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Abstract

In an earlier paper we introduced a new concept of dimension for metric

spaces, the so called topological Hausdor� dimension. For a compact met-

ric space K let dimH K and dimtH K denote its Hausdor� and topological

Hausdor� dimension, respectively. We proved that this new dimension de-

scribes the Hausdor� dimension of the level sets of the generic continuous

function on K, namely sup{dimH f−1(y) : y ∈ R} = dimtH K − 1 for

the generic f ∈ C(K). We also proved that if K is su�ciently homoge-

neous then dimH f−1(y) = dimtH K − 1 for the generic f ∈ C(K) and

the generic y ∈ f(K). The most important goal of this paper is to make

these theorems more precise.

As for the �rst result, we prove that the supremum is actually attained,

and also show that there may only be a unique level set of maximal Haus-

dor� dimension.

As for the second result, we characterize those compact metric spaces

for which for the generic f ∈ C(K) and the generic y ∈ f(K) we have

dimH f−1(y) = dimtH K − 1. We also generalize a result of B. Kirchheim

by showing that if K is self-similar then for the generic f ∈ C(K) for

every y ∈ int f(K) we have dimH f−1(y) = dimtH K − 1.
Finally, we prove that the graph of the generic f ∈ C(K) has the same

Hausdor� and topological Hausdor� dimension as K.

1 Introduction

We recall �rst the de�nition of the (small inductive) topological dimension.

De�nition 1.1. Set dimt ∅ = −1. The topological dimension of a non-empty
metric space X is de�ned by induction as

dimtX = inf{d : X has a basis U such that dimt ∂U ≤ d− 1 for every U ∈ U}.

For more information on this concept see [3] or [6].
We introduced the topological Hausdor� dimension for compact metric

spaces in [1]. It is de�ned analogously to the topological dimension. However,
it is not inductive, and it can attain non-integer values as well. The Hausdor�
dimension of a metric space X is denoted by dimH X, see e.g. [5] or [9]. In this
paper we adopt the convention that dimH ∅ = −1.

De�nition 1.2. Set dimtH ∅ = −1. The topological Hausdor� dimension of a
non-empty metric space X is de�ned as

dimtH X = inf{d : X has a basis U such that dimH ∂U ≤ d−1 for every U ∈ U}.

Both notions of dimension can attain the value ∞ as well.

2000 Mathematics Subject Classi�cation: Primary: 28A78, 28A80, 26A99.
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Let K be a compact metric space, and let C(K) denote the space of con-
tinuous real-valued functions equipped with the supremum norm. Since this is
a complete metric space, we can use Baire category arguments. If dimtK = 0
then the generic f ∈ C(K) is well-known to be one-to-one, so every non-empty
level set is a singleton.

Assume dimtK > 0. The following results from [1] show the connection
between the topological Hausdor� dimension and the level sets of the generic
f ∈ C(K).

Theorem 1.3. If K is a compact metric space with dimtK > 0 then for the
generic f ∈ C(K)

(i) dimH f−1(y) ≤ dimtH K − 1 for every y ∈ R,

(ii) for every ε > 0 there exists an interval If,ε such that dimH f−1(y) ≥
dimtH K − 1− ε for every y ∈ If,ε.

Corollary 1.4. If K is a compact metric space with dimtK > 0 then
sup{dimH f−1(y) : y ∈ R} = dimtH K − 1 for the generic f ∈ C(K).

If K is also su�ciently homogeneous, for example self-similar, then we can
actually say more.

Theorem 1.5. If K is a self-similar compact metric space with dimtK > 0
then dimH f−1(y) = dimtH K − 1 for the generic f ∈ C(K) and the generic
y ∈ f(K).

Theorems 1.3 and 1.5 are the starting points of this paper, our primary aim
is to make these theorems more precise.

In the Preliminaries section we introduce some notation and de�nitions, cite
some important properties of the topological Hausdor� dimension and prove
several technical lemmas.

In Section 3 we prove a partial converse of Theorem 1.5. We show that for the
generic f ∈ C(K) for the generic y ∈ f(K) we have dimH f−1(y) = dimtH K−1
i� K is homogeneous for the topological Hausdor� dimension, that is for every
non-empty closed ball B(x, r) ⊆ K we have dimtH B(x, r) = dimtH K. If K
is (weakly) self-similar then much more is true: For the generic f ∈ C(K) for
every y ∈ int f(K) we have dimH f−1(y) = dimtH K − 1. This generalizes a
result of B. Kirchheim. He proved in [8] that for the generic f ∈ C

(
[0, 1]d

)
for

every y ∈ int f
(
[0, 1]d

)
we have dimH f−1(y) = d− 1.

In Section 4 we prove that the generic f ∈ C(K) has at least one level set
of maximal Hausdor� dimension. Hence the supremum is attained in Corollary
1.4. We construct an attractor of an iterated function system K ⊆ R2 such that
the generic f ∈ C(K) has a unique level set of Hausdor� dimension dimtH K−1.
This shows that the above theorem is sharp.
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Finally, in Section 5 we prove that the graph of the generic f ∈ C(K) has
the same Hausdor� and topological Hausdor� dimension as K. This generalizes
a result of R. D. Mauldin and S. C. Williams which states that the graph of the
generic f ∈ C ([0, 1]) is of Hausdor� dimension one, see [11].

2 Preliminaries

2.1 Notation and de�nitions

Let (X, d) be a metric space, and let A,B ⊆ X be arbitrary sets. We denote
by intA and ∂A the interior and boundary of A. The diameter of A is denoted
by diamA. We use the convention diam ∅ = 0. The distance of the sets A and
B is de�ned by dist(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}. Let B(x, r) = {y ∈
X : d(x, y) ≤ r} and U(x, r) = {y ∈ X : d(x, y) < r}. More generally, we de�ne
B(A, r) = {x ∈ X : dist(x,A) ≤ r} and U(A, r) = {x ∈ X : dist(x,A) < r}.

For two metric spaces (X, dX) and (Y, dY ) a function f : X → Y is Lipschitz
if there exists a constant C ∈ R such that dY (f(x1), f(x2)) ≤ C · dX(x1, x2) for
all x1, x2 ∈ X. The smallest such constant C is called the Lipschitz constant
of f and denoted by Lip(f). If Lip(f) < 1 then f is a contraction. A function
f : X → Y is called bi-Lipschitz if f is a bijection and both f and f−1 are
Lipschitz.

If s ≥ 0 and δ > 0, then

Hs
δ(X) = inf

{ ∞∑
i=1

(diamUi)
s : X ⊆

∪
i

Ui, ∀i diamUi ≤ δ

}
,

Hs(X) = lim
δ→0+

Hs
δ(X).

The Hausdor� dimension of X is de�ned as

dimH X = inf {s ≥ 0 : Hs(X) = 0} ,

we adopt the convention that dimH ∅ = −1 throughout the paper. For more
information on these concepts see [5] or [9].

We de�ne on X × Y the following metric. For all (x1, y1), (x2, y2) ∈ X × Y
set

dX×Y ((x1, y1), (x2, y2)) =
√
d2X(x1, x2) + d2Y (y1, y2).

The metric space X is totally disconnected if every connected component is
a singleton.

Let X be a complete metric space. A set is somewhere dense if it is dense
in a non-empty open set, and otherwise it is called nowhere dense. We say that
M ⊆ X is meager if it is a countable union of nowhere dense sets, and a set is of
second category if it is not meager. A set is called co-meager if its complement
is meager. By Baire's Category Theorem co-meager sets are dense. It is not
di�cult to show that a set is co-meager i� it contains a dense Gδ set. We say
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that the generic element x ∈ X has property P, if {x ∈ X : x has property P}
is co-meager. The term `typical ' is also used instead of `generic'. Our main
example will be X = C(K) endowed with the supremum metric (for some
compact metric space K).

