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Abstract

A hull of A C Ris a set H containing A such that A\(HNI) = A(ANI)
for every Lebesgue measurable set I. We investigate all four versions of
the following problem. Does there exist a monotone (wrt. inclusion) map
that assigns a Borel/Gs hull to every negligible/measurable subset of R?

Three versions turn out to be independent of ZFC (the usual Zermelo-
Fraenkel axioms with the Axiom of Choice), while in the fourth case we
only prove that the nonexistence of a monotone G5 hull operation for all
measurable sets is consistent. It remains open whether existence here is
also consistent. We also answer a question of Z. Gyenes and D. Palvolgyi
which asks if monotone hulls can be defined for every chain (wrt. inclusion)
of measurable sets. We also comment on the problem of hulls of all subsets
of R.

1 Introduction

Notation 1.1 Let us denote by N, L, B and Gs the class of Lebesgue negligible,
Lebesgue measurable, Borel and G5 subsets of R, respectively. Let \ stand for
Lebesgue (outer) measure.

Definition 1.2 A set H C Risa hull of A CR,if AC H and \(HNI) =
AANTI) for every Lebesgue measurable set I.

Clearly, every set has a Borel, even a G4 hull.

Definition 1.3 Let D and H be two subclasses of P(R) (usually D is N or L,
and H is B or Gs). If there exists a map ¢ : D — H such that
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1. ¢(D) is a hull of D for every D € D
2. D C D' implies p(D) C p(D’)
then we say that a monotone H hull operation on D exists.
The four questions we address in this paper are the following.

Question 1.4 Let D be either N or L, and let H be either B or Gs5. Does there
exist a monotone H hull operation on D?

Remark 1.5 1. The problem was originally motivated by the following
question of Z. Gyenes and D. Palvolgyi [3]. Suppose that C C L is a
chain of sets, i.e. for every C,C’ € C either C C C’ or C' C C holds. Does
there exist a monotone B/Gs hull operation on C?

2. Another motivation for our set of problems is that it seems to be very
closely related to the theory of so called liftings. A map [ : L — L is
called a lifting if it preserves (), finite unions and complement, moreover,
it is constant on the equivalence classes defined in Lemma, 3.5 and also it
maps each equivalence class to one of its members. Note that liftings are
clearly monotone. For a survey of this theory see the chapter by Strauss,
Macheras and Musial in [5], or the chapter by Fremlin in [4]. Note that
the existence of Borel liftings is known to be independent of ZFC, but the
existence of a lifting with range in a fixed Borel class is not known to be
consistent.

We also remark that liftings are usually considered as I* : L/N — L or
I*: P(R)/N — L maps.

3. In light of the theory of liftings it is natural to ask if a monotone Borel/G;
hull operation on P(R) (i.e. all subsets of R) can be defined. We will see
in Section 3 that this is actually equivalent to the existence of a monotone
Borel/Gs hull operation on L.

4. We remark here that throughout this paper R could be replaced by R", or
more generally, by an uncountable Polish space endowed with a nonzero
continuous o-finite Borel measure. (The arguments using the density
topology can be got around using that for such measures there exists
a measure preserving Borel isomorphism with a subinterval of R [6].)

The paper is organised as follows. First, in the next section we settle the
independence of the existence of a monotone Borel/G;s hull on N. The consis-
tency of the nonexistence immediately yields the consistency of the nonexistence
of a monotone Borel/G;s hull on £. Then, in Section 3, we prove that under CH
there is a monotone Borel hull on £, and prove partial results concerning G
hulls. We conclude the paper by collecting the open questions in Section 4.



2 Monotone hulls for nullsets

Recall that non(N) = min{|H|: H C R, H ¢ N}, where |H| denotes cardinal-
ity. In the sequel the cardinal « is identified with its initial ordinal, i.e. with the
smallest ordinal of cardinality x, and also every ordinal is identified with the
set of smaller ordinals. For the standard set theory notation and techniques we
use here see e.g. [8] and [1].

