]:no = {f|f5"0 Zf S ]:710}
is of second category in C (IA(M) The definition of ]?no implies that for every

f e ]?7,,0 we have dimpy ffl(yf) = dimy C. By Theorem 1.3 for the generic
fecC (I/(\'ng) every level set is of Hausdorff dimension at most
dimyy Ky — 1= sup dimyy K, — 1 = dimy C,, < dimy C,
1<n<ng
a contradiction. This concludes the theorem. O
Question 4.6. Does there exist an attractor of an injective iterated function

system K such that the generic f € C(K) has a unique level set of Hausdorff
dimension dim;g K — 17
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5 The dimension of the graph of the generic con-
tinuous function

The graph of the generic f € C([0,1]) is of Hausdorfl dimension one, this is a
result of R. D. Mauldin and S. C. Williams [11, Thm. 2.]. We generalize the cited
theorem for arbitrary compact metric spaces. Let K be a compact metric space,
then for the generic f € C(K) the graph of f is of Hausdorff dimension dimy K.
We prove an analogous theorem for the topological Hausdorff dimension, for the
generic f € C(K) the graph of f is of topological Hausdorff dimension dim:y K.

Definition 5.1. If f € C(K) let us define
J: K = graph(f),  f(z) = (. f(2)).

Clearly fis continuous and one-to-one, so it is a homeomorphism between
K and graph(f).

Theorem 5.2. If K is a compact metric space then for the generic f € C(K)
dim g graph(f) = dimy K.

Theorem 5.2 follows from the following more general theorem applied with
E = K. We need this slight generalization in order to prove Theorem 5.4.

Theorem 5.3. Let K be a compact metric space and E C K. Then for the
generic f € C(K)
dimy graph(f|g) = dimpy E.

Proof of Theorem 5.3. First note that graph(f|g) = f(E). For every f € C(K)
the map f_l is a projection from f(E) onto E. Since the Hausdorfl dimension
cannot increase under a Lipschitz map, dimg f(E) > dimy E. For the opposite
direction it is enough to prove that

F={rec(x): dmy f(E) < dimy B}

is a dense Gs set in C(K). We may assume dimy E < oo. First we show that
F is a G set. Let us define for all n € Nt

Fo={fecm)mymm " (FEB)) < 1/n}.

It is straightforward that the F,,’s are open and F = N,en+ Fn. Thus Fis a Gs
set.
Finally, we show that F is dense in C(K). If f € C(K) is Lipschitz, then

clearly f is Lipschitz with Lip(f) < Lip(f)+1, and hence dimy f(F) < dimpy F.
Therefore, it is enough to prove that G = {f € C(K) : f is Lipschitz} is dense
in C(K). This fact is well-known but one can also see it directly, since it is

easy to show that ¢f € G, f+¢g € G and fg € G for all f,g € G and ¢ € R.
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Therefore, G forms a subalgebra in C(K). Finally, we may assume #K > 2,
and the Lipschitz functions {©, tzock, Pz K = R, ©u, () = di (20, 2) show
that G separates points of K and G vanishes at no point of K. Hence the
Stone-Weierstrass Theorem [2, 12.9] implies that G is dense. This completes the
proof. O

Theorem 5.4. If K is a compact metric space then for the generic f € C(K)
dim g graph(f) = dimgpy K.

Proof. For every f € C(K) the map f~1is an injective projection from graph(f)
onto K, hence it is a Lipschitz homeomorphism. Thus Theorem 2.3 implies that
dim; g graph(f) > dim;y K. For the opposite direction choose a basis U of K
such that dimyg OU < dimyg K —1 for all U € U, we can do this by Theorem 2.5.
We may assume that U is countable. Suppose U € U is arbitrary. By applying
Theorem 5.3 for E = U we infer that there exists a co-meager set Fyy C C(K)
such that for all f € Fyy we have dimy f(0U) = dimy (0U) < dim;y K —1. The
basis U is countable, and hence F = NyeyFu is co-meager in C'(K). Assume
f € F, it is enough to prove that dim;y graph(f) < dimyy K. Since ]""v is

homeomorphism we obtain that V = {f(U) U € Z/I} is a basis of graph(f) and

df(U) = f(dU) for all U € U. That is,

for all V = f(U) € V. Thus dim;g graph(f) < dim;y K, and this completes the
proof. O
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