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Abstract. Let K ⊂ Rd be a self-similar or self-affine set, let µ be a self-similar

or self-affine measure on it, and let G be the group of affine maps, similitudes,

isometries or translations of Rd. Under various assumptions (such as separation

conditions or we assume that the transformations are small perturbations or that

K is a so called Sierpiński sponge) we prove theorems of the following types, which

are closely related to each other;

• (Non-stability)

There exists a constant c < 1 such that for every g ∈ G we have either

µ
(
K ∩ g(K)

)
< c · µ(K) or K ⊂ g(K).

• (Measure and topology)

For every g ∈ G we have µ
(
K ∩ g(K)

)
> 0 ⇐⇒ intK(K ∩ g(K)) 6= ∅ (where

intK is interior relative to K).

• (Extension)

The measure µ has a G-invariant extension to Rn.

Moreover, in many situations we characterize those g’s for which µ
(
K ∩ g(K)

)
> 0

holds, and we also get results about those g’s for which g(K) ⊂ K or g(K) ⊃ K

holds.
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1. Introduction

The study of the size of the intersection of Cantor sets has been a central research

area in geometric measure theory and dynamical systems lately, see e.g. the works

of Igudesman [12], Li and Xiao [17], Moreira [23], Moreira and Yoccoz [24], Nekka

and Li [25], Peres and Solomyak [26]. For instance J-C. Yoccoz and C. G. T. de

Moreira [24] proved that if the sum of the Hausdorff dimensions of two regular

Cantor sets exceeds one then, in the typical case, there are translations of them

stably having intersection with positive Hausdorff dimension.

The main purpose of this paper is to study the measure of the intersection of

two Cantor sets which are (affine, similar, isometric or translated) copies of a self-

similar or self-affine set in Rd. By measure here we mean a self-similar or self-affine

measure on one of the two sets.

We get instability results stating that the measure of the intersection is separated

from the measure of one copy. This strong non-continuity property is in sharp

contrast with the well known fact that for any Lebesgue measurable set H ⊂ Rd

with finite measure the Lebesgue measure of H ∩ (H + t) is continuous in t.

We get results stating that the intersection is of positive measure if and only if it

contains a relative open set. This result resembles some recent deep results (e.g. in

[16], [24]) stating that for certain classes of sets having positive Lebesgue measure

and nonempty interior is equivalent. In the special case when the self-similar set

is the classical Cantor set our above mentioned results were obtained by F. Nekka

and Jun Li [25]. For other related results see also the work of Falconer [5], Feng

and Wang [8], Furstenberg [9], Hutchinson [11], Järvenpää [13] and Mattila [19],

[20], [21].

As an application we also get isometry (or at least translation) invariant measures

of Rd such that the measure of the given self-similar or self-affine set is 1.

Feng and Wang [8] has proved recently “The Logarithmic Commensurability

Theorem” about the similarity ratios of a homogeneous self-similar set in R with

the open set condition and a similarity map that maps the self-similar set into

itself (see more precisely after Theorem 4.9), and they also posed the problem of

generalizing their result to higher dimensions. For self-similar sets with the strong

separation condition we prove a higher dimensional generalization without assuming

homogeneity.

1.1. Self-affine sets. Let K ⊂ Rd be a self-affine set with the strong separation

condition; that is, K = ϕ1(K) ∪∗ . . . ∪∗ ϕr(K) is a compact set, where r ≥ 2

and ϕ1, . . . , ϕr are injective and contractive Rd → Rd affine maps and ∪∗ denotes

disjoint union.

For any p1, . . . , pr ∈ (0, 1) such that p1 + . . .+ pr = 1 let µ be the corresponding

self-affine measure; that is, the image of the infinite product of the discrete

probability measure p({i}) = pi on {1, . . . , r} under the representation map

π : {1, . . . , r}N → K, {π(i1, i2, . . .)} = ∩∞
n=1(ϕi1 ◦ . . . ◦ ϕin

)(K).