Theorem 2.1 In a model obtained by adding ws Cohen reals to a model satisfy-
ing the Continuum Hypothesis (CH) there is no monotone Borel hull operation

on N.

Proof. We need two well-known facts. Firstly, non(N') = wo in this model [1].
Secondly, in this model there is no strictly increasing (wrt. inclusion) sequence
of Borel sets of length wo (this is proved in [7], see also [2]).

Assume that ¢ : N — B is a monotone hull operation. Choose H = {z,, :
a < non(N)} ¢ N, and consider p({zs : 3 < a}) for @ < non(N). This is an
increasing ws long sequence of Borel sets, which cannot stabilise, since then H
would be contained in a nullset. But then we can select a strictly increasing
subsequence of length ws, a contradiction. (I

The following is immediate.

Corollary 2.2 Under the same assumption there exists no monotone G5 hull
operation on N.

Remark 2.3 We will see in Remark 3.14 that the length ws is optimal in the
sense that all shorter chains have monotone (G5 hulls.

Recall that add(N) = min{|F| : F C N, JF ¢ N} and cof(N') = min{|F]| :
F CN, VN € N JF € F such that N C F}, and also that add(\N) = cof(N)
is consistent [1] (note that e.g. CH implies this equality).

Theorem 2.4 Assume add(N) = cof(N). Then there exists a monotone Gs
hull operation on N.

Proof. Let {N, : a < cof(N)} be a cofinal family in A, that is, VN € N Ja <
cof(N) such that N C N,. For every a < cof(N) define, using transfinite
recursion, A, = a Gs hull of (Ug<oAps U N,). Clearly, {4, : a < cof(N)}
is a cofinal increasing sequence of Gy sets. Now, for every N € N define
©(N) = A,y , where apy is the minimal index so that H C A,,. It is easy to
see that ¢ : N — G5 is a monotone hull operation. O

The following is again immediate.

Corollary 2.5 Under the same assumption there exists a monotone Borel hull
operation on N .



3 Monotone hulls for all sets

First we note (Statement 3.2 below) that the title of this section is justified, as

there is no difference between working with measurable sets or arbitrary sets.
We need a well-known lemma first. Recall that the density topology consists

of those measurable sets that have Lebesgue density 1 at each of their points

(see e.g. [9]). Closure in this topology is denoted by i
Lemma 3.1 H* is a hull of H for every H C R.

Proof. Assume that A(HN1I) < )\(ﬁd NI) for some I € L. As o’ e L, this

implies that there exists L € £ with A(L) > 0 such that L C i \ H. Set
Lo = {z € L : x is a density point of L}. By the Lebesgue Density Theorem
L\ Ly € NV, which easily implies that Ly # 0 is open in the density topology.
But Lo C H is disjoint from H, a contradiction. O

Statement 3.2 The existence of a monotone Borel/Gs hull operation on P(R)
is equivalent to the existence of a monotone Borel/Gs hull operation on L.

Proof. On the one hand, the restriction to £ of a monotone hull operation on
P(R) is itself a monotone hull operation.

On the other hand, by the previous lemma there exists a monotone hull
operation 9 : P(R) — L. Hence if ¢ is a monotone hull operation on £ then
@ o 1) is a monotone hull operation on P(R). O

Theorem 2.1 immediately implies the following.

Corollary 3.3 In a model obtained by adding ws Cohen reals to a model satis-
fying CH there is no monotone Borel or G5 hull operation on L.

Now we turn to the positive results.

Theorem 3.4 Assume CH. Then there is a monotone Borel hull operation on
L.

Before we prove this theorem we need a few lemmas. In case H = B the first
one is a special case of a well-known result about Borel liftings, but there are
no such results in case of Gs.

Let us denote by AAB the symmetric difference of A and B.