Let X, Y be Polish spaces. We call the set A ⊆ X analytic, if it is a
continuous image of a Polish space. We call it co-analytic if its complement
is analytic. The set A has the Baire property if A = U∆M where U is open
and M is meager. Both analytic and co-analytic sets have the Baire property.
If a set is of second category in every non-empty open set and has the Baire
property then it is co-meager. If E ⊆ X × Y , x ∈ X and y ∈ Y then let Ex =
{y ∈ Y : (x, y) ∈ E} and Ey = {x ∈ X : (x, y) ∈ E}. Let prX : X × Y → X,
prX(x, y) = x be the projection of X × Y onto X. If E ⊆ X × Y is Borel, then
prX(E) is analytic. For more information see [7].

If K is a non-empty compact metric space then we say that K is an attractor
of an iterated function system (IFS) if there exist contractions Ψi : K → K,
i ∈ {1, . . . ,m} such that K = ∪m

i=1Ψi(K). If the Ψi's are also similarities then
K is self-similar.

For every α ∈ (0, 1) we construct themiddle-α Cantor set Cα in the following
way. In the �rst step we remove the middle-α open interval ((1−α)/2, (1+α)/2)
from [0, 1]. After the (n− 1)st step we have 2n−1 disjoint, closed (n− 1)st level
intervals. In the nth step we remove the middle-α open intervals from each
of them. We continue this procedure for all n ∈ N+, and the limit set is the
middle-α Cantor set. It is well-known that dimH Cα = log 2/ log(2/(1− α)).

Let us de�ne the Smith-Volterra-Cantor set S in the following way. In the
�rst step we remove the open interval of length 1/4 from the middle of [0, 1].
After the (n − 1)st step we have 2n−1 disjoint, closed (n − 1)st level intervals.
In the nth step we remove the middle open intervals of length 1/22n from each
of them. We continue this procedure for all n ∈ N+, and the limit set is the
Smith-Volterra-Cantor set. Elementary computation shows that S has positive
Lebesgue measure (more precisely its measure is 1/2).

The nth level elementary pieces of Cα are the intersections of Cα with the
nth level intervals of Cα. This de�nition is also analogous for S.

We adopt the convention that intervals are non-degenerate.

2.2 Properties of the topological Hausdor� dimension

The next theorems are from [1].

Fact 2.1. For every metric space X

dimtH X = 0 ⇐⇒ dimtX = 0.

Theorem 2.2. For every metric space X

dimtX ≤ dimtH X ≤ dimH X.

Theorem 2.3. The topological Hausdor� dimension satis�es the following prop-
erties.
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(i) Extension of the classical dimension. The topological Hausdor� di-
mension of a countable set equals zero, and for open subspaces of Rd and
for smooth d-dimensional manifolds the topological Hausdor� dimension
equals d.

(ii) Monotonicity. If X ⊆ Y are metric spaces then dimtH X ≤ dimtH Y .

(iii) Lipschitz-invariance. Let X,Y be metric spaces. If f : X → Y is a
Lipschitz homeomorphism then dimtH X ≤ dimtH Y . If f is bi-Lipschitz
then dimtH X = dimtH Y .

(iv) Countable stability for closed sets. Let X be a separable metric space
and X = ∪n∈N Xn, where Xn, n ∈ N are closed subsets of X. Then
dimtH X = supn∈N dimtH Xn.

Theorem 2.4. If X is a non-empty separable metric space then

dimtH (X × [0, 1]) = dimH X + 1.

For compact metric spaces the in�mum is attained in the de�nition of the
topological Hausdor� dimension.

Theorem 2.5. If K is a non-empty compact metric space then

dimtH K = min{d : K has a basis U such that dimH ∂U ≤ d−1 for every U ∈ U}.

2.3 Technical lemmas

The next lemma and its consequence will be very useful throughout the paper.

Lemma 2.6. Let X,Y be complete metric spaces and let R : X → Y be a
continuous, open and surjective mapping.

(i) If A ⊆ X is of second category/co-meager then R(A) ⊆ Y is of second
category/co-meager.

(ii) If B ⊆ Y is of second category/co-meager then R−1(B) ⊆ X is of second
category/co-meager.

Proof. (i) First we show that if B ⊆ Y is meager then R−1(B) ⊆ X is also
meager. Clearly it is enough to prove that if B ⊆ Y is closed and nowhere
dense then R−1(B) ⊆ X is nowhere dense. Since R is continuous R−1(B) is
closed. We show that R−1(B) is nowhere dense. Assume to the contrary that
there is a non-empty open set U ⊆ R−1(B). Since the map R is open the set
R(U) is non-empty and open. Then R(U) ⊆ B implies that B is of second
category, a contradiction.

Let A ⊆ X be of second category. Assume to the contrary that R(A) ⊆ Y
is meager. Then by the previous argument R−1(R(A)) is meager and A ⊆
R−1(R(A)), a contradiction.
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Suppose that A ⊆ X is co-meager. We want to prove that R(A) ⊆ Y is also
co-meager. We may assume that A is a dense Gδ set. Assume to the contrary
that R(A) is not co-meager. As a continuous image of a Borel set R(A) is
analytic, and hence has the Baire property. Thus there exists a non-empty open
set U ⊆ Y such that R(A) ∩ U is meager. Since R is continuous and surjective

R−1(U) is open and non-empty. The map R̂ = R|R−1(U) : R−1(U) → U is

clearly continuous, open and surjective. Since R(A)∩U is meager R̂−1(R(A)∩U)
is meager in R−1(U). The set A∩R−1(U) is co-meager in R−1(U), and clearly

A ∩R−1(U) ⊆ R̂−1(R(A) ∩ U), a contradiction.
(ii) Let B ⊆ Y be of second category. Assume to the contrary that R−1(B)

is meager. Then R−1(B)c is co-meager and its R image R(R−1(B)c) ⊆ Bc is
not co-meager. This contradicts part (i) of the lemma.

Let B ⊆ Y be co-meager. Then Bc is meager, and hence R−1(Bc) is meager.
This implies that R−1(B) = X \R−1(Bc) is co-meager.

We need the following special case.

Corollary 2.7. Let K1 ⊆ K2 be compact metric spaces and

R : C(K2) → C(K1), R(f) = f |K1 .

(i) If F2 ⊆ C(K2) is of second category/co-meager then R(F2) ⊆ C(K1) is of
second category/co-meager.

(ii) If F1 ⊆ C(K1) is of second category/co-meager then R−1(F1) ⊆ C(K2) is
of second category/co-meager.

Proof. Clearly C(K2) and C(K1) are complete metric spaces, R is continuous,
and Tietze's Extension Theorem implies that R is surjective and open. Thus
Lemma 2.6 completes the proof.

We need the following theorem, see [10, 6.1. Thm.] for the proof.

Theorem 2.8. Let X,Y be Polish spaces, and let E ⊆ X × Y be a Borel set.
If Ex is σ-compact for all x ∈ X then the function h : X → [−1,∞] de�ned by
h(x) = dimH Ex is Borel measurable.

Remark 2.9. Unlike [10], we adopt the convention that dimH ∅ = −1, hence the
level sets of h may need to be modi�ed by the set {x ∈ X : Ex = ∅} = (prX E)c.
Therefore we also have to check that prX E is Borel.