In Section 3 we show (Theorem 3.2) that small affine perturbations of K cannot

intersect a very large part of K; that is, there exists a c < 1 and a neighborhood U
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of the identity map in the space of affine maps such that for any g ∈ U \ {identity}
we have µ

(
K ∩ g(K)

)
< c. We also prove (Theorem 3.5) that no isometric but

nonidentical copy of K can intersect a very large part of K; that is, there exists a

constant c < 1 such that for any isometry g either µ
(
K ∩ g(K)

)
< c or g(K) = K.

1.2. Self-similar sets. Now let K ⊂ Rd be a self-similar set with the strong

separation condition and µ a self-similar measure on it; that is, K and µ are defined

as above with the extra assumption that ϕ1, . . . , ϕr are similitudes.

In Section 4 we prove (Theorem 4.1) that for any given self-similar set K ⊂ Rd

with the strong separation condition and self-similar measure µ on K there exists a

c < 1 such that for any similitude g either µ
(
K∩g(K)

)
< c·µ(K) = c or K ⊂ g(K).

In other words, the intersection of a self-similar set with the strong separation

condition and its similar copy cannot have a really big non-trivial intersection.

Let K, µ and g be as above. An obvious way of getting µ
(
K∩g(K)

)
> 0 is when

g(K) contains a nonempty (relative) open set in K. The main result (Theorem 4.5)

of Section 4, which will follow from the above mentioned Theorem 4.1, shows that

this is the only way. That is, for any self-similar set K ⊂ Rd with the strong

separation condition and self-similar measure µ on K a similar copy of K has

positive µ measure in K if and only if it has nonempty relative interior in K.

An immediate consequence (Corollary 4.6) of the above result is that for any

fixed self-similar set with the strong separation condition and for any two self-

similar measures µ1 and µ2 we have µ1

(
g(K) ∩K

)
> 0 ⇐⇒ µ2

(
g(K) ∩K

)
> 0 for

any similitude g. As an other corollary (Corollary 4.7) we get that for any given self-

similar set K ⊂ Rd with the strong separation condition and self-similar measure µ

on K there exist only countably many (in fact exactly countably infinitely many)

similitudes g : AK → Rd (where AK is the affine span of K) such that g(K) ∩K
has positive µ-measure.

Let K ⊂ Rd be a self-similar set with the strong separation condition and let s be

its Hausdorff dimension, which in this case equals its similarity and box-counting

dimension. Then the s-dimensional Hausdorff measure is a constant multiple of

a self-similar measure (one has to choose pi = as
i , where ai is the similarity ratio

of ϕi). Therefore all the above results hold when µ is s-dimensional Hausdorff

measure.

In Section 4 we also need and get results (Proposition 4.3, Lemma 4.8,

Theorem 4.9 and Corollary 4.10) stating that only very special similarity maps can

map a self-similar set with the strong separation condition into itself. Theorem 4.9

and Corollary 4.10 are the already mentioned generalizations of The Logarithmic

Commensurability Theorem of Feng and Wang [8].

In Section 5 we apply the main result (Theorem 4.5) and some of the above

mentioned results (Lemma 4.8 and Theorem 4.9) of Section 4 to characterize those

self-similar measures on a self-similar set with the strong separation condition that

can be extended to Rd as an isometry invariant Borel measure. It turns out that,

unless there is a clear obstacle, any self-similar measure can be extended to Rd

as an isometry invariant measure. Thus, for a given self-similar set with the
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strong separation condition, there are usually many distinct isometry invariant

Borel measures for which the set is of measure 1.

Let us simply call a measure defined onK isometry invariant if it can be extended

to an isometry invariant measure on Rd. Many different collections of similitudes

can define the same self-similar set. We call {ϕ1, ϕ2, . . . , ϕr} a presentation of K if

K = ϕ1(K)∪∗ . . .∪∗ϕr(K) holds; in other words, K is the attractor of the iterated

function system {ϕ1, ϕ2, . . . , ϕr} with the extra condition of disjointness.

