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Abstract

The main goal of this note is to prove the following theorem. If A, is
a sequence of measurable sets in a o-finite measure space (X, A, u) that
covers u-a.e. x € X infinitely many times, then there exists a sequence of
integers n; of density zero so that A, still covers p-a.e. € X infinitely
many times. The proof is a probabilistic construction.

As an application we give a simple direct proof of the known theorem
that the ideal of density zero subsets of the natural numbers is random-
indestructible, that is, random forcing does not add a co-infinite set of
naturals that almost contains every ground model density zero set. This
answers a question of B. Farkas.

1 Introduction

Maximal almost disjoint (MAD) families of subsets of the naturals play a central
role in set theory. (Two sets are almost disjoint if there intersection is finite.)
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A fundamental question is whether MAD families remain maximal in forcing
extensions. This is often studied in a little more generality as follows. For a
MAD family M let Zo; be the ideal of sets that can be almost contained in
a finite union of members of M. (Almost contained means that only finitely
many elements are not contained.) Then it is easy to see that M remains MAD
in a forcing extension if and only if there is no co-infinite set of naturals in the
extension that almost contains every (ground model) member of Z 4. Hence the
following definition is natural.

Definition 1.1 An ideal Z of subsets of the naturals is called tall if there is no
co-infinite set that almost contains every member of Z. Let Z be a tall ideal and
P be a forcing notion. We say that Z is P-indestructible if 7 remains tall after
forcing with P.

This notion is thoroughly investigated for various well-known ideals and
forcing notions, for instance Hernandez-Hernandez and Hrusak proved that the
ideal of density zero subsets (see. Definition 2.1) of the natural numbers is
random-indestructible. (Indeed, just combine [3, Thm 3.14], which is a result
of Brendle and Yatabe, and [3, Thm 3.4].) B. Farkas asked if there is a simple
and direct proof of this fact. In this note we provide such a proof.

This proof actually led us to a covering theorem (Thm. 2.5) which we find
very interesting in its own right from the measure theory point of view. First
we prove this theorem in Section 2 by a probabilistic argument, then we apply
it in Section 3 to reprove that the density zero ideal is random-indestructible
(Corollary 3.3), and finally we pose some problems in Section 4.

2 A covering theorem

Cardinality of a set A is denoted by |A].

Definition 2.1 A set A C N is of density zero if lim, ., Mﬁ""_l}l = 0.
The ideal of density zero sets is denoted by Z.

A C* B means that B almost contains A, that is, A\ B is finite. The
following is well-known.

Fact 2.2 Z is a P-ideal, that is, for every sequence Z, € Z there exists Z € Z
so that Z, C* Z for every n € N.

Lemma 2.3 Let (X, A, u) be a measure space of o-finite measure, and let
{A, }nen be a sequence of measurable sets. Suppose that there exists 0 = Ny <
Ni < Ny < ... so that An,_,,...,AN,—1 is a cover of X for every k € N*,
and also that k divides Ny, — Ny_1 for every k € NT. Then there exists a set
Z € Z so that {An}nez covers p-a.e. every x € X infinitely many times.



Proof. Write {Njy_1,...,Ny—1} = WFuU---UW}_,, where the W}’s are the k
disjoint arithmetic progressions of difference k. Let {&}ren+ be a sequence of
independent random variables so that & is uniformly distributed on {0, ...,k —
1}. Define

Z = Ugen+ ngk

It is easy to see that Z € Z. Hence it suffices to show that with probability 1
p-a.e. x € X is covered infinitely many times by {A, },cz.
Let us now fix an z € X. Let Ej be the event {z € Unewg Ant,
k

that is, = is covered by the set chosen in the k** block. As the k** block
is a cover of X, Pr(Ey) > %, S0 Y pen+ Pr(Ex) = oo. Moreover, the
events {Fj}ren+ are independent. Hence by the second Borel-Cantelli Lemma
Pr(Infinitely many of the Ej’s occur) = 1. So every fixed z is covered infinitely
many times with probability 1, but then by the Fubini theorem with probability
1 p-a.e. z is covered infinitely many times, and we are done. (To be more pre-
cise, let (2, S, Pr) be the probability measure space, then Z(w) = UkeNng(w)
Since the sets {(z,w) : € A,} and {(z,w) : & (w) = n} are clearly A x S-
measurable, it is straightforward to show that

{(z,w) : 2 is covered infinitely many times by {A,}nez(w)} C X x Q
is A x S-measurable, and hence Fubini applies.) O

Lemma 2.4 Let (X, A, ) be a measure space of finite measure, and let
{An}nen be a sequence of measurable sets that covers p-a.e. every x € X
infinitely many times. Then there exists a set Z € Z so that {Ap}nez still
covers pi-a.e. every x € X infinitely many times.

Proof. Let ¢ > 0 be arbitrary and set Ny = 0. By the continuity of measures,
there exists N1 so that (X \ (An, U---U Ay, 1)) < §. Since {Ay}n>n, still
covers p-a.e. x € X infinitely many times, we can continue this procedure,
and recursively define 0 = Ny < N3 < Np < ... so that u(X \ (An,_, U--- U
An,—1)) < 5 for every k € NT. We can also assume (by choosing larger Ny’s
at each step) that k divides Ny — N for every k € N*.

Let X, = Mgen+ (An,_, U---UAp, —1), then pu(X \ X.) <e. Let us restrict
A, the A,’s and p to X, and apply the previous lemma with this setup to
obtain Z..