Lemma 2.10. Let K be a compact metric space and d ∈ R. Then the set

∆ =
{
(f, y) ∈ C(K)× R : dimH f−1(y) < d

}
is Borel.

7



Proof. We check that the conditions of Theorem 2.8 hold for X = C(K) × R,
Y = K and E = {(f, y, z) ∈ C(K) × R × K : f(z) = y} ⊆ X × Y . Clearly
X,Y are Polish spaces and E is closed, thus Borel. For every (f, y) ∈ X
the set E(f,y) = {z ∈ K : f(z) = y} = f−1(y) is compact. Finally, the
set prX E = {(f, y) ∈ X : y ∈ f(K)} is closed, hence Borel. Theorem 2.8
implies that h : X → [0,∞], h((f, y)) = dimH E(f,y) = dimH f−1(y) is Borel

measurable. Thus h−1 ((−∞, d)) =
{
(f, y) ∈ C(K)× R : dimH f−1(y) < d

}
=

∆ is Borel.

Lemma 2.11. Suppose (K, d) is a compact metric space such that for all x ∈ K
and r > 0 we have dimtB(x, r) > 0. Let C be the set of connected components
of K. Then for the generic f ∈ C(K)∪

C∈C
int f(C) = int f(K).

We remark that if K0 is the triadic Cantor set then K = K0 × [0, 1] has
uncountably many connected components but it is a `homogeneous' self-similar
set.

Proof. Consider

F =

{
f ∈ C(K) :

∪
C∈C

int f(C) = int f(K)

}
,

and for all n ∈ N+ let

Fn = {f ∈ C(K) : ∀y ∈ f(K) \B (∂f(K), 1/n) , ∃C ∈ C such that y ∈ int f(C)} .

We must prove that F is co-meager in C(K). Since F = ∩n∈N+Fn, it is enough
to show that the Fn's are co-meager in C(K). Let us �x n ∈ N+ and let
f0 ∈ C(K) and ε > 0 be arbitrary. It is su�cient to show that there is a
non-empty ball B(g0, r0) ⊆ Fn ∩B(f0, 4ε).

Since f0 is uniformly continuous on K there is a δ1 > 0 such that if x, z ∈ K
and d(x, z) ≤ δ1 then |f0(x) − f0(z)| ≤ ε. By the compactness of K there
is a �nite set {x1, ..., xk} such that ∪k

i=1B(xi, δ1) = K. Choose 0 < δ2 < δ1
such that the balls B(xi, δ2) are disjoint. The conditions of the lemma imply
that for every i ∈ {1, . . . , k} we have dimtB(xi, δ2/2) > 0. Thus there exist
non-trivial connected components Ci of B(xi, δ2/2) for all i ∈ {1, . . . , k}, see [4,
6.2.9. Thm.]. For all i ∈ {1, . . . , k} let us choose ui, vi ∈ Ci, ui ̸= vi and select
εi ∈ [ε, 2ε] such that the set

E = {f0(xi) + εi : i = 1, . . . , k} ∪ {f0(xi)− εi : i = 1, . . . , k}

has 2k many elements. Let θ = min{d(x, y) : x, y ∈ E, x ̸= y} > 0. Clearly
for all x ∈ B(xi, δ1), i ∈ {1, . . . , k} we have f0(x) ∈ [f0(xi) − ε, f0(xi) + ε] ⊆
[f0(xi)− εi, f0(xi) + εi]. Hence Tietze's Extension Theorem implies that there
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exists a g0 ∈ C(K) such that g0(x) = f0(x) if x ∈ K \ ∪k
i=1U(xi, δ2) and for all

i ∈ {1, . . . , k} we have g0(ui) = f0(xi)− εi, g0(vi) = f0(xi) + εi and

g0(x) ∈ [f0(xi)− εi, f0(xi) + εi] , x ∈ B(xi, δ1). (2.1)

Therefore, using that the oscillations of f0 on the B(xi, δ1)'s are at most
ε and εi ≤ 2ε for all i ∈ {1, . . . , k}, we have g0 ∈ B(f0, 3ε). Set r0 =
min {ε, θ/6, 1/(3n)}. Since B(g0, r0) ⊆ B(g0, ε) ⊆ B(f0, 4ε), it is enough to
prove that B(g0, r0) ⊆ Fn. Let f ∈ B(g0, r0) and y0 ∈ f(K) \ B(∂f(K), 1/n),
that is, B(y0, 1/n) ⊆ int f(K). It is enough to verify that there is an
i ∈ {1, . . . , k} such that y0 ∈ int f(Ci). (Note that every Ci is contained in
a member of C.) Let us choose z0 ∈ K with f(z0) = y0 and �x i ∈ {1, . . . , k}
such that z0 ∈ B(xi, δ1). Then equation (2.1) and f ∈ B(g0, r0) imply that
y0 ∈ [f0(xi)− εi − r0, f0(xi) + εi + r0].

First assume that y0 ∈ (f0(xi)−εi+r0, f0(xi)+εi−r0) = (g0(ui)+r0, g0(vi)−
r0). Then f ∈ B(g0, r0) and the connectedness of Ci imply y0 ∈ (f(ui), f(vi)) ⊆
int f(Ci).

Finally, suppose that y0 ∈ [f0(xi)− εi − r0, f0(xi)− εi + r0] or

y0 ∈ [f0(xi) + εi − r0, f0(xi) + εi + r0]. (2.2)

We may assume by symmetry that (2.2) holds. Since y0 + 3r0 ∈ B(y0, 1/n) ⊆
int f(K), there exists z1 ∈ K such that f(z1) = y0+3r0 and j ∈ {1, . . . , k} such
that z1 ∈ B(xj , δ1). From f ∈ B(g0, r0) and (2.1) it follows that

y0 + 3r0 ∈ [f0(xj)− εj − r0, f0(xj) + εj + r0] . (2.3)

Equation (2.2) implies y0+3r0 > f0(xi)+ εi+ r0, thus we have j ̸= i. Equation
(2.2) also implies |y0− (f0(xi)+ εi)| ≤ r0. Therefore the triangle inequality and
the de�nition of θ yield

|y0 − (f0(xj)− εj)| ≥ |(f0(xj)− εj)− (f0(xi) + εi)| − |y0 − (f0(xi) + εi)|
≥ θ − r0 > 4r0. (2.4)

Then (2.3) implies y0 < f0(xj) + εj − r0 and y0 ≥ f0(xj)− εj − 4r0, thus (2.4)
yields y0 ∈ (f0(xj)− εj + r0, f0(xj) + εj − r0) = (g0(uj) + r0, g0(vj)− r0) .
Hence f ∈ B(g0, r0) and the connectedness of Cj imply y0 ∈ (f(uj), f(vj)) ⊆
int f(Cj). This completes the proof.

Lemma 2.12. Let K be a compact metric space with a �xed x0 ∈ K. Let
Kn ⊆ K, n ∈ N be compact sets such that

(i) dimtKn > 0 for all n ∈ N and

(ii) diam (Kn ∪ {x0}) → 0 if n→ ∞.