The notion of a self-similar measure onK depends on the particular presentation.

However, we show that the notion of isometry invariant self-similar measure on K

is indifferent of the presentations (Theorem 5.5). By this theorem we can define a

natural number for each self-similar set (satisfying the strong separation property),

an invariant, which does not depend on the presentation (Theorem 5.7). This

invariant is equal to the dimension of the space of isometry invariant self-similar

measures, and is related to the algebraic dependence of the similitudes of some

(any) presentation of K.

In Section 6 we show that the connection between different presentations of a

self-similar set can be very complicated. This sheds some light on why results and

their proofs in Section 5 are complicated. The structure of different presentations

of a self-similar set in R has been also studied recently and independently by Feng

and Wang in [8], where a similar example is presented.

1.3. Self-affine sponges. Take the [0, 1]n unit cube in Rn (n ∈ N) and subdivide

it into m1 × . . . × mn boxes of same size (m1, . . . ,mn ≥ 2) and cut out some of

them. Then do the same with the remaining boxes using the same pattern as in

the first step and so on. What remains after infinitely many steps is a self-affine

set, which is called self-affine Sierpiński sponge. (A more precise definition will be

given in Definition 2.14.)

For n = 2 these sets were studied in several papers (in which they were called

self-affine carpets or self-affine carpets of Bedford and McMullen). Bedford [2] and

McMullen [22] determined the Hausdorff and Minkowski dimensions of these self-

affine carpets. (The Hausdorff and Minkowski dimension of self-affine Sierpiński

sponges was determined by Kenyon and Peres [15]). Gatzouras and Lalley [10]

proved that except in some relatively simple cases such a set has zero or infinity

Hausdorff measure in its dimension (and so in any dimension). Peres extended

their results by proving that (except in the same rare simple cases) for any gauge

function neither the Hausdorff [28] nor the packing [27] measure of a self-affine

carpet can be positive and finite (in fact, the packing measure cannot be σ-finite

either), and remarked that these results extend to self-affine Sierpiński sponges of

higher dimensions.

Recently the first and the second listed authors of the present paper showed

[4] that some nice sets – among others the set of Liouville numbers – have zero

or non-σ-finite Hausdorff and packing measure for any gauge function by proving

that these sets have zero or non-σ-finite measure for any translation invariant Borel

measure. (Much earlier Davies [3] constructed a compact subset of R with this
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property.) So it was natural to ask whether the self-affine carpets of Bedford and

McMullen have this stronger property.

In Section 7 we prove (Corollary 7.7) that for any self-affine Sierpiński sponge

K ⊂ Rn (n ∈ N) with the natural Borel probability measure µ (see in

Definition 2.15) on K and t ∈ Rn, the set K ∩ (K + t) has positive µ measure

if and only if it has non-empty interior relative to K.

For this we prove (Theorem 7.4) that for any self-affine Sierpiński spongeK ⊂ Rn

(n ∈ N) and translation vector t ∈ Rn we have µ
(
K ∩ (K + t)

)
= 0 unless K or t

are of very special form.

We also characterize (Theorem 7.9) those Sierpiński sponges for which we do not

have instability result for translations and the natural probability measure µ. In

fact, we get that µ
(
K ∩ (K+ t)

)
can be close to 1 only for the same special sponges

that appear in the above mentioned result.

In Section 8 we show (Theorem 8.1) that for any self-affine Sierpiński sponge

K ⊂ Rn the natural probability measure µ on K can be extended as a translation

invariant Borel measure ν on Rn. We also extend this result (Theorem 8.2,

Corollary 8.3) to slightly larger classes of self-affine sets.

2. Notation, basic facts and some lemmas

In this section we collect several notions and well known or fairly easy statements

that we will need in the sequel. Some of these might be interesting in their own

right. Of course, only a few of them are needed for each specific section. Though

some of these statements may be well known, for the sake of completeness we

included the proofs.