Let us now consider € = 1, é, é, ..., then for every m € N* every z € X% is
covered infinitely many times by {A, }ncz , . Since Z is a P-ideal, there exists a

m

Z € Z such that Z 1 C* Z for every m. Hence for every m € Nt every x € X 1

is covered 1nﬁn1tely many times by {4, }necz. But then we are done, since u-a. e
r€ Xisin Up, X1 . O

Theorem 2.5 Let (X, A, u) be a measure space of o-finite measure, and let
{An}nen be a sequence of measurable sets that covers p-a.e. every x € X
infinitely many times. Then there exists a set Z C N of density zero so that
{An}nez still covers p-a.e. every x € X infinitely many times.



Proof. Write X = UX,,, where each X, is of finite measure. For each X,,
obtain Z,, by the previous lemma. Then a Z € Z such that Z,, C* Z for every
m clearly works. O

The following example shows that the purely topological analogue of Theo-
rem 2.5 is false.

Example 2.6 There exists a sequence U, of clopen sets covering every point
of the Cantor space infinitely many times so that for every Z € Z there exists
a point covered only finitely many times by {U, : n € Z}.

Proof. By an easy recursion we can define a sequence U, of clopen subsets
of the Cantor set C' and a sequence of naturals 0 = Ny < Ny < ... with the
following properties.

1. Un,_y,---,Un,—1 (called a ‘block’) is a disjoint cover of C,
2. every block is a refinement of the previous one,

3. if U, is in the k" block and is partitioned into Uy, ..., U, in the k + 15
block (called the ‘immediate successors of U,’) then s > 2t.

Let Z € Z be given, and let ng be so that M < % for every n > ny.
By 3. {U,, : n € Z} cannot contain all immediate successors of any U, above
ng. Therefore, starting at a far enough block, we can recursively pick a U,,
from each block so that n; ¢ Z for every 4, and {U,, }ien is a nested sequence
of clopen sets. But then the intersection of this sequence is only covered finitely
many times by {U, : n € Z}. O

Remark 2.7 We can ‘embed’ this example to any topological space containing
a copy of the Cantor set by just adding the complement of the Cantor set to all
U,’s. Of course, the new U,,’s will only be open, not clopen.

3 An application: The density zero ideal is
random-indestructible

In this section we give a simple and direct proof of the random-indestructibility
of Z, which was first proved in [3].

[N]“ denotes the set of infinite subsets of N. It carries a natural Polish space
topology where the sub-basic open sets are the sets of the form [n] = {A €
[N]“ :n € A} and their complements. Let A denote Lebesgue measure.

Lemma 3.1 For every Borel function f : R — [N|¥ there exists a set Z € Z
such that f(x) N Z is infinite for A-a.e. x € R.



Proof. Let A, = f~%([n]), then A, is clearly Borel, hence Lebesgue measur-
able. For every z € R

r€A, &= zcfHn]) <= flx)cn] < nc f(z). (3.1)

Since every f(z) is infinite, (3.1) yields that every x € R is covered by infinitely
many A,’s. By Theorem 2.5 there exists a Z € Z such that for A-a.e. x € R we
have z € A,, for infinitely many n € Z. But then by (3.1) for Ml-a.e. z € R we
have n € f(x) for infinitely many n € Z, so f(x) N Z is infinite. O

Recall that random forcing is B = {p C R : p is Borel, A(p) > 0} ordered by
inclusion. The random real r is defined by {r} = Nyecc p, where G is the generic
filter. For the terminology and basic facts concerning random forcing consult
e.g. [5], [4], [1], or [6]. In particular, we will assume familiarity with coding of
Borel sets and functions, and will freely use the same symbol for all versions of
a Borel set or function. The following fact is well-known and easy to prove.

Fact 3.2 Let B C R be Borel. Thenpl- “r € B” iffy A(p\ B) = 0.

Corollary 3.3 The ideal of density zero subsets of the natural numbers is
random-indestructible, that is, random forcing does not add a co-infinite set
of naturals that almost contains every ground model density zero set.

Proof. For a Borel function f: R — [N] and a set Z € Z let
By z ={x € R: f(z) N Z is infinite},

then by the previous lemma for every f there is a Z so that By z is of full
measure. By Fact 3.2 for every f there is a Z so that 1 I- “f(r)N Z is infinite”.
Hence for every f 1p I+ “3Z € ZNV so that f(r) N Z is infinite”. But every
y € [N]*NV[r] is of the form f(r) for some ground model (coded) Borel function
f : R — [N]¥, so we obtain that for every y € [NJ* N V][r] 1g IF “3Z € ZnN
V so that y N Z is infinite”. Therefore 1p IF “Vy € [N]*3Z € ZNV so that y N
Z is infinite”, and setting © = N\ y yields 1p IF “Vo C w co-infinite 37 €
Z NV sothat Z ¢* 2”7, so we are done. O

Remark 3.4 Clearly, Z is also B(x)-indestructible, since every new real is al-
ready added by sub-poset isomorphic to B. (B(x) is the usual poset for adding
k many random reals by the measure algebra on 27.)

4 Problems

There are numerous natural directions in which one can ask questions in light
of Corollary 3.3 and Theorem 2.5. As for the former one, one can consult e.g.
[2] and the references therein. As for the latter one, it would be interesting to
investigate what happens if we replace the density zero ideal by another well-
known one, or if we replace the measure setup by the Baire category analogue,
or if we consider non-negative functions (summing up to infinity a.e.) instead
of sets, or even if we consider k-fold covers and ideals on k.
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