Then for the generic f ∈ C(K) we have x0 ∈ f(Kn) for in�nitely many
n ∈ N.
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Proof. Clearly it is enough to show that the sets

FN = {f ∈ C(K) : x0 /∈ f(Kn) for all n ≥ N}

are nowhere dense in C(K) for all N ∈ N. Let f0 ∈ C(K) and ε > 0 be
arbitrary, it is enough to �nd a ball in B(f0, 2ε) \ FN . The compact Kn's have
positive topological dimension, therefore they are not totally disconnected, see
[4, 6.2.9. Thm.]. Let us choose a non-trivial connected component Cn ⊆ Kn

for every n ∈ N. We can choose by (ii) an n0 ∈ N such that n0 ≥ N and
diam f0 (Cn0

∪ {x0}) < ε. Tietze's Extension Theorem implies that there is an
f ∈ B(f0, ε) such that diam f(Cn0) > 0 and f(x0) is the midpoint of f(Cn0). If
δ = min

{
ε, 14 diam f(Cn0

)
}
then for all g ∈ B(f, δ) we have g(x0) ∈ g(Cn0

) ⊆
g(Kn0), so g /∈ FN . Thus B(f, δ) ⊆ B(f0, 2ε) \ FN .

The following lemma is probably known, but we could not �nd an explicit
reference, so we outline its proof.

Lemma 2.13. The Smith-Volterra-Cantor set S is an attractor of an IFS.

Proof. In the nth step of the construction we remove 2n−1 many disjoint open
intervals of length an = 1/22n, the remaining 2n disjoint, closed nth level
intervals are of length bn = 1

2n

(
1−

∑n
i=1 2

i−1ai
)
= 1/2n+1 + 1/22n+1. Let

π : S → {0, 1}N be the natural homeomorphism, that is, for x ∈ S and n ∈ N we
de�ne π(x)(n), as follows. There is a unique nth level interval In and a unique
(n+1)st level interval In+1 such that x ∈ In and x ∈ In+1. Then In+1 is either
the left or the right hand side interval of In. If it is the left hand side interval
then π(x)(n) = 0, otherwise π(x)(n) = 1. Let

φ1 : S → S ∩ [0, 1/2] , φ1(x) = π−1 (0̂ π(x)) ,

φ2 : S → S ∩ [1/2, 1] , φ2(x) = π−1 (1̂ π(x)) (2.5)

be the natural homeomorphisms onto the left and the right half of S (whereˆ
stands for concatenation). Clearly, S = φ1(S)∪φ2(S), so it is su�cient to prove
that φ1 and φ2 are contractions. By symmetry it is enough to show that φ1 is
a Lipschitz map with Lip(φ1) ≤ 1/2, that is, for all x, z ∈ S

|φ1(x)− φ1(z)| ≤
|x− z|

2
. (2.6)

The endpoints of the intervals at the construction are dense in S. Thus we
may assume for the proof of (2.6) that x, z are both endpoints of some nth level
intervals and x < z. Let us assume that in the interval [x, z] there are βn = βn,x,z
many intervals of length bn and there are αi = αi,x,z many open intervals of
length ai, i ∈ {1, . . . , n}. In the interval [φ1(x), φ1(z)] there are βn many
closed intervals of length bn+1 and there are αi many open intervals of length
ai+1, i ∈ {1, . . . , n}. These intervals are disjoint, and their union is [x, z] and
[φ1(x), φ1(z)] (apart from the endpoints x, z and φ1(x), φ1(z)), respectively. We
obtain |x− z| = βnbn+

∑n
i=1 αiai and |φ1(x)−φ1(z)| = βnbn+1+

∑n
i=1 αiai+1.

Hence for (2.6) it is enough to prove that bn+1 ≤ bn/2 and ai+1 ≤ ai/2 for all
i ∈ {1, . . . , n}, but it is clear from the de�nitions of the bn's and the an's.
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3 Level sets on fractals

Let K be a compact metric space. If dimtK = 0 then it is well-known that the
generic continuous function is one-to-one on K, hence every non-empty level set
is a single point.

Thus in the sequel we assume that dimtK > 0.

De�nition 3.1. If K is a compact metric space then let

suppK = {x ∈ K : ∀r > 0, dimtH B(x, r) = dimtH K} .

We say that K is homogeneous for the topological Hausdor� dimension if
suppK = K.

Remark 3.2. The stability of the topological Hausdor� dimension for closed
sets clearly yields suppK ̸= ∅. If K is self-similar then it is also homogeneous
for the topological Hausdor� dimension.

We proved in [1] that if K is homogeneous for the topological Hausdor�
dimension then for the generic f ∈ C(K) for the generic y ∈ f(K) we have
dimH f−1(y) = dimtH K − 1. Now we prove the opposite direction.

Theorem 3.3. Let K be a compact metric space with dimtK > 0. The follow-
ing statements are equivalent.

(i) For the generic f ∈ C(K) for the generic y ∈ f(K) we have
dimH f−1(y) = dimtH K − 1.

(ii) K is homogeneous for the topological Hausdor� dimension.

Proof. (ii) ⇒ (i): See [1, Thm. 6.22.].
(i) ⇒ (ii): Assume to the contrary that K \ suppK ̸= ∅. Then there

exist f0 ∈ C(K) and ε0 > 0 such that for all f ∈ B(f0, ε0) we have f(K) \
f (suppK) ̸= ∅. Let us choose for all f ∈ B(f0, ε0) an interval If such that
If ∩ f (suppK) = ∅ and If ∩ f(K \ suppK) ̸= ∅. Let us de�ne for all n ∈ N+

Kn = {x ∈ K : dist(x, suppK) ≥ 1/n}.

Then the Kn's are compact and ∪n∈N+Kn = K \ suppK. The de�nition of
suppK and the compactness of Kn imply that Kn can be covered with �nitely
many closed balls of topological Hausdor� dimension less than dimtH K. Then
the stability of the topological Hausdor� dimension for closed sets implies

dimtH Kn < dimtH K (n ∈ N+). (3.1)

For all n ∈ N+ let

Fn =
{
f ∈ C(Kn) : dimH f−1(y) ≤ dimtH Kn − 1 for all y ∈ R

}
.

De�ne Rn : K → Kn, Rn(f) = f |Kn and let F = ∩n∈N+R−1
n (Fn). Theorem

1.3 yields that the Fn's are co-meager in C(Kn), and it follows from Corollary

11



2.7 that the R−1
n (Fn)'s are co-meager in C(K). As F is the intersection of

countable many co-meager sets, it is also co-meager in C(K). If f ∈ B(f0, ε)
and y ∈ If ∩ f(K) then the de�nition of If and the compactness of f−1(y)
imply that there is an nf,y ∈ N+ such that f−1(y) ⊆ Knf,y

. If f ∈ F then for
all y ∈ If ∩ f(K) the de�nition of nf,y, the de�nition of F and (3.1) imply

dimH f−1(y) = dimH

(
f−1(y) ∩Knf,y

)
≤ dimtH Knf,y

− 1

< dimtH K − 1.

This contradicts (i), and the proof is complete.

B. Kirchheim showed in [8] that for the generic f ∈ C
(
[0, 1]d

)
for every

y ∈ int f
(
[0, 1]d

)
we have dimH f−1(y) = d − 1. We generalize this result for

weakly self-similar compact metric spaces.

De�nition 3.4. Let K be a compact metric space. We say that K is weakly
self-similar if for all x ∈ K and r > 0 there exist a compact set Kx,r ⊆ B(x, r)
and a bi-Lipschitz map ϕx,r : Kx,r → K.

Remark 3.5. If K is self-similar then it is also weakly self-similar. If K is
weakly self-similar then it is also homogeneous for the topological Hausdor�
dimension.

Theorem 3.6. Let K be a weakly self-similar compact metric space. Then for
the generic f ∈ C(K) for any y ∈ int f(K) we have

dimH f−1(y) = dimtH K − 1.

Proof. If dimtK = 0 then the generic f ∈ C(K) is one-to-one, and f(K) is
nowhere dense. Thus int f(K) = ∅, and the statement is obvious.