Notation 2.1. We shall denote by ∪∗ the disjoint union and by dist the

(Euclidean) distance.

2.1. Affine maps, similitudes, isometries.

Definition 2.2. A mapping g : Rd → Rd is called a similitude if there is a constant

r > 0, called similarity ratio, such that dist(g(a), g(b)) = r · dist(a, b) for any

a, b ∈ Rd.

The affine maps of Rd are of the form x 7→ Ax+ b, where A is an n× n matrix

and b ∈ Rd is a translation vector. Thus the set of all affine maps of Rd can be

considered as Rd2+d and so it can be considered as a metric space.

It is easy to check that a sequence (gn) in this metric space converges to an affine

map g if and only if gn converges to g uniformly on any compact subset of Rd.

Definition 2.3. For a given set K ⊂ Rd with affine span AK let AK , SK and

IK denote the metric space (with the above metric) of the injective affine maps,

similitudes and isometries of AK , respectively.

Note also that all these three metric spaces with the composition can be also

considered as topological groups.
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2.2. Self-similar and self-affine sets and measures.

Definition 2.4. A K ⊂ Rd compact set is a self-similar/self-affine set if K =

ϕ1(K) ∪ . . . ∪ ϕr(K), where r ≥ 2 and ϕ1, . . . , ϕr are similitudes/injective and

contractive affine maps.

By the n-th generation elementary pieces of K we mean the sets of the form

(ϕi1 ◦ . . . ◦ ϕin
)(K), where n = 0, 1, 2, . . ..

We shall use multi-indices. By a multi-index we mean a finite sequence of indices;

for I = (i1, i2, . . . , in) let ϕI = ϕi1◦. . .◦ϕin
and pI = pi1pi2 . . . pin

. We shall consider

I = ∅ as a multi-index as well: ϕ∅ is the identity map and p∅ = 1.

Note that the elementary pieces of K are the sets of the form ϕI(K). These sets

are also self-similar/self-affine; and if h is an injective affine map then h(K) is also

self-similar/self-affine and its elementary pieces are the sets of the form h(ϕI(K)).

Definition 2.5. Let K = ϕ1(K)∪ . . .∪ϕr(K) be a self-similar/self-affine set, and

let p1 + . . . + pr = 1, pi > 0 for all i. Consider the symbol space Ω = {1, . . . , r}N

equipped with the product topology and let ν be the Borel measure on Ω which is

the countable infinite product of the discrete probability measure p({i}) = pi on

{1, . . . , r}. Let

π : Ω → K, {π(i1, i2, . . .)} = ∩∞
n=1(ϕi1 ◦ . . . ◦ ϕin

)(K)

be the continuous addressing map of K. Let µ be the image measure of ν under

the projection π; that is,

µ(H) = ν
(
π−1(H)

)
for every Borel set H ⊂ K. (1)

Such a µ is called a self-similar/self-affine measure on K.

One can also define (see e.g. in [7]) self-similar or self-affine measures as the

unique probability measure µ on K such that

µ(H) =

r∑

i=1

piµ
(
ϕ−1

i (H)
)

holds for every Borel set H ⊂ K. It was already proved by Hutchinson [11] that

the two definition agrees.

Lemma 2.6. Let K = ϕ1(K) ∪ . . . ∪ ϕr(K) be a self-affine set, p1 + . . . + pr = 1,

pi > 0 for all i, and let µ be the self-affine measure on K corresponding to the

weights pi.

Then for every affine subspace A either µ(A ∩K) = 0 or A ⊃ K.

