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Abstract

Let R® denote the set of real valued functions defined on the real line.
A map D : R® — RE is said to be a difference operator, if there are real
numbers a;,b; (i = 1,...,n) such that (Df)(z) = Y1, aif(z + b;) for
every f € R* and x € R. By a system of difference equations we mean a set
of equations S = {D;f = g; : ¢ € I}, where I is an arbitrary set of indices,
D; is a difference operator and g; is a given function for every ¢ € I, and
f is the unknown function. One can prove that a system S is solvable if
and only if every finite subsystem of S is solvable. However, if we look
for solutions belonging to a given class of functions, then the analogous
statement is no longer true. For example, there exists a system S such
that every finite subsystem of S has a solution which is a trigonometric
polynomial, but S has no such solution; moreover, S has no measurable
solutions.

This phenomenon motivates the following definition. Let F be a class
of functions. The solvability cardinal sc(F) of F is the smallest cardinal
number £ such that whenever S is a system of difference equations and
each subsystem of S of cardinality less than x has a solution in F, then §
itself has a solution in F. In this paper we will determine the solvability
cardinals of most function classes that occur in analysis. As it turns out,
the behaviour of sc(F) is rather erratic. For example, sc(polynomials) = 3
but sc(trigonometric polynomials) = w1, sc({f : f is continuous}) = w1
but sc({f : f is Darboux}) = (2*)*, and sc(R¥) = w. We consistently
determine the solvability cardinals of the classes of Borel, Lebesgue and
Baire measurable functions, and give some partial answers for the Baire
class 1 and Baire class a functions.
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1 Preliminaries

Difference operators occur in various branches of analysis. For example, it was
shown in [6] that the existence of certain types of liftings is closely related to the
solvability of systems of difference equations. The goal of this paper is to give
necessary conditions under which systems of difference equations have solutions
belonging to a given function class.

Notation 1.1 Let RR denote the set of real valued functions defined on the
real line. The classes of polynomials and trigonometric polynomials are denoted
by P and T'P. For every set H we shall denote by x g and |H| the characteristic
function and the cardinality of H. We denote the symmetric difference of the
sets A and B by AAB. If A,B C R and z € R then we shall write A + B =
{a+b:a€ A beBtand A+z={a+z:a€ A}. If A C R then (4)
denotes the additive group generated by A. The symbols k* and cf(x) denote
the successor cardinal and the cofinality of the cardinal .

Definition 1.2 A difference operator is a mapping D : R® — RR of the form
n
(Df)(z) = Zaif(x + bi),
i=1

where a; and b; are real numbers. The set of difference operators is denoted by
D.

Definition 1.3 For b € R the difference operators Tj and Ay are defined by
(Tof)(z) = f(z+b) (z€R), and

(Apf)(@) = flz+b) - f(z) (z€R).

Definition 1.4 A difference equation is a functional equation

Df =g,

where D is a difference operator, g is a given function and f is the unknown. A
system of difference equations is

where I is an arbitrary set of indices. More formally, by a system of difference
equations we mean a set S C D x RR. A function f: R = R is a solution to S
if Df = g for every (D, g) € S.

It was proved in [6, Thm. 2.2] that a system of difference equations is solvable
iff each of its finite subsystems is solvable. However, if we are interested in
solutions belonging to a given subclass of R® then this result is no longer true.
This motivates the following.



Definition 1.5 Let F C RR be a class of real functions. The solvability cardinal
of F is the minimal cardinal sc(F) with the property that if every subsystem
of size less than sc(F) of a system of difference equations has a solution in F,
then the whole system has a solution in F.

For example, sc(R®) < w is a reformulation of the above cited result. The
next statement shows that the cardinal sc(F) actually exists, and also provides
an upper bound.

Fact 1.6 For every F C R® we have sc(F) < (2¥)t.

Proof. Note that the cardinality of D is 2¥. Suppose F C RR, S is system
of difference equations, and every subsystem of S of cardinality at most 2 is
solvable in F. In particular, every pair of equations of S is solvable, hence for
every D € D there is at most one g € R® such that (D, g) € S. Therefore the
cardinality of S is at most 2“, and we are done. O

We may add the following trivial estimate.
Fact 1.7 For every F C R® we have sc(F) < |F|*.

Proof. Let S be a system of difference equations such that every subsystem
of S of cardinality at most |F| is solvable in F. Suppose S is not solvable in
F. Then for every f € F there is a (Dys,gs) € S such that Dsf # gs. Then
S" = {(Dy,gs) : f € F} has no solution in F and |S’| < |F|, a contradiction. O

Remark 1.8 Fact 1.7 can be improved if we take into consideration the product
topology on R®. Namely, if D f # g for some f € R® then f has a neighbourhood
U in the product topology such that Df’ # g for every f' € U. Combining
this observation with the proof of Fact 1.7 we obtain the estimate sc(F) <
L(F)*, where L(X) is the Lindeldf number of the topological space X; that is,
the smallest cardinal x such that each open cover of X contains a subcover of
cardinality at most . This sharper inequality implies Fact 1.6 since the space
R® has a base of cardinality 2 and thus L(X) < 2¢ for every subspace X C RE.