Lemma 3.5 (CH) There exists a monotone map v : L — G5 so that
AMMAY(M)) = 0 for every M € L and so that N\(MAM') = 0 implies
W(M) = (M) for every M, M' € L.

Proof. Let us say that M, M’ € L are equivalent, if A\(MAM') = 0. Denote
by [M] the equivalence class of M and by £/N the set of classes. We say that
[M;] < [Ms)] if there are M, € [M;] and M} € [Ma3] such that M| C M.



It is sufficient to define ¥ : £L/N — G5 so that [M] < [M'] implies ¥([M]) C
U ([M']) for every M, M’ € L, and so that U([M]) € [M] for every M € L.
Enumerate £L/N as {[M,]: a < w}. For every a < w; define

V(M) = () (M) N (a Gs hull of | \I/([MV])UMO‘).
1S M) M < M

It is not hard to check that this is a G set so that [M,] < [M,] < [Mjg]
implies ¥ ([M,]) C ¥([Ma]) C ¥([Mg]), and so that U([M,]) € [M,], hence the
construction works. O

Remark 3.6 1. Actually we will not use the fact that ¢ is constant on the
equivalence classes.

2. We do not know if CH is needed in this lemma.

The following lemma is the only result we can prove for 5 but not for Gs.
Lemma 3.7 (CH) There exists a monotone hull operation ¢ : N' — B so that

1. o(NUN") C o(N)U@(N') for every N,N' € N (subadditivity),

2. H{e(N): NC B,NeN}\BeWN for every B €B.

Proof. Let {A, : @ < w1} and ay be as in Theorem 2.4 (note that add(N) =
cof(N) = wy under CH). Set A, = A, \ Us<aAp. Enumerate B as {B, : a <
w1} and for every a < w define the countable set

Bo ={U]_yBs, :neN, i <a(0<i<n)}.

Note that every B, is closed under finite unions.

Now define
o) = (A;m N B).
a<an BeBa
NNALCB

This is clearly a disjoint union. It is easy to see that ¢ is a monotone Borel hull
operation (note that (N) C Aay)-

For every o < wy define ¢, (N) = A% Np(N) (N € N). In order to check
subadditivity, let N, N’ € A'. We may assume ay < an/, so clearly ayun =
apnr. It suffices to check that each ¢, is subadditive. If & > ap then actually
Ya(NUN') = @o(N’), so we are done. Suppose now o < ay. Let x € A% so
that z ¢ ©(N) U @(N’). Then there exist B D NN A¥ and B’ D N'N A% in B,
so that = ¢ B, B’. But then BU B’ € B, witnesses that x ¢ ¢(N U N’) since
x¢ BUB D (NUN'")NAL.

Finally, to prove 2 it is sufficient to show that N C B,, implies o(N)\ B, C
Ay for every N € N and o < wy. Solet z € pg(NN) for some 3 > . We have to
show = € B,. But this simply follows from the definition of ¢ since B, € Bg.
(|



Lemma 3.8 Let H be either B or Gs. Assume that there exists a monotone
map ¥ : L — H so that \(MAWY(M)) =0 for every M € L and also that there
exists a monotone hull operation ¢ : N — H so that

1. (N UN") C o(N)Up(N') for every N,N' € N,
2. H{e(N): NCH,NeN}\HEeN for every H € H.
Then ¢ can be extended to a monotone hull operation ©* : L — H.

Proof. We may assume that () = () for every N € A (by redefining 1 on
N to be constant 0, if necessary).

Define
e (M) = (M) Up(M\w(D)) Up( | e(N)\ ().
NCtp(M)
0ANeEN

Clearly ¢*(M) € H. As the union of first two terms contains M, we obtain
M C ¢*(M). Moreover, *(M) is a hull of M, since the first term is equivalent
to M and the last two terms are nullsets. It is also easy to see that ¢* extends
.