Proof. Let {x1, x2, . . . , xk} be a maximal collection of affine independent points

in K. Choose U1, . . . , Uk convex open sets such that xj ∈ Uj (j = 1, . . . , k) and

whenever we choose one point from each Uj they are affine independent. Since

K ∩ Ui is a nonempty relative open subset of K, we may choose an elementary

piece ϕIj
(K) in Uj for each j. Let ε = min1≤j≤k pIj

> 0.
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We shall use the notation we introduced in Definition 2.5. For 1 ≤ i ≤ r and

ω = (i0, i1, . . .) ∈ Ω, let σi(ω) = (i, i0, i1, . . .). Thus ν
(
σi(H)

)
= piν(H) for all

Borel subset H of Ω.

Suppose that A is an affine subspace such that µ(A∩K) > 0. Thus ν
(
π−1(A)

)
>

0. It is easy to prove (see a possible argument later in the proof of Lemma 2.12)

that this implies that there exists an elementary piece σJ (Ω) such that

ν
(
π−1(A) ∩ σJ (Ω)

)
> (1 − ε)ν

(
σJ (Ω)

)
= (1 − ε)pJ .

Since ν
(
(σJ ◦ σIj

)(Ω)
)

= pJpIj
≥ pJε (j = 1, . . . , k), the set π−1(A) must

intersect the sets (σJ ◦ σIj
)(Ω). Therefore the set A must intersect the sets

π((σJ ◦ σIj
)(Ω)) = (ϕJ ◦ ϕIj

)(K) (j = 1, . . . , k).

By picking one point from each A ∩ (ϕJ ◦ ϕIj
)(K), we get a maximal collection

of affine independent points in K since ϕJ is an invertible affine mapping. As this

collection is contained in the affine subspace A, we get that K is also contained in

A. 2

Remark 2.7. In this paper one of our main goals is to study µ
(
K ∩ g(K)

)
, where

g is an affine map of Rd. By the above lemma if the affine map g does not map

the affine span AK of K onto itself then µ
(
g(K) ∩K

)
= 0 since K 6⊂ g(AK). The

other property of affine maps we are interested in is K ⊂ g(K), which also implies

that g maps AK onto itself. Thus it is enough to consider those affine maps g of

Rd that map the affine span AK of K onto itself. Since then both K and g(K) are

in AK , only the restriction of g to AK matters. This is why in the next section we

shall study AK , SK and IK (the injective affine maps, similitudes and isometries

of AK) instead of all affine maps, similitudes and isometries of Rd.

Therefore if we state something (about µ
(
g(K) ∩ K

)
or about the property

K ⊂ g(K)) for every affine map, similitude or isometry g, it will be enough to

prove them for g ∈ AK , g ∈ SK or g ∈ IK , respectively.

Note also that self-similar sets and measures are self-affine as well, so results

about self-affine sets and measures also apply for self-similar sets and measures.

2.3. Separation properties.

Definition 2.8. A self-similar/self-affine set K = ϕ1(K) ∪ . . . ∪ ϕr(K) (or more

precisely, the collection ϕ1, . . . , ϕr of the representing maps) satisfies the

• strong separation condition (SSC) if the union ϕ1(K)∪∗. . .∪∗ϕr(K) is disjoint;

• open set condition (OSC) if there exists a nonempty bounded open set U ⊂ Rd

such that ϕ1(U) ∪∗ . . . ∪∗ ϕr(U) ⊂ U ;

• strong open set condition (SOSC) if there exists a nonempty bounded open

set U ⊂ Rd such that U ∩K 6= ∅ and ϕ1(U) ∪∗ . . . ∪∗ ϕr(U) ⊂ U ;

• convex open set condition (COSC) if there exists a nonempty

bounded open convex set U ⊂ Rd such that ϕ1(U) ∪∗ . . . ∪∗ ϕr(U) ⊂ U ;
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• measure separation condition (MSC) if for any self-similar/self-affine measure

µ on K we have µ
(
ϕi(K) ∩ ϕj(K)

)
= 0 for any 1 ≤ i < j ≤ r.

We note that the first three definitions are standard but we have not seen any

name for the last two in the literature.