It is natural to ask whether or not every cardinal 2 < k < (2¥)* equals
sc(F) for some F C RR. As we shall see in Theorem 2.1, w is such a cardinal.
The following result gives a positive answer for successor cardinals.

Theorem 1.9 For every cardinal 1 < k < 2% there exists an F C RR such that
sc(F) = wt.

Proof. Let B C R be linearly independent over the rationals with |B| = k. For
every b € B we denote by f; the characteristic function of the group (B \ {b}).
Then f; is periodic mod each element of B\ {b}, but f; is not periodic mod b.

We claim that the solvability cardinal of the class F = {f; : b € B} equals
k1. The inequality sc(F) < st is clear from Fact 1.7. In order to prove sc(F) >
kT we have to construct a system S such that every subsystem S’ C S of size



less than & is solvable in F, while S is not. We show that S = {(A,0) : b € B}
is such a system. If b € B then, as f; is not periodic mod b, we have Ay fp # 0
showing that S is not solvable in F. On the other hand, if S’ is a proper
subsystem of S and (Ap,0) ¢ S’ then f; solves S’ completing the proof. O

Question 1.10 Is it true (in ZFC) that for every 2 < k < (2¢)% there exists
an F C RR such that sc(F) = k2 Is there (in ZFC) an F with sc(F) = 2¥? Is
it consistent with ZFC that sc(F) can be an uncountable limit cardinal?

In the first part of the paper (Sections 2, 3, 4, and 5) we determine the exact
value of sc(F) for several classes F; see Theorems 2.1, 3.2, 3.3, 4.1, Corollaries
5.4, 5.5 and Theorem 5.6. As it turns out, the behaviour of sc(F) is rather
erratic. For example, sc(P) = 3, but s¢(TP) = wi; sc(RR) = w, but sc({f :
f is Darboux} = (2¢)™*.

In the second part (Sections 6, 7 and 8) we give estimates of sc(F) for
subclasses of Borel, Lebesgue and Baire measurable functions. The estimates for
Borel, Lebesgue and Baire measurable functions provide the exact value of the
solvability cardinals consistently. The result sc({f : f is Lebesgue measurable})
> w; answers Problem 3 of [6].

2 Arbitrary functions

The nontrivial direction of the next theorem was proved in [6, Thm. 2.2], but
we reformulate this result using the notation introduced in the present paper.

Theorem 2.1 sc(R?) = w.

Proof. sc(R®) < wis [6, Thm. 2.2], so we only need to show that sc(R®) # n for
everyn € N. Let n > 2, let a1,...,a,—1 € R be linearly independent over the
rationals, and put a, = — Z?:_f a;. Then any n — 1 of the numbers ay,...,a,
are linearly independent over the rationals. Define the following system of n
equations:

Ay f=1, i=1,...,n.

It is easy to see that each subsystem of cardinality at most n — 1 is solvable
(consider the factor group of R modulo the additive group generated by the
corresponding linearly independent a;’s). On the other hand, if f were a solution
to the whole system, then f(0)+n = f(a; +...+a,) = f(0) would hold, which
is impossible. This shows sc(R®) > n and, as n was arbitrary, the proof is
complete. O

3 Bounded functions

Definition 3.1 We say that the difference equation (D, g) is deducible from the
system S if there are A;,...,4, € D and (D1,¢1),...,(Dn,gn) € S such that

(D,g9) = (X, AiDi, > Aigi)-



Theorem 3.2 Let K > 0 be a real number. Then sc({f e RR : |f| < K}) = w.

Proof. We may assume K = 1. First we show sc({f € R® : |f| < 1}) < w.
The proof is a modification of the proof of [6, Thm. 2.1], the new ingredient is
the Hahn-Banach Theorem. Let S be a system such that all finite subsystems
are solvable by functions of absolute value at most 1. Define

A={D e D:3g (D,g) is deducible from S}.
Then A is a linear subspace of D. Put
L(D) = g(0) (D€ A),

where (D, g) is deducible from S. Clearly, if (D, g) is deducible from S then it
is also deducible from a finite subsystem of S, hence it is solvable. Moreover,
any pair of equations deducible from S has a common solution. Therefore the
map L : A — R is well defined. Note that L is clearly linear.

Now we define a norm on D. It is easy to see that every D € D has a unique
representation of the form D = Z:-L:l a;Tp;, where the a;’s are nonzero and the
b;’s are different. Using this representation set

n

IDI1 = lail-

i=1

The function ||.|| : D — R is easily seen to be a norm.

We claim that for every D € A we have |L(D)| < ||D||. Let (D,g) be
deducible from S. Then there is a function f such that |[f| <1 and Df = g. If
D= Z?:l a;Tp; then

IL(D)| = 19(0)] =

n n
> aif(b)| < lasl-1=|D]|.

i=1 i=1
Hence by the Hahn-Banach Theorem (see e.g. [10, Thm. 3.3]) there exists a
linear map L* : D — R extending L such that

|L*(D)| < ||D|| for every D € D.
We claim that the function defined by
f@)=L"(T:) (z€R)

is a solution to S such that |f| < 1. This last inequality is obvious, as |f(z)| =
|L*(T)| < ||Tz|] = 1. So we need to prove that f solves S. First we show that

(Df)(0) = L*(D) holds for every D € D. (1)

Since L* is linear, it is enough to check this for D = T, (x € R). Now (T f)(0) =
f(z) = L*(Ty) by the definition of f, which proves (1). Let (D,g) € Sandz € R
be given. Then T, D € A, and thus (1) and the definition of L imply

(Df)(z) = (T Df)(0) = L*(T; D) = L(T, D) = (T29)(0) = g(z).