Next we assume dimtK > 0. Theorem 1.3 implies that for the generic
f ∈ C(K) for all y ∈ R we have dimH f−1(y) ≤ dimtH K−1, thus we only need
to verify the opposite inequality.

Fact 2.1 implies dimtH K > 0. It follows from the weak self-similarity of K
that for all x ∈ K and r > 0 we have dimtH B(x, r) = dimtH K > 0. Then
applying Fact 2.1 again we obtain that dimtB(x, r) > 0. If C denotes the set
of connected components of K then Lemma 2.11 yields that for the generic
f ∈ C(K) we have ∪C∈C int f(C) = int f(K).

Thus it is enough to prove that for the generic f ∈ C(K) for every y ∈
∪C∈C int f(C) we have dimH f−1(y) ≥ dimtH K − 1.

Let us choose a sequence 0 < dn ↗ dimtH K and let us �x n ∈ N+. Theorem
1.3 implies that for the generic f ∈ C(K) there exists an interval I(f, n) =
If,dimtH K−dn such that for all y ∈ I(f, n) we have dimH f−1(y) ≥ dn − 1. By
Baire's Category Theorem there are m2 < m1 < M1 < M2 such that

Hn = {f ∈ C(K) : f(K) ⊆ [m2,M2], ∀y ∈ [m1,M1], dimH f−1(y) ≥ dn − 1}
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is of second category. Note that dn > 0 implies that for every f ∈ Hn we have
[m1,M1] ⊆ f(K). Let us also de�ne the following set.

Gn =

{
f ∈ C(K) : ∀y ∈

∪
C∈C

(f(C) \B(∂f(C), 1/n)) , dimH f−1(y) ≥ dn − 1

}
.

It is su�cient to verify that Gn is co-meager, since by taking the intersection
of the sets Gn for all n ∈ N+ we obtain the desired co-meager set in C(K). In
order to prove this we show that Gn contains `certain copies' of Hn. First we
need the following lemma.

Lemma 3.7. Hn and Gn have the Baire property.

Proof of Lemma 3.7. Lemma 2.10 implies that Γn = {(f, y) ∈ C(K) × R :
dimH f−1(y) < dn − 1} is Borel. Then Hn = {f ∈ C(K) : f(K) ⊆ [m2,M2]} ∩
{f ∈ C(K) : ∀y ∈ [m1,M1], dimH f−1(y) ≥ dn − 1}. The �rst term of the
intersection is clearly closed. It is su�cient to prove that the second one has

the Baire property. It equals
(
prC(K)

(
(C(K)× [m1,M1]) ∩ Γn

))c
, which is

the complement of the projection of a Borel set. Hence it is co-analytic, and
therefore has the Baire property.

The set

∆n =

{
(f, y) ∈ C(K)× R : y ∈

∪
C∈C

(
f(C) \B(∂f(C), 1/n)

)}

is clearly open. Then Gn =
(
prC(K) (Γn ∩∆n)

)c
, which is the complement of

the projection of a Borel set. Thus it is co-analytic, and therefore has the Baire
property.

Now we return to the proof of Theorem 3.6. Consider Gn (note that we
already �xed n), our aim is to show that Gn is co-meager. Since Gn has the
Baire property, it is enough to prove that Gn is of second category in every
non-empty open subset of C(K). Let f0 ∈ C(K) and 0 < ε < 1/n be �xed. We
want to show that Gn ∩B(f0, ε) is of second category.

The continuity of f0 and the compactness of K imply that there are �nitely
many distinct x1, ..., xk ∈ K and positive r1, ..., rk such that

K =
k∪

i=1

B(xi, ri) (3.2)

and for each i ∈ {1, . . . , k} the oscillation of f0 on B(xi, ri) is less than

ω =
ε(M1 −m1)

2(M2 −m2)
<
ε

2
. (3.3)

Choose positive r′1, ..., r
′
k such that the balls B(xi, r

′
i) ⊆ B(xi, ri) are disjoint.

Using the weak self-similarity property we can choose for every i ∈ {1, . . . , k} a

13



set Ki ⊆ B(xi, r
′
i) and a bi-Lipschitz map ϕi : Ki → K. Let us �x i ∈ {1, . . . , k}.

We de�ne the a�ne function ψi : R → R such that

ψi ([m1,M1]) = [f0(xi)− ω, f0(xi) + ω]. (3.4)

Suppose f ∈ Hn and consider f̂i ∈ C(Ki) de�ned by

f̂i = ψi ◦ f ◦ ϕi.

The form of ψi, (3.4) and (3.3) imply

diam f̂i(Ki) = diamψi(f(K)) ≤ diamψi ([m2,M2])

=
M2 −m2

M1 −m1
diamψi ([m1,M1])

=
M2 −m2

M1 −m1
2ω = ε.

Then f0(Ki) ⊆ f̂i(Ki) and the above inequality yield for all x ∈ Ki∣∣∣f0(x)− f̂i(x)
∣∣∣ ≤ ε. (3.5)

Set
F̂i = {ψi ◦ f ◦ ϕi : f ∈ Hn}.

It follows from (3.5) that F̂i ⊆ B (f0|Ki , ε). The maps ϕi : Ki → K and ψi : R →
R are homeomorphisms, hence the map Gi : C(K) → C(Ki), Gi(f) = ψi ◦f ◦ϕi
is also a homeomorphism. Since Hn is of second category in C(K) we obtain

that F̂i = Gi(Hn) is of second category in C(Ki). Set

Fi =
{
f ∈ B(f0, ε) : f |Ki ∈ F̂i

}
.

The map R̂i : B(f0, ε) → B (f0|Ki , ε), R̂i(f) = f |Ki is clearly continuous, and
by Tietze's Extension Theorem it is also surjective and open. Thus Lemma 2.6

(ii) implies that Fi = R̂−1
i

(
F̂i

)
is of second category in B(f0, ε). Set

F =
k∩

i=1

Fi.

Clearly F ⊆ B(f0, ε).

Lemma 3.8. F is of second category in B(f0, ε).

Proof of Lemma 3.8. Let

R : B(f0, ε) → B
(
f0|∪k

i=1 Ki
, ε
)
, R(f) = f |∪k

i=1 Ki
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and for all i ∈ {1, . . . , k}

Ri : B
(
f0|∪k

i=1 Ki
, ε
)
→ B (f0|Ki , ε) , Ri(f) = f |Ki .

Clearly the map R is continuous, open and surjective. Since F =

R−1
(
∩k
i=1R

−1
i

(
F̂i

))
, it follows from Lemma 2.6 (ii) that it is enough to prove

that ∩k
i=1R

−1
i

(
F̂i

)
is of second category in B

(
f0|∪k

i=1Ki
, ε
)
. Lemma 3.7 implies

that Hn and hence F̂i has the Baire property for every i ∈ {1, . . . , k}. Thus

there is a non-empty open set Ui ⊆ C(Ki) such that F̂i is co-meager in Ui. The

sets Ki, i ∈ {1, . . . , k} are disjoint. Hence ∩k
i=1R

−1
i (Ui) ⊆ B

(
f0|∪k

i=1Ki
, ε
)
is a

non-empty open set, and ∩k
i=1R

−1
i

(
F̂i

)
is co-meager in ∩k

i=1R
−1
i (Ui). There-

fore, it is of second category in B
(
f0|∪k

i=1Ki
, ε
)
.