It is easy to check the well known fact that we must have K ⊂ U (where E

denotes the closure of a set E) for the open set U in the definition of OSC (and

SOSC, COSC).

It is easy to see (U can be chosen as a small ε-neighborhood of K for the first

implication) that for any self-affine set

SSC =⇒ SOSC =⇒ OSC.

Using the methods of C. Bandt and S. Graf [1], A. Schief proved in [30] that, in

fact, SOSC ⇐⇒ OSC holds for self-similar sets.

In [30] for self-similar sets SOSC =⇒ MSC is also proved. Since the proof

works for self-affine sets as well we get that for any self-affine set

SOSC =⇒MSC.

It seems to be also true that COSC =⇒ SOSC and so COSC =⇒ MSC but

we do not prove this, since we do not need the first implication and the following

lemma is stronger than the second implication.

Lemma 2.9. Let K = ϕ1(K)∪ . . .∪ϕr(K) be a self-affine set in Rd with the convex

open set condition and let µ be a self-affine measure on it. Then for any affine map

Ψ : Rd → Rd we have

µ
(

Ψ
(
ϕi(K) ∩ ϕj(K)

))

= 0 (∀ 1 ≤ i < j ≤ r).

Proof. Let 1 ≤ i < j ≤ r and U be the convex open set given in the definition of

COSC. Let AK be the affine span of K. Since ϕi(U ∩ AK) and ϕj(U ∩ AK) are

disjoint convex open sets in AK , ϕi(U ∩AK) ∩ ϕj(U ∩AK) must be contained

in a proper affine subspace A of AK . Since K ⊂ U ∩ AK , this implies that

ϕi(K) ∩ ϕj(K) ⊂ A, and so

Ψ
(
ϕi(K) ∩ ϕj(K)

)
⊂ Ψ(A). (2)

Since Ψ(A) is an affine subspace, which is smaller dimensional than the affine

span AK of K, we cannot have K ⊂ Ψ(A), so by Lemma 2.6 we must have

µ
(
K ∩ Ψ(A)

)
= 0. By (2) this implies that µ

(
Ψ(ϕi(K) ∩ ϕj(K))

)
= 0. 2

We also note that one can find a self-similar set in R that satisfies even the SSC

but does not satisfy the COSC [8, Example 5.1], so SSC and COSC are independent

even for self-similar sets of R.

Notation 2.10. Given a fixed measure µ, we shall say that two sets are almost

disjoint if their intersection has µ-measure 0. The almost disjoint union will be

denoted by ∪∗∗.
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It is very easy to prove one by one each of the following facts.

Facts 2.11. Let K = ϕ1(K)∪ . . .∪ϕr(K) be a self-affine/self-similar set with the

measure separation condition and let µ be a self-affine/self-similar measure on it,

which corresponds to the weights p1, . . . , pr. Then the following statements hold.

1. Any two elementary pieces of K are either almost disjoint or one contains

the other.

2. Any union of elementary pieces can be replaced by an almost disjoint countable

union.

3. For any multi-index I we have µ ◦ ϕI = pI · µ; that is, µ ◦ ϕI(B) = pI · µ(B)

for any Borel set B ⊂ K.

4. We have µ
(
ϕI(K)

)
= pI for any multi-index I.

5. For any Borel set B ⊂ K we have

µ(B) = inf
{ ∞∑

i=1

pIi
: B ⊂

∞
⋃∗∗

i=1

ϕIi
(K)

}

.

Since SOSC and COSC are both stronger than MSC and one of them will be

always assumed in this paper, the statements of this lemma will often be tacitly

used. Sometimes, for example, we shall even handle the above almost disjoint sets

as disjoint sets and often consider Fact 5 as the definition of self-affine/self-similar

measures.