Now we prove sc({f € R® : |f| < 1}) > w. Let n > 2 be an integer and let
ai,...,a, be linearly independent reals. Define a system as follows.

2 .
Aaif = m X{a1,0e0y0i—1,0i4+1,an })> (l =1,.. 'an)'

A simple induction shows that if f solves the whole system, then f(a; + ...+
an) — f(0) = 22 > 2, hence |f| < 1 cannot hold.
On the other hand, let J C {1,...,n} be a set of at most n — 1 elements.

Every z € ({ai1,...,a,}) can be uniquely written in the form z = k;(x)a; +
...+ kn(z)an, where the k;(z)’s are integers. Define
fa) = 0 ifz ¢ ({a,...,an})
-1+ 27 i€ J:ki(x) >0} ifze ({ar,...,an}).

Clearly, |f| < 1. Tt is easy to see that f solves the it equation for every i € J,
which yields sc({f € R® : |f| < 1}) > n. As n was arbitrary, the proof is
complete. O

In contrast to Theorem 3.2 we have the following.
Theorem 3.3 sc({f € R® : fis bounded}) = w;.

Proof. First we prove sc({f € R® : f is bounded}) < w;. Let S be a system
such that every countable subsystem of S is solvable by a bounded function. For
a countable S’ C S let Kg be the minimal integer for which S’ has a solution
in {f € R® : |f| < Kg}. The set {Kg : S’ C S, |S'| < w} is bounded in
N, otherwise we could easily find a countable subsystem of S with no bounded
solutions. Fix an upper bound K of the above set. Then every countable, in
particular, every finite subsystem of S is solvable in {f € R® : |f| < K}, hence
by the previous theorem S is solvable in {f € R® : |f| < K}, hence S has a
bounded solution.

Now we prove sc({f € R® : f is bounded}) > w. Similarly to the previous
theorem, let ai,as,... be a linearly independent sequence of reals. Define a
system by

Ao f = X({a1sees@im1,05415.--3)0 (i € N+)

A simple induction shows that if f solves the whole system, then f(a; + ...+
an) — f(0) = n for every n, hence f cannot be bounded.

On the other hand, let J C N be a finite set. Every z € ({a1,az,...}) can
be uniquely written in the form x = ki (x)a; + k2(x)as + . . ., where the k;(z)’s
are integers, and only finitely many of them are nonzero. Similarly to the proof
of the previous theorem one can check that

B 0 if © ¢ <{a17a27"'})
o= {|{i € J:ki(z) >0} ifz € ({ar,a,...})

is a bounded solution to the finite subset of S corresponding to J. d



4 Darboux functions
Theorem 4.1 sc({f : f is Darbouz}) = (2¥)*.

Proof. sc({f : f is Darboux}) < (2¢)* follows from Fact 1.6. In order to prove
the other inequality we have to construct a system S such that every subsystem
of cardinality less than continuum is solvable by a Darboux function but S has
no Darboux solution. We define S as

Apf = Apxqoy (b ER).

The whole system clearly has no Darboux solution, for if f is a solution to S
then there exists a ¢ € R such that f = X0} + ¢, which is not Darboux. On
the other hand, let S’ be a subset of S such that |S'| < 2¢, and let B C R be
the corresponding set of indices with |B| < 2¢. By enlarging B if necessary, we
may assume that B is an additive subgroup of R, and also that B is dense.

As |B| < 2¥, the factor group R/B consists of 2¢ cosets. Fix a bijection
¢ :R/B — R and define

f(@) =¢(B +z) + x{0}(2) (¢ €R).

As B is dense, f attains every value on every interval, hence it is Darboux. In
addition, it is easy to see that f solves S'. O

Remark 4.2 The same system can be used to demonstrate that for the class
F of functions with connected graphs we also have sc(F) = (2¢)*. With a more
elaborate version of the argument above it can be shown that if |B| < 2 then
the system {(Ap, Apx{o}) : b € B} has a solution with a connected graph.

5 Subclasses of Lebesgue measurable and Baire
measurable functions

In this section our aim is to prove that sc(F) = w for many classes including the
classes of trigonometric polynomials, continuous functions, Lipschitz functions,
C", C*, analytic functions, derivatives, approximately continuous functions
etc.

Let AV denote the o-ideal of Lebesgue nullsets of R and M denote the o-ideal
of first category (= meager) subsets of R. In the rest of the section let Z stand
for either N or M. The term Z-almost everywhere will be abbreviated by Z-a.e.
Instead of 'Lebesgue measurable’ and 'with the Baire property’ we will use the
term Bz-measurable, where Bz is the o-algebra generated by the Borel sets and
7.