We still have to check monotonicity of ¢*. First we prove

N €N, M' € L, N C(M') = o(N') C ¢* (M) (1)

Indeed, the case N’ = () is trivial to check, otherwise

e | e U e\ en))vear) c
NCyp(M') NCp(M')
DANeN PD#ANEN
co( U e\ e)) uwr) € gt (M),
NcCyp(M")
0ANeEN
which proves (1).
Let now M C M’ be arbitrary elements of £. We need to show that all three
terms of ¢*(M) are in ¢*(M").
Firstly, ¢(M) C ¢ (M’).
Secondly, define N' = (M \ ¢(M)) N (M’). Using the subadditivity of ¢
and then (1) we obtain

e(MN\ D) € o (M\B(M)) N (M) Ui (M w(M)) \ (M)
Co(N) Up(M'\ (M) C " (M).
Thirdly, let
N=( U e\ean) v,

NCyp(M)
D#ANEN



Using the subadditivity of ¢ and then (1) we obtain

o U en\wn)c

NCy(M)
D#ANeN
co(( U eanvwan)nea)ue(( [ e \en))\e() ¢
NCy(M) NCy(M)
PD#ANEN PD#ANEN
oW ue( e\ e(r)) ¢ (ar).
NCy(M')
0#ANEN
This concludes the proof. O

Now we prove Theorem 3.4.
Proof. Lemma 3.5 and Lemma 3.7 show that in case of H = B the requirements
of Lemma 3.8 can be satisfied, so the proof of Theorem 3.4 is complete. O

Remark 3.9 1. We remark that subadditive monotone maps are actually
additive.

2. The proof actually gives a monotone Fys, hull. However, we do not know
whether a monotone G hull operation on £ exists (Question 4.5). Of
course, in light of the previous theorem, under CH, this is equivalent to
assigning G hulls only to the Borel (or Fis,) sets in a monotone way.

Question 3.10 Is there a monotone G hull operation on B? Or on Fy5,¢ Or
on any other fized Borel class e.g. Fo? (Of course Gs and the simpler ones are
not interesting.)

Our next goal is to prove Theorem 3.11, the partial result we have concerning
monotone Gs hull operations on L. It shows that it is not possible to prove in
ZF(C the nonexistence of G hulls on £ along the lines of Theorem 2.1, that is,
only by considering long chains of sets.

Theorem 3.11 Assume that there exists a monotone Gs hull operation v on
N (which follows e.g. from add(N) = cof(N)). Let C C P(R) be a chain of
sets, that is, for every C,C’ € C either C C C' or C' C C holds. Then there
ezists a monotone Gs hull operation on C.

Proof. By Lemma 3.1 we may assume that C C L.

We may also assume that C' C [0, 1] for every C € C, since it is sufficient to
construct the hulls separately in every [n,n + 1]. Partition C into the intervals
I, ={C e C: XNC)=r}. Let R={r €[0,1] : Z, # 0}, and fix an element
Cy, € I, for every r € R. Well-order R as {r, : a < |R|}, and set R, = {rs :
B < a}.

Now we define ¢(C,_) by transfinite recursion as follows. Fix two countable

[

sets R, C {r € Ry :r <ro}and RY C {r € Ry : r > r,} so that Vr € R,,



r < 1o Ir' € R, such that r <1’ < r,, and similarly, Vr € Ry, 7 > 14 3’ € R
such that r, < r’ < r. (Note that R, and R} may be singletons or even empty.)
Set

0(C,.) = [a Gy hull of (cra U UTGR;@(CT))} N0, ensp(Cr).

It is easy to see that this is a monotone G hull operation on {C, : r € R}.
We may assume that for the hull operation ¢ we have 1)(0) = (. Then we
can define a monotone G hull operation ¢; on Z; for each t € R as follows. Let

0i(C) = p(C) Up(C\ Cy) (C €Ty).