Now we return to the proof of Theorem 3.6. We prove that F ⊆ Gn and then
Lemma 3.8 will imply that Gn is of second category in B(f0, ε). Assume that g ∈
F . Let y0 ∈

∪
C∈C (g(C) \B(∂g(C), 1/n)) be arbitrary. Then there is a C0 ∈ C

such that B(y0, 1/n) ⊆ int g(C0). The connectedness of C0 and g ∈ B(f0, ε)
yield y0 ∈ f0(C0) ⊆ f0(K). Hence the de�nition of ω and (3.2) imply that there
is an i ∈ {1, . . . , k} such that y0 ∈ [f0(xi)− ω, f0(xi) + ω]. The de�nition of F
yields that there exists an f ∈ Hn such that g|Ki = ψi ◦ f ◦ ϕi = f̂i. Then (3.4)
implies ψ−1

i (y0) ∈ [m1,M1], and f ∈ Hn implies dimH f−1
(
ψ−1
i (y0)

)
≥ dn − 1.

By the bi-Lipschitz property of ϕi we infer

dimH g−1(y0) ≥ dimH f̂−1
i (y0) = dimH ϕ−1

i

(
f−1

(
ψ−1
i (y0)

))
= dimH f−1

(
ψ−1
i (y0)

)
≥ dn − 1.

Therefore g ∈ Gn, and hence F ⊆ Gn. This completes the proof.

It is natural to ask what we can say about the level sets of every f ∈ C(K).
Clearly we cannot hope that for every y ∈ int f(K) the level set f−1(y) is of
small Hausdor� dimension, since f can be constant on a large set. The opposite
direction is less trivial, it is easy to prove that for every f ∈ C

(
[0, 1]2

)
for every

y ∈ int f
(
[0, 1]2

)
we have dimH f−1(y) ≥ 1 = dimtH [0, 1]2 − 1. This is not true

in general even for connected self-similar metric spaces. We have the following
counterexample.

Example 3.9. Set K = [−1, 0]2 ∪ [0, 1]2. Clearly K is a connected compact
metric space, and Figure 1 shows that K is self-similar with 4 contractions. Let
f : K → R, f(x, y) = x + y. It is straightforward that f ∈ C(K), 0 ∈ int f(K)
and f−1(0) = (0, 0). Clearly dimtH K = 2, but dimH f−1(0) = 0 < 1 =
dimtH K − 1.

Does at least some weaker statement hold?

Question 3.10. Let K be a connected self-similar compact metric space. Is it
true that for every f ∈ C(K) there exists a yf ∈ R such that dimH f−1(yf ) ≥
dimtH K − 1?
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Figure 1: Illustration to Example 3.9

4 Level sets of maximal dimension

Let K be a compact metric space. If dimtK = 0 then the generic f ∈ C(K) is
one-to-one, and every non-empty level set is a single point.

Assume dimt(K) > 0. Corollary 1.4 states that for the generic f ∈ C(K) we
have supy∈R dimH f−1(y) = dimtH K− 1. First we prove that in this statement
the supremum is attained.

Theorem 4.1. Let K be a compact metric with dimtK > 0. Then for the
generic f ∈ C(K)

max
y∈R

dimH f−1(y) = dimtH K − 1.

Proof. By Theorem 1.3 it is su�cient to prove that for the generic f ∈ C(K)
there exists a level set of Hausdor� dimension at least dimtH K − 1. Let us
�x x0 ∈ suppK. We will show that for the generic f ∈ C(K) we have
dimH f−1(f(x0)) ≥ dimtH K − 1. The following lemma is the heart of the
proof.

Lemma 4.2. Let K1 ⊆ K be compact metric spaces with x0 ∈ K \ K1. Let
d ∈ R be such that dimtH B(x, r) > d for all x ∈ K1 and r > 0. Then for the
generic f ∈ C(K) either dimH f−1(f(x0)) ≥ d− 1 or f(x0) /∈ f(K1).

Proof of Lemma 4.2. If d ≤ 0 then the statement is vacuous, so we may assume
d > 0. We must prove that the set

F =
{
f ∈ C(K) : dimH f−1(f(x0)) ≥ d− 1 or f(x0) /∈ f(K1)

}
is co-meager in C(K). Let K2 = B(K1, ε0) with such a small ε0 > 0 that
x0 /∈ K2. Consider

Γ =
{
(f, y) ∈ C(K2)× R : dimH f−1(y) ≥ d− 1 or y /∈ f(K1)

}
.

First assume that Γ is co-meager in C(K2)×R. Then we prove that F ⊆ C(K)
is also co-meager. Let R : C(K) → C(K2)×R, R(f) = (f |K2 , f(x0)). Clearly R
is continuous, and Tietze's Extension Theorem implies that R is surjective and
open. Thus Lemma 2.6 implies that F = R−1(Γ) is co-meager.
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Finally, we prove that Γ is co-meager in C(K2) × R. Lemma 2.10 easily
implies that Γ is Borel, thus has the Baire property. Hence it is enough to prove
by the Kuratowski-Ulam Theorem [7, 8.41 Thm.] that for the generic f ∈ C(K2)
for the generic y ∈ R we have (f, y) ∈ Γ. Let {zn}n∈N+ be a dense set in K1

and for i, j ∈ N+ let us de�ne Bi,j = B(zi, 1/j) if 1/j ≤ ε0, and Bi,j = K2

otherwise. Then for all i, j ∈ N+ we have Bi,j ⊆ K2 and the conditions of the
lemma yield dimtH Bi,j > d. Let Ri,j : C(K2) → C(Bi,j), Ri,j(f) = f |Bi,j and
let

Gi,j =
{
f ∈ C(Bi,j) : ∃I interval s.t. ∀y ∈ I dimH f−1(y) ≥ d− 1

}
.

Set
G =

∩
i,j∈N+

R−1
i,j (Gi,j).

It follows from Theorem 1.3 that Gi,j is co-meager in C(Bi,j) for every i, j ∈ N+.
Corollary 2.7 implies that R−1

i,j (Gi,j) is co-meager in C(K2), and as a countable
intersection of co-meager sets G is also co-meager in C(K2). We �x f ∈ G. It
is su�cient to verify that Γf = {y ∈ R : (f, y) ∈ Γ} is co-meager. Let U ⊆ R
be an arbitrary open interval. It is enough to prove that Γf ∩ U contains an
interval. If there exists y0 ∈ U such that y0 /∈ f(K1) then there is a δ > 0 such
that B(y0, δ)∩f(K1) = ∅, so B(y0, δ)∩U is an interval in Γf ∩U . Thus we may
assume U ⊆ f(K1). Then there exist i0, j0 ∈ N+ such that B0 = Bi0,j0 satis�es
f(B0) ⊆ U . The de�nition of G implies that there is an interval If |B0

⊆ U such
that for all y ∈ If |B0

we have

dimH f−1(y) ≥ dimH(f |B0)
−1(y) ≥ d− 1.

Hence If |B0
⊆ Γf ∩ U , and this completes the proof.

Now we return to the proof of Theorem 4.1. It follows from Fact 2.1
that dimtH K > 0. Since dimtH B(x0, 1/n) = dimtH K for all n ∈ N+, the
countable stability of the topological Hausdor� dimension for closed sets im-
plies the following. For all n ∈ N+ there exist rn > 0 such that the sets
Cn = B(x0, 1/n) \U(x0, rn) satisfy dimtH Cn > 0 and dimtH Cn → dimtH K as
n→ ∞. For all n ∈ N+ we put

Kn = {x ∈ Cn : ∀r > 0, dimtH(Cn ∩B(x, r)) ≥ dimtH Cn − 1/n} .