First we show that if we do not distinguish between Z-almost everywhere
equal functions, then the value of this modified solvability cardinal is at most
wy for all subclasses of both Lebesgue measurable functions and functions with
the property of Baire.



Theorem 5.1 Let F C Bz, and suppose that for every countable subsystem S’
of a system of difference equations S there exists an f' € F such that Df' = g T-
a.e. for every (D, g) € S'. Then there is an f € F such that Df = g Z-a.e. for
every (D, g) € S.

Proof. Let S be a system satisfying the assumptions. Every D € D can be

written in a unique way as D = Y., a;Ty,. Define ¢ : D — |, oy R*" by

SO(D) = (al,...,an,bl,...,bn) (D ED)_

Set S, = {(D,g) € S : D has n terms}. For every n € N choose a countable
S! C S, such that {¢(D) : (D,g) € S,} C R2" is dense in {¢(D) : (D,g) €
Sn} C R,

Let f € F be a function "Z-a.e.” solving |J, oy S;,- We claim that it "Z-
a.e.” solves the whole S. Let (D, g) € S,, and choose (D;, g;) € S), such that
¢(D;) = ¢(D) in B*™.

Suppose first Z = V. It is well known that for every measurable h if t, — 0
(n = o) then Ty h — h in measure (which means that it converges in measure
on every bounded interval; see e.g. [11] or [2] for the definitions and basic facts).
Hence D;h — Dh in measure. Let f' be an a.e. solution to |J,,cn Sy, U{(D, 9)}.
Then

Df=lim D;f = lim g; = lim D;f'=Df' =g
71— 00 71— 00 71— 00

a.e., where lim stands for limit in measure.

Suppose now Z = M. We claim that for every h with the Baire property if
tn, = 0 (n — o00) then Ty h — h pointwise on a residual set. Indeed, if H is
a residual set on which h is continuous then H N (), .n(H — t,) is such a set.
Therefore D;h — Dh pointwise on a residual set. Let f’ be an M-a.e. solution
to U,en S U{(D,9)}. Then

Df = lim D;f = lim g; = lim D;f' =Df =g
71— 00 72— 00 71— 00
on a residual set. O

Theorem 5.2 Let F C F C By, where F is a translation invariant linear sub-
space of Bz such that whenever f € F and f =0 Z-a.e. then f = 0 everywhere.
Then sc¢(F) < wy.

Proof. Suppose that every countable subsystem of S has a solution in F. Then
obviously g € F whenever (D, g) € S.

By Theorem 5.1, there is an f € F such that Df = g Z-a.e. for every
(D,g) € S. Since Df —g € F and Df — g = 0 Z-a.e., we have Df = g, which
proves sc(F) < wy. O

It is clear that the class C'(R) of continuous functions satisfies the conditions
imposed on F. The same is true for the classes of derivatives and approximately
continuous functions (see [1]).

We shall denote by TP the set of trigonometric polynomials.



Theorem 5.3 If TP C F C Bz then sc(F) > w;.

Proof. We shall construct a system S such that every finite subsystem of S
has a solution which is a trigonometric polynomial, but S itself does not have a
Bz-measurable solution. We shall repeat the construction of [6, Thm. 4.4] with
a small modification.

Let C(z) = cos2rz and Ejn(z) = Ag-nC (27z) , then Ej, € TP for every
J,n € N. Also, E;, =0if j > n and, if j < n then Ej , is a continuous function
periodic mod 1 with finitely many roots in [0, 1].

Let ¢; (j =0,1,...) be a sequence of real numbers, and consider the system
S of the equations

n—1
Agnf =hn, where hp =3 ¢;Bjn (n=1,2,...).
3=0
Then the trigonometric polynomial Z?:_OI ¢;C (29z) is a solution to the first n
equations of S. On the other hand, we shall choose the numbers c; in such a
way that S does not have Bz-measurable solutions.

First suppose Z = N. If f : R = R is measurable then the sequence of
functions Ay-» f converges to zero in measure on [0, 1]. Therefore, if S has a
measurable solution, then h,, should converge to zero in measure on [0, 1]. But
we can prevent this by a suitable choice of the sequence c;. We shall define c;
inductively. If ¢; has been defined for every j < n — 1, then we choose c¢,—1
so large that A({z € [0,1] : |hp(z)| > 1}) > 1/2 holds. This is possible, since
En—1n # 0 a.e. in [0,1]. Therefore, with this choice, h, does not converge (in
measure) to zero on [0, 1], and thus S cannot have measurable solutions.

Next suppose Z = M. If f : R — R is Baire measurable then the sequence
of functions A,y-» f converges to zero pointwise on a residual subset of [0, 1].
Again, we shall choose the constants c; such that b, # 0 on a second category
set. Namely, we shall define ¢; in such a way that each function h, satisfies
the following condition: for every interval I C [0,1] of length 1/n the inequality
|hn| > 1 holds on a subinterval of I. (In the course of the proof by an interval
we shall mean a closed nondegenerate interval, and by |I| we shall mean the
length of the interval I.)