For each t € R fix a countable set R C {r € R:r >t} so that Vr € R,
r >t I’ € RS such that ¢t <7’ <r. Set

P(C) = @1(C) NN, i 0(Cr)

for every C' € 7; and every t € R. This is a proper definition since for C' = C}
this is just an equality. It is easy to check that ¢(C) is a G5 hull of C and that
¢ is monotone. U

Finally, we prove in ZFC that rather long well-ordered chains have monotone
Gs hulls.

Lemma 3.12 Let £ < add(N) and C = {M, : a < &} € P(R) be such that
M, C Mg for every a < 3 < £. Then there exists a monotone G5 hull operation
on C.

Proof. By Lemma 3.1 we may assume that C C L.

By transfinite recursion define A, to be a Gs hull of the set M, UUg<q(A4g\
M,). Clearly every Ag\ M, is a nullset, moreover there are |a| < add(N') many
of them, hence A, is a hull of M, too. O

Recall that <7 is the successor cardinal of k and also that every ¢ < x™ has
a cofinal (i.e. unbounded) subset of order type at most .

Theorem 3.13 Let n < add(M)* and C = {M,, : a < n} C P(R) be such that
M, C Mg for every a < 3 < 1. Then there exists a monotone G5 hull operation
on C.

Proof. By Lemma 3.1 we may assume that C C L.

We prove this lemma by induction on 7. Fix a cofinal subset X C 7 of
order type ¢ < add(N) and also a monotone Gy hull operation px : {M, :
a € X} — G5 by the previous lemma. Every complementary interval [3,~) of
X (i.e. every interval that is maximal disjoint from X) is of order type < 7,
hence by the inductive assumption there exists a monotone Gy hull operation
©3,y) P AMa @ € [B,7)} — Gs. Also fix a measure zero G hull Hig .y of
Us<s,sex (¢x (Ms) \ Mg). Now for every [3,7) and every a € [3,7) define

©(Ma) = (Hip ) Usq)(Ma)) Nex (M),



and also define o(M,,) = px(M,) for every a € X. It is then easy to see that
this is a monotone G hull operation on C. O

Remark 3.14 As add(N) > wi, we obtain that length wsy of the chain in the
proof of Theorem 2.1 was optimal.

4 Concluding remarks and open problems

Now we pose a few somewhat vague problems, some of which may turn out to
be very easy.

Question 4.1 It would be interesting to know what happens

1. if we look at the category analogue of Question 1.4, that is, when N and
L are replaced by the first Baire category (=meager) sets and the sets with
the property of Baire.

2. if we require that our monotone hulls be translation or isometry invariant.

3. if we replace C by ; in Question 1.4, that is, we require that strict con-
tainment is preserved.

As for G-preserving hulls, let us note that the case of L is easy.
Statement 4.2 There is no ;—preseming monotone Borel hull on L.

Proof. Let C C R be the Cantor set and let B C C be a Bernstein subset [9],
that is, a set such that BN F # () and BN (C'\ F) # 0 for every uncountable
closed set FF C C. Then C'\ A is countable for every Borel set A containing B,
as uncountable Borel sets contain uncountable closed sets [6].

Clearly, C'\ B is uncountable, so let {z, : @ < w1} be distinct points of
this set, then the strictly increasing chain C,, = (R\ C)UBU {z3 : § < a}
cannot have a strictly monotone Borel hull ¢, as already ¢(Cp) is of countable
complement in R. O

But we do not know the answer to the case of .

We now repeat the open questions of the paper for the sake of completeness.

Question 4.3 Is there (in ZFC) a monotone map v : L — Gs so that
AMMAY(M)) = 0 for every M € L? If yes, is there one such that \(MAM’) =0
implies (M) = (M') for every M, M’ € L?

Question 4.4 Is there a monotone Gs hull operation on B? Or on F,5,% Or
on any other fixed Borel class e.g. Fo? (Of course Gs and the simpler ones are
not interesting.)

Let us conclude with the most important open question.



Question 4.5 Is it possible to assign Gs hulls to all (measurable) subsets of R
in a monotone way?
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