Clearly, the Kn's are compact. First we prove that for all n ∈ N+ we have
dimtH Kn = dimtH Cn > 0. The de�nition of Kn and the Lindelöf property of
Cn \Kn imply that there are closed balls Bi, i ∈ N in Cn such that dimtH Bi ≤
dimtH Cn− 1/n and ∪i∈NBi = Cn \Kn. Applying the countable stability of the
topological Hausdor� dimension for the closed sets {Bi : i ∈ N} ∪ {Kn} yields
dimtH Kn = dimtH Cn.

Then Fact 2.1 implies dimtKn > 0, and the Kn's satisfy the conditions of
Lemma 2.12. Applying Lemma 2.12 for the sequence ⟨Kn⟩n∈N+ and the compact
set K, and applying Lemma 4.2 for all Kn ⊆ K with dn = dimtH Cn − 2/n
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simultaneously imply that for the generic f ∈ C(K) we have x0 ∈ f(Kn) for
in�nitely many n ∈ N+, and for every n ∈ N+ either dimtH f−1(f(x0)) ≥ dn−1
or x0 /∈ f(Kn). Hence there is a subsequence ⟨ni⟩i∈N (that depends on f) such
that dimtH f−1(f(x0)) ≥ dni − 1 for all i ∈ N, that is

dimtH f−1(f(x0)) ≥ lim
i→∞

(dimtH Cni − 2/ni − 1) = dimtH K − 1.

This concludes the proof.

Remark 4.3. Note that we proved the following stronger statement. Let K be
a compact metric space with dimtK > 0. Set for all x ∈ K

Fx =
{
f ∈ C(K) : dimH f−1(f(x)) = dimtH K − 1

}
.

Then Fx is co-meager in C(K) for every x ∈ suppK.

The following example shows that the sets Fx, x ∈ suppK depend on x
indeed in general.

Example 4.4. Let K be a self-similar compact metric space with dimtK > 1.
It is well-known and easy to prove that for the generic f ∈ C(K) the maximum
is attained at a unique point, say xf . By Theorem 2.2 for the generic f ∈ C(K)
we have dimH f−1(f(xf )) = 0 < dimtK − 1 ≤ dimtH K − 1, thus f /∈ Fxf

.
Clearly, suppK = K, therefore ∩x∈suppKFx = ∩x∈KFx is of �rst category in
C(K).

The following theorem shows that we cannot strengthen Theorem 4.1 in
general. Since the counterexample is an attractor of an iterated function system,
it is `homogeneous' to some extent.

Theorem 4.5. There exists a compact set K ⊆ R2 such that K is an attractor
of an iterated function system and the generic f ∈ C(K) has a unique level set
of Hausdor� dimension dimtH K − 1.

Proof. Let S and C be the Smith-Volterra-Cantor set and the middle-thirds
Cantor set, respectively. Let

ψ1 : C → C ∩ [0, 1/3] , ψ1(x) = x/3,

ψ2 : C → C ∩ [2/3, 1] , ψ2(x) = x/3 + 2/3 (4.1)

be the natural similarities of C.
Let us de�ne αn < 1 (n ∈ N+) such that αn ↘ 1/3 as n → ∞. Let Cn =

Cαn , n ∈ N+ be the middle-αn Cantor sets. Then clearly dimH Cn ↗ dimH C
as n→ ∞. It is easy to verify that the natural homeomorphisms ϕn : C → Cn,
n ∈ N+ are Lipschitz maps. For r > 0 we denote by Cr

n the set that is similar
to Cn, furthermore Cr

n ⊆ [0, r] and diamCr
n = r. We de�ne positive numbers

rn, n ∈ N+ such that the following conditions hold for every n ∈ N+.

(i) There are Lipschitz maps with Lipschitz constant at most 1/2 which map
the nth level elementary pieces of S onto [0, rn].
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(ii) There are Lipschitz maps with Lipschitz constant at most 1/2 which map
the nth level elementary pieces of C onto Crn

n .

(iii)
∑∞

i=n ri ≤ 1/22n+2.

The nth level elementary pieces of S are isometric. They are of positive Lebesgue
measure, since S is of positive measure. It is well-known that every measurable
set with positive measure can be mapped onto [0, 1] by a Lipschitz map [1,
Lemma 3.10.], hence (i) can be satis�ed if rn is small enough. Moreover, (ii)
follows from the Lipschitz property of ϕn for small enough rn, and (iii) is
straightforward.

K0
K1

K2
x∞

6

-

Figure 2: Illustration to the construction of K

Let K0 = S × C, x∞ = (2 +
∑∞

i=1 ri, 0) and for all n ∈ N+ let

In =
[
2 +

∑n−1
i=1 ri, 2 +

∑n
i=1 ri

]
,

Kn = In × Crn
n ,

K =

∞∪
n=0

Kn ∪ {x∞},

K̃n =
∞∪
i=n

Ki ∪ {x∞},

K̂n =
n∪

i=0

Ki.

Clearly, all the sets de�ned above are compact.
First we prove that K is an attractor of an IFS. Recall that the φi's and

ψj 's are the natural homeomorphisms of S and C, respectively. For the more
precise de�nition see (2.5) and (4.1) again. Let us de�ne for i, j ∈ {1, 2} the

19



maps Ψi,j : K → K0 such that

Ψi,j(x) =

{
(0, 0) if x ∈ K \K0,

(φi(x), ψj(x)) if x ∈ K0.

Clearly the Ψi,j 's are Lipschitz maps with Lip(Ψi,j) ≤ 1/2, and
∪i,j∈{1,2}Ψi,j(K) = K0. For all n ∈ N+ and (i, j) ∈ {(1, 2), (2, 1), (2, 2)} let
us de�ne the sets Ki,j,n to be the top left, the top right and the bottom right
nth level `elementary pieces' of the bottom left (n − 1)st `elementary piece' of
K0, that is,

Ki,j,n =
(
φi ◦ φn−1

1

)
(S)× (ψj ◦ ψn−1

1 )(C).

These are clearly disjoint subsets of K0. It follows from (i) and (ii) that for all
n ∈ N+ and (i, j) ∈ {(1, 2), (2, 1), (2, 2)} there exist surjective Lipschitz maps

φi,n :
(
φi ◦ φn−1

1

)
(S) → In and ψj,n :

(
ψj ◦ ψn−1

1

)
(C) → Crn

n

with Lipschitz constant at most 1/2. Let Ψ: K → K \K0 be the following map.

Ψ(x) =

{
x∞ if x ∈ K \K0 or x = (0, 0),

(φi,n(x), ψj,n(x)) if x ∈ Ki,j,n.

The Ki,j,n's, K \K0 and {(0, 0)} are disjoint sets with union K, so Ψ is well-
de�ned. Clearly Ψ maps Ki,j,n onto Kn, and hence Ψ(K) = K \ K0. Thus
K = ∪i,j∈{1,2}Ψi,j(K) ∪ Ψ(K). Therefore, it is enough to prove that Ψ is a
Lipschitz map with Lip(Ψ) ≤ 1/2, that is for all x, z ∈ K

|Ψ(x)−Ψ(z)| ≤ |x− z|
2

. (4.2)

If x, z ∈ K \K0 then Ψ(x) = Ψ(z) = x∞, thus (4.2) follows.
If x ∈ K0 and z ∈ K \K0, then clearly |x − z| ≥ 1. On the other hand, (iii)
implies

|Ψ(x)−Ψ(z)| ≤ diam(K \K0) ≤

√√√√( ∞∑
i=1

ri

)2

+ (r1)2

< 2
∞∑
i=1

ri ≤ 1/8,

therefore (4.2) follows.
If x = (x1, x2) ∈ K0 and z = (z1, z2) ∈ K0 then we may assume that

max{|z1|, |z2|} ≤ max{|x1|, |x2|}. (4.3)

If x = (0, 0) then z = (0, 0) and we are done. We may assume x ∈ Ki,j,n, where
n ∈ N+ and (i, j) ∈ {(1, 2), (2, 1), (2, 2)}. If z ∈ Ki,j,n then (4.2) follows, since
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Ψ is Lipschitz on Ki,j,n with Lipschitz constant at most 1/2. Hence we may

assume z ∈ K \Ki,j,n. Then (4.3) implies Ψ(x),Ψ(z) ∈ K̃n. By the de�nition

of K̃n and (iii)

|Ψ(x)−Ψ(z)| ≤ diam K̃n < 2
∞∑
i=n

ri ≤ 1/22n+1.