We put ¢o = 1. Then hy(z) = C(z+ 1) — C(z) = —2 cos 2rz has the required
property with n = 1, since there is a subinterval of [0, 1] on which |h;| > 1. Let
n > 1 and suppose that ¢, ..., c,—2 have been chosen. Since E,_; , only has a
finite number of roots in [0, 1], the function

n—2
hn = § chj,n + cnflEnfl,n
Jj=0

clearly has the required property if ¢,,_; is large enough.
We show that the set A = {z € [0,1] : h,(z) — 0} is not residual. Suppose
the contrary, and let (;-, Uy C A, where each U}, is dense open. Let I; C Uy be



an interval. If 1/ny < |I;| then there is a subinterval J; C I; such that |hy, | > 1
on Ji. Since Uy is dense open, there is an interval I C UsNJy. If 1/ny < |I2| then
there is a subinterval J C I3 such that |h,,| > 1 on J;. Continuing this process
we find the nested sequence of intervals J; such that (=, Jr C (pey Ur C A
and |hy, | > 1 on Jj, for every k. This implies h,,(z) # 0 for every € Ny Ji
which contradicts z € A. d

Corollary 5.4 Suppose TP C F C F C Bz, where F is a translation invariant
linear subspace of Bz such that whenever f € F and f = 0 Z-a.e. then f =0
everywhere. Then sc(F) = wy.

It is clear that the class C(R) of continuous functions satisfies the conditions
imposed on F. The same is true for the classes of derivatives and approximately
continuous functions (see [1]). Thus we have the following.

Corollary 5.5 If F equals any of the classes TP, C(R), the class of Lipschitz
functions, C™(R), C*°(R), the class of real analytic functions, derivatives, ap-
prozimately continuous funcions, then sc(F) = wi. The same is true for the
subclasses {f € F : f is bounded} where F is any of the classes listed above.

We remark that the class P of polynomials behaves quite differently from
TP. Indeed, [6, Thm. 4.5] states that sc(P) < 3. Since sc(P) > 3 is obvious, we
have the following.

Theorem 5.6 sc(P) = 3.

6 Borel functions
First we prove an auxiliary lemma.

Lemma 6.1 There exist non-empty perfect subsets {P, : @ < 2“} of R and real
numbers {py : & < 2*} such that

(Po + Gat1) N (Ps + Gpp1) =0 (a # B),
and for every a < 2%
(Pa+91) N (Pat+g2) =0 (91,92 € Gat1, 91 # 92),
where Go = ({pg : B < a}).

Proof. Let P C R be a non-empty perfect set that is linearly independent over
the rationals (see e.g. [9] or [8]). We can choose nonempty perfect sets P, C P
and p, € P (a < 2¥) such that P, N Pg = @ for every a # 3 and such that
Pa ¢ Ps for every o, < 2¥. It is a straightforward calculation to check that
all the requirements are fulfilled. O

10



Theorem 6.2 sc({f : f is Borel}) > ws.

Proof. Let P, and p, be as in the previous lemma. For every a < w; let
B, C P, be a Borel set of class a (that is, not of any smaller class). Define
A, = By + Gy, and consider the system of difference equations:

Apof=08p [ D x4, | (a<wi).

B<w

Note that the Ag’s are disjoint. We claim that every countable subsystem of
this system has Borel solution, but the whole system does not.

To prove the first statement we have to check that for every a < w; the first
a equations have a common Borel solution. We show that the Borel function

Z XAg

BLa

will do. If v < B then Ag is periodic mod p,, so A, xa, = 0. Therefore, in
view of the properties required in Lemma 6.1, we obtain that for v < «

Ap, ZXAE =4y, ZXAﬁ )

B<w1 BLa

which proves this part of the claim.

In order to show that the whole system has no Borel solution it is sufficient to
check that the functions on the right hand side of the equations are of unbounded
Baire class. But this is not hard to see, as Ay, (3_5.,, Xa,) restricted to Py
equals —xpB, - O

Using Fact 1.6 we obtain the following.

Corollary 6.3 The Continuum Hypothesis implies that sc({f : f is Borel}) =
Wy = (2“’)+.

Question 6.4 Can we omit the use of the Continuum Hypothesis? Is it true
that sc({f : f is Borel}) = w2? Is it true that sc({f : f is Borel}) = (2)* 2

Remark 6.5 In order to prove sc({f : f is Borel}) = ws it would be sufficient
to prove sc({f : f is Baire class a}) < ws for every a < w;. Indeed, assume that
every subsystem of cardinality at most w; of a system has a Borel solution. Let
us assign to every such subsystem the minimal a < wy for which it has a Baire
class a solution. We claim that the set of these a’s is bounded in w;. Otherwise,
the union of w;-many appropriate subsystems would itself be a subsystem of
cardinality w; without a Borel solution, which proves our statement.

So if every subsystem of cardinality at most w; of a system has a Borel
solution, then there exists an a < w; such that every such subsystem has a
Baire class «a solution.

11



Remark 6.6 For 2 < a < w; the idea of the proof of Theorem 6.2 probably
gives sc({f : f is Baire class a}) > wq. If we had an appropriate notion of rank
for Baire class « functions, sharing the properties of the well known ranks on
Baire class 1, it would yield sc({f : f is Baire class a}) > wy. Unfortunately,
according to [4] no such rank is known.

For Baire class 1 these ranks exist, but do not give sc({f : f is Baire class 1})
> ws. The proof breaks down, as 25<a XA, is not Baire class 1.

Question 6.7 Is there a rank on Baire class o with the usual properties?

Remark 6.5 shows why we are particularly interested in the solvability cardi-
nals of the individual Baire « classes. The simplest case, namely C(R) is solved
already. So we take one step further.

7 Baire class 1 functions

It is clear from Theorem 5.3 that sc({f : f is Baire class 1}) > wy. As opposed
to the case 2 < a < wy we conjecture that, in fact, sc({f : f is Baire class 1}) =
w1. Unfortunately, we only can prove this in a special case. What makes this
case interesting is that it covers the usual situation in which every difference
operator D is of the form D = A,.

First we need two lemmas.

Lemma 7.1 Let a,b € R\ {0}. The solutions to the equation
flx+b)—af(z)=0

are the functions of the form
f(@) = p(@)(la]'*)",

where ¢ is an arbitrary function periodic mod b if a > 0, and an arbitrary
function anti-periodic mod b (that is, p(x +b) = —p(x) for every x € R) if
a<0.

In addition, f is Baire class 1 iff ¢ is Baire class 1.

Proof. Straightforward calculations. O

Lemma 7.2 Let a;,a2,b1,bs € R\ {0}. Suppose that the equations f(xz+by) —
a1 f(z) =0 and f(z + bs) — axf(x) = 0 have a common Baire class 1 solution
which is not identically zero. Then |ai|'/* = |ay|'/?.

Proof. Suppose this is not true. Then by the previous lemma there exist two
Baire class 1 functions ¢; and 2 such that

e1(@)(|ar['*)* = pa(@)(|az[/*)7,
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where ¢1 and @2 are periodic (or anti-periodic) mod b; and by, respectively.
We may assume that both functions are periodic, otherwise we could consider
Vi(x) = ;(2x) for i = 1,2. We can also assume that |a;|'/* < |ag|'/?2, and
therefore

L

p1(x) = pa(x)c®, where ¢ > 1. (2)

Finally, as @2 is not identically zero, we can also suppose (by applying an
appropriate translation if needed) that ¢2(0) # 0.

Suppose that by /by € Q. Then ¢; and 2 are periodic mod a common value
p. But this is impossible, since ¢* # 1 when z # 0.

Therefore by /ba ¢ Q. Then for every (nondegenerate) interval I C R there
exist integers n,k € Z with k arbitrarily large such that nb; + kb, € I. By
substituting kb, into (2) we get ¢1(kby) = @2 (kby)ckb2 for every k € Z, thus
©1(kbs) = @2(0)ck2 for every k € Z. Therefore ¢ (nby + kby) = 2(0)ckb2 for
every n, k € Z, which yields that ¢; is unbounded on I. As I was arbitrary, ¢;
is unbounded on every subinterval of R. But ¢ is of Baire class 1, so it has
a point of continuity (see e.g. [3, 24.15]), hence it must be bounded on some
interval, a contradiction. O

Remark 7.3 The impossibility of (2) is closely related to the well known state-
ment that the identity function is not the sum of two measurable periodic func-
tions (though it is surprisingly the sum of two periodic functions; see e.g. [7]
and [5]). Indeed, taking the logarithm of (2), we would obtain a representation
of the identity function as the sum of two Baire class 1 periodic functions; the
only problem is that our functions can vanish at certain points.

Theorem 7.4 Let D;f = g; (i € I) be a system of difference equations, and
suppose that every difference operator consists of at most two terms; that is for
every i € I the it equation is of the form

agl)f (a: + bgl)) + agz)f (x + b,@)) = g;(x).

Then if every countable subsystem has a Baire class 1 solution, then the whole
system has one as well.

Proof. If any of the equations consists of a single term, then it has a unique
solution, so we are clearly done. Thus, by applying a translation and multiplying
by a real number, we may assume that every equation is of the form

f(@ +bi) — aif (z) = gi(x).

First suppose that |a;, |'/%1 # |as,|"/%2 for some i,io € I. Then it easily
follows from Lemma 7.2 that the two corresponding equations have a unique
common Baire class 1 solution. This clearly solves the whole system, as every
triple of equations is solvable.

So we can assume that there exists a ¢ > 0 such that |a;|"/" = ¢ for every
i € I. If we now replace f(z) by f(z)/c¢® (and modify g; appropriately), then

1/b
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our equations will be of the form Ay, f(z) = f(z +b;) — f(z) =¢; (i € I7) or
flx+b)+ fx)=gi i €I"),where =T UI". Weput B~ ={b;:i €I}
and B* = {b; : i € I'"}. There are countable subsets J~ C I~ and J* C I"
such that E~ = {b; : 4 € J~} is relatively dense in B~, and E* = {b;:i € J*}
is relatively dense in Bt.

By assumption, there exists a common Baire class 1 solution f to the equa-
tions with indices J~ U Jt. We claim that f is a solution to the whole system.

First let ¢ € I~. As J~ U{i} is also countable, we can choose a Baire class 1
function f~ such that Ay, f~ = g; for every j € J~ and A, f~ = g;.