The minimum distance between distinct nth level elementary pieces of S and C
is 1/22n and 1/3n, respectively. Since K0 = S × C,

|x− z| ≥ dist (Ki,j,n,K \Ki,j,n)

≥ dist (Ki,j,n,K0 \Ki,j,n) ≥ 1/22n.

These imply (4.2), and hence K is an attractor of an IFS.
Finally, we prove that the generic f ∈ C(K) has a unique level set of Haus-

dor� dimension dimtH K − 1.
By Theorem 4.1 the generic f ∈ C(K) has at least one level set of Hausdor�

dimension dimtH K − 1. Hence it is enough to show that for the generic f ∈
C(K) for all y ̸= f(x∞) we have dimH f−1(y) < dimtH K − 1. From Fact
2.1 follows dimtH K0 = 0, clearly dimtH{x∞} = 0 and Theorem 2.4 implies
dimtH Kn − 1 = dimH Cn. This, together with the countable stability of the
topological Hausdor� dimension for closed sets and the de�nition of Cn yield

dimtH K − 1 = sup
n∈N+

dimtH Kn − 1 = sup
n∈N+

dimH Cn = dimH C.

Assume to the contrary that there exists F ⊆ C(K) such that F is of second
category and for every f ∈ F there exists yf ̸= f(x∞) such that dimH f−1(yf ) =
dimH C. Then f−1(yf ) ⊆ K \ {x∞}, and by the compactness of f−1(yf ) there

exists an nf ∈ N+ such that f−1(yf ) ⊆ K̂nf
. Set

Fn =
{
f ∈ F : f−1(yf ) ⊆ K̂n

}
.

Since F = ∪∞
n=1Fn, Baire's Category Theorem implies that there exists n0 ∈ N+

such that Fn0 is of second category in C(K). We obtain from Corollary 2.7 (i)
that

F̂n0 =
{
f |K̂n0

: f ∈ Fn0

}
is of second category in C

(
K̂n0

)
. The de�nition of F̂n0 implies that for every

f ∈ F̂n0 we have dimH f−1(yf ) = dimH C. By Theorem 1.3 for the generic

f ∈ C
(
K̂n0

)
every level set is of Hausdor� dimension at most

dimtH K̂n0 − 1 = sup
1≤n≤n0

dimtH Kn − 1 = dimH Cn0 < dimH C,

a contradiction. This concludes the theorem.

Question 4.6. Does there exist an attractor of an injective iterated function
system K such that the generic f ∈ C(K) has a unique level set of Hausdor�
dimension dimtH K − 1?
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5 The dimension of the graph of the generic con-

tinuous function

The graph of the generic f ∈ C([0, 1]) is of Hausdor� dimension one, this is a
result of R. D. Mauldin and S. C. Williams [11, Thm. 2.]. We generalize the cited
theorem for arbitrary compact metric spaces. Let K be a compact metric space,
then for the generic f ∈ C(K) the graph of f is of Hausdor� dimension dimH K.
We prove an analogous theorem for the topological Hausdor� dimension, for the
generic f ∈ C(K) the graph of f is of topological Hausdor� dimension dimtH K.

De�nition 5.1. If f ∈ C(K) let us de�ne

f̃ : K → graph(f), f̃(x) = (x, f(x)).

Clearly f̃ is continuous and one-to-one, so it is a homeomorphism between
K and graph(f).

Theorem 5.2. If K is a compact metric space then for the generic f ∈ C(K)

dimH graph(f) = dimH K.

Theorem 5.2 follows from the following more general theorem applied with
E = K. We need this slight generalization in order to prove Theorem 5.4.

Theorem 5.3. Let K be a compact metric space and E ⊆ K. Then for the
generic f ∈ C(K)

dimH graph(f |E) = dimH E.

Proof of Theorem 5.3. First note that graph(f |E) = f̃(E). For every f ∈ C(K)

the map f̃−1 is a projection from f̃(E) onto E. Since the Hausdor� dimension

cannot increase under a Lipschitz map, dimH f̃(E) ≥ dimH E. For the opposite
direction it is enough to prove that

F =
{
f ∈ C(K) : dimH f̃(E) ≤ dimH E

}
is a dense Gδ set in C(K). We may assume dimH E < ∞. First we show that
F is a Gδ set. Let us de�ne for all n ∈ N+

Fn =
{
f ∈ C(K) : HdimH E+1/n

1/n

(
f̃(E)

)
< 1/n

}
.

It is straightforward that the Fn's are open and F = ∩n∈N+Fn. Thus F is a Gδ

set.
Finally, we show that F is dense in C(K). If f ∈ C(K) is Lipschitz, then

clearly f̃ is Lipschitz with Lip(f̃) ≤ Lip(f)+1, and hence dimH f̃(E) ≤ dimH E.
Therefore, it is enough to prove that G = {f ∈ C(K) : f is Lipschitz} is dense
in C(K). This fact is well-known but one can also see it directly, since it is
easy to show that cf ∈ G, f + g ∈ G and fg ∈ G for all f, g ∈ G and c ∈ R.
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Therefore, G forms a subalgebra in C(K). Finally, we may assume #K ≥ 2,
and the Lipschitz functions {φx0}x0∈K , φx0 : K → R, φx0(x) = dK(x0, x) show
that G separates points of K and G vanishes at no point of K. Hence the
Stone-Weierstrass Theorem [2, 12.9] implies that G is dense. This completes the
proof.

Theorem 5.4. If K is a compact metric space then for the generic f ∈ C(K)

dimtH graph(f) = dimtH K.

Proof. For every f ∈ C(K) the map f̃−1 is an injective projection from graph(f)
onto K, hence it is a Lipschitz homeomorphism. Thus Theorem 2.3 implies that
dimtH graph(f) ≥ dimtH K. For the opposite direction choose a basis U of K
such that dimH ∂U ≤ dimtH K−1 for all U ∈ U , we can do this by Theorem 2.5.
We may assume that U is countable. Suppose U ∈ U is arbitrary. By applying
Theorem 5.3 for E = ∂U we infer that there exists a co-meager set FU ⊆ C(K)

such that for all f ∈ FU we have dimH f̃(∂U) = dimH(∂U) ≤ dimtH K−1. The
basis U is countable, and hence F = ∩U∈UFU is co-meager in C(K). Assume

f ∈ F , it is enough to prove that dimtH graph(f) ≤ dimtH K. Since f̃ is

homeomorphism we obtain that V =
{
f̃(U) : U ∈ U

}
is a basis of graph(f) and

∂f̃(U) = f̃(∂U) for all U ∈ U . That is,

dimH ∂V = dimH ∂f̃(U) = dimH f̃(∂U) = dimH ∂U ≤ dimtH K − 1

for all V = f̃(U) ∈ V. Thus dimtH graph(f) ≤ dimtH K, and this completes the
proof.
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