Put f' = f — f~. Then for every j € J~ we have

Ap, f' =08y, (f—F ) =0, f— Ay, f =9;—9;=0,

thus f' is periodic mod b; for each j € J~. Let G~ = (E~); then f' is periodic
mod each element of G™.

We distinguish between two cases. If G~ is dense in R, then f’ must be a
constant function ¢, for otherwise it would attain two distinct values on dense
sets, so it would have no point of continuity, which is impossible as f' is Baire
class 1.

Thus

Abif = Abi(fi + C) = Abif7 + AbiC: 9i +0= 9i,

which completes the proof in the first case.

If, on the other hand, G~ is not dense in R then G~ = Zd for some d € R.
In particular, G~ is discrete. Then so is E~ and thus E~ = B~ as E~ is dense
in B~. Since b; € B~ = E~, there is a j € J~ with b; = b; which obviously
implies g; = g;. Therefore, f satisfies Ay, f = Ay, f = g; = gi-

Let now i € I'T. Choose a Baire class 1 function f* such that f*(z + b;) +
fH(z) = g;(z) for every j € J* and f+(z + b;) + f(z) = gi(z) for every z € R.
Put f' = f—fT. Then f'is easily seen to be anti-periodic mod b;, hence periodic
mod 2b; for every j € J*, hence it is also periodic mod G = ({2b; : j € JT}).
If GT is dense in R, then f’ must be a constant function c¢. But f’ is anti-
periodic, so ¢ = 0. Therefore f = f+, so f clearly solves the i" equation.

On the other hand, if G* is discrete then so is ET and then we can complete
the proof as in the previous case. O

Question 7.5 Is it true that sc({f : f is Baire class 1}) = w, ?

8 Lebesgue and Baire measurable functions

As in Section 5, Z shall denote the ideals N or M. Thus Bz equals the o-algebra
of Lebesgue or Baire measurable sets.

The goal of this section is to prove upper and lower estimates for sc({f :
f is Bz-measurable}) in terms of some cardinal invariants of the ideal Z. These
estimates give the exact value of the solvability cardinal consistently.

14



Definition 8.1

add(Z) =min{|A|: ACZ, | JA ¢ T},
non(Z) =min{|A|: ACR, A¢ T},
cof(Z) =min{|A|: ACZ, VI€T3JA e A, I C A}.

Remark 8.2 Note that w; < add(Z) < non(Z) < cof(Z) < 2¢. The last
inequality follows from cof(Z) < |A|, where A = {B € 7 : B is Borel}. It is also
easy to see that add(Z) < cf(non(Z)).

Before we prove our estimates (Theorems 8.6 and 8.7) we need some prepa-
ration.

Definition 8.3 For a set H C R define

n
Dp={DeD:D=) a7, b; € H forevery i = 1,...,n}.
i=1
Theorem 8.4 Let S be a solvable system of difference equations and H C R.

Then S has a solution that is identically zero on H if and only if whenever
(D, g) is deducible from S and D € Dy then g(0) = 0.

Proof. The proof is again a variation of the proof of [6, Thm. 2.2].

First suppose that f is a solution to S vanishing on H, and let (D, g) be
deducible from S such that D € Dg; that is, D = Y"1 | a;T},, where b; € H for
every i. Then g(0) = (Df)(0) = Y, aif(b;) = 0, since b; € H for every i.

Suppose now that whenever (D, g) is deducible from S and D € Dg then
g(0) = 0. Let

A={D e D:3g (D,g) is deducible from S}.
Then A is a linear subspace of D. Define
L(D) = ¢(0) (D€ A),

where (D, g) is deducible from S. To see that L is well defined note that S is
solvable, and D f = g whenever (D, g) is deducible from S and f is a solution to
S. L is clearly linear, and by assumption vanishes on 4 N Dg. Define the linear
space

B={A+D:A€ A,D €Dy}

and the linear map
L'(A+D)=L(A) (A€ A, D€ Dg),

which is clearly well defined and extends L. Moreover, L' vanishes on Dg. Let
L* : D — R be a linear extension of L', and set f(z) = L*(T;) (x € R). We
claim that f is a solution to S vanishing on H, which will complete the proof.
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First, L*(Ty) = f(z) = (T, f)(0) for every x € R, and L* is linear, so
L*(D) = (Df)(0) for every D € D. If (D,g) is deducible from S then so
is (T, D,T,g) for every x € R, hence (Df)(z) = (T,Df)(0) = L*(T,D) =
(T:9)(0) = g(x), so f solves S.

Finally, f vanishes on H, for if x € H then T, € Dg, so f(x) = L*(T,) =0,
since L* vanishes on Dg. O

Theorem 8.5 Let S be a system of difference equations such that for every
(D,g) € S we have g = 0 Z-a.e. If there exists a Bz-measurable solution to S,
then there is also one which is zero T-a.e.

Proof. Let f be a Bz-measurable solution to S. If Z = A then let H be
the set of points of approximate continuity of f, while if Z = M then let H
be a residual (= comeager) set on which f is (relatively) continuous. Then
R\ H € Z. It is sufficient to show that there exists a solution to S vanishing
on H. Using the previous theorem we need to show that if (D, g) is deducible
from S and D € Dy then g(0) = 0. Let D = Y7 | a;Tp,, where b; € H for
every i. As (D,g) is deducible from S, g = 0 Z-a.e. and f solves (D, g). So
S aif(z+b;) = g(z) for every z € R

If 7 = N then, using b; € H, we obtain that g is approximately continuous
at 0. If Z = M then, using b; € H, we obtain that g is (relatively) continuous on
the residual set ();_, (H — b;), which contains 0. But in both cases g = 0 Z-a.e.,
so we obtain g(0) = 0 as required. O

Theorem 8.6 sc({f : f is Bz-measurable}) < [cof(Z)]T.

Proof. Let S be such that each subsystem of cardinality at most cof(Z) has a
Bz-measurable solution. We have to show that S has a Br-measurable solution.
By Theorem 5.1 there exists a Bz-measurable fy that is an Z-a.e. solution to S.
Define a new system as follows.

S'"={(D,g—Dfy):(D,g) € S}

Then S’ has a Bz-measurable solution if and only if S has one, and every
subsystem of S’ of cardinality at most cof(Z) has a Bz-measurable solution.
Moreover, each right hand side g — D fy is 0 Z-a.e. Let

S* ={(D,g) : (D,g) is deducible from S'}.

Then f solves S’ if and only if it solves S*, moreover, each right hand side of S*
is 0 Z-a.e. Also, every subsystem of S* of cardinality at most cof(Z) has a Bz-
measurable solution since every (D, g) € S* is deducible from a finite subsystem
of S'. In addition, every equation deducible from S* is already in S*.

Now we prove that S* has a Bz-measurable solution, which will complete
the proof. By Theorem 8.5 every subsystem of S* of cardinality at most cof(Z)
has an 7-a.e. zero solution. We claim that S* itself has such a solution. Suppose
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on the contrary that this is not true. Let A C Z be such that |A| = cof(Z) and
VIieT3dAe€e A, I C A. For any A € A the system S* has no solution vanishing
outside A. By Theorem 8.4 this means that there exists a (D4, g4) € S* such
that D4 € DR\A and g4(0) #0.

The system {(Da,g4) : A € A} is of cardinality cof(Z), hence it has a
solution f vanishing Z-a.e. Let Ag € A be such that f vanishes outside Ag.
Then Da,f = ga,, thus (Da,f)(0) = g4,(0) # 0, but on the other hand
D, € Dgry\ 4, 50 (D4, f)(0) = 0. This contradiction finishes the proof. O

Theorem 8.7 sc({f : f is Bz-measurable}) > [cf(non(Z))]t > [add(Z)]" >
w2.

Proof. We have to construct an S with no Bz-measurable solutions such that
each subsystem of cardinality less than cf(non(Z)) has a Bz-measurable solution.

First we construct a set B C R such that (i) B ¢ Z, R\ B ¢ Z, (ii)
|(B + b)AB| < non(Z) for every b € B, and (iii) BN (—B) = {.

Let V C R be such that V ¢ 7 and |V| = non(Z). We may assume that
V is a linear space over the rationals. Let {v, : @ < non(Z)} be a basis of V.
Represent the nonzero elements of V as v = Y .| ¢;vq,, where ¢; € Q\ {0} and
a1 < ... < ap. Define p(v) = ¢p, and

B ={veV:p) >0}

Clearly, (iii) holds. Note that V = B U (—B) U {0}, hence (i) is satisfied. Let

b € B\ {0} be arbitrary. Suppose b = Y"1 | g;jva,, where ¢; € Q \ {0} and

a1 < ... < ap. Then (B + b)AB is included in the linear space generated by

{vq : @ < ay}, which is of cardinality less than non(Z). So (ii) holds as well.
We claim that the system

S = {(Ap,ApxB) : b € B}

satisfies the requirements. First we check that each right hand side is zero Z-
a.e. Indeed, if b € B then {z € R: (ApyxB)(z) # 0} C (B+ b)AB € Z, since
|(B 4+ b)AB| < non(Z).

Suppose that S has a Bz-measurable solution. Then, by Theorem 8.5, S
has an Z-a.e. zero solution fy as well. Then Ay fo = Ayxp for every b € B, so
fo— xB is periodic mod every b € B. Then it is also periodic mod each b € —B.
In particular, fo — xp is constant on BU (—B). But fo = 0 Z-a.e., B ¢ Z, and
BN (—B) = § which is impossible.

What remains to show is that each subsystem S’ of S of cardinality less than
cf(non(Z)) has a Bzr-measurable solution. Let B’ be the corresponding subset
of B, where |B'| < cf(non(Z)). Now we put

A=(BY+ |J (B+V)AB].
b eB’

Then |A| < non(Z), hence A € Z. It is easy to see, by checking the cases z € A
and z ¢ A, that f = xBna is a Bz-measurable solution to S’. d
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Corollary 8.8 The Continuum Hypothesis implies
sc({f : f is measurable}) = sc({f : f has the Baire property}) = ws = (2“)%.

Question 8.9 Is sc({f : f is Bz-measurable}) equal to [cof(Z)]T? Is sc({f :
f is Bz-measurable}) equal to [cf(non(Z))]+ 2
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