Lemma 2.12. Let K = ϕ1(K) ∪ . . . ∪ ϕr(K) be a self-affine set with the measure

separation property (or in particular with the SSC or SOSC or COSC) and let µ be

a self-affine measure on it. Then for every ε > 0 and for every Borel set B ⊂ K

with positive µ-measure there exists an elementary piece a(K) of K of arbitrarily

large generation such that µ
(
B ∩ a(K)

)
> (1 − ε)µ

(
a(K)

)
.

Proof. Since µ(B) > 0, using Fact 5, B can be covered by countably many

elementary pieces ϕIi
(K) (i ∈ N) such that

(1 + ε)µ(B) >
∑

i

µ
(
ϕIi

(K)
)
.

By subdividing the elementary pieces if necessary, we can suppose that each is of

large generation.

If there exists an i ∈ N such that

(1 + ε)µ
(
B ∩ ϕIi

(K)
)
> µ

(
ϕIi

(K)
)

then we can choose ϕIi
as a.

Otherwise we have (1 + ε)µ
(
B ∩ ϕIi

(K)
)
≤ µ

(
ϕIi

(K)
)

for each i ∈ N, hence

(1+ε)µ(B) = (1+ε)µ
(⋃

i

B∩ϕIi
(K)

)
≤

∑

i

(1+ε)µ
(
B∩ϕIi

(K)
)
≤

∑

i

µ
(
ϕi(K)

)
,

contradicting the above inequality. 2
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Lemma 2.13. Let K = ϕ1(K) ∪ . . . ∪ ϕr(K) be a self-affine set with the measure

separation property (or in particular with the SSC or SOSC or COSC) and let µ

be a self-affine measure on it. Then for any Borel set B ⊂ K and ε > 0 there

exist countably many pairwise almost disjoint elementary pieces ai(K) such that

µ
(
B ∩ ai(K)

)
> (1 − ε)µ

(
ai(K)

)
and µ

(
B \ ∪∗∗

i ai(K)
)

= 0.

Proof. The elementary pieces ai(K) will be chosen by greedy algorithm. In the

nth step (n = 0, 1, 2, . . .) we choose the largest elementary piece an(K) such that

µ
(
an(K)∩ai(K)

)
= 0 (0 ≤ i < n) and µ

(
B∩an(K)

)
> (1−ε)µ

(
an(K)

)
. If there

is no such an(K) then the procedure terminates.

We claim that µ
(
B \ ∪∗∗

i ai(K)
)

= 0. Suppose that µ
(
B \ ∪∗∗

i ai(K)
)
> 0. Then

by Lemma 2.12 there exists an elementary piece a(K) such that

µ
(
(B \ ∪∗∗

i ai(K)) ∩ a(K)
)
> (1 − ε)µ

(
a(K)

)
.

Then µ
(
B ∩ a(K)

)
> (1 − ε)µ

(
a(K)

)
but a(K) was not chosen in the procedure.

This could happen only if a(K) intersects a chosen elementary piece ai(K) in a set

of positive measure. But then either ai(K) ⊃ a(K) or ai(K) ⊂ a(K), which are

both impossible. 2

2.4. Self-affine Sierpiński sponges.

Definition 2.14. By self-affine Sierpiński sponge we mean self-affine sets of the

following type. Let n, r ∈ N, m1,m2, . . . ,mn ≥ 2 integers, M be the linear

transformation given by the diagonal n× n matrix

M =






m1 0
. . .

0 mn




 ,

and let

D = {d1, . . . , dr} ⊂ {0, 1, . . . ,m1 − 1} × . . .× {0, 1, . . . ,mn − 1}

be given. Let ϕj(x) = M−1(x + dj) (j = 1, . . . , r) . Then the self-affine set

K(M,D) = K = ϕ1(K) ∪ . . . ∪ ϕr(K) is a Sierpiński sponge.

We can also define the self-affine Sierpiński sponge as

K = K(M,D) =

{
∞∑

k=1

M−kαk : α1, α2, . . . ∈ D

}

,

or equivalently K is the unique compact set in Rn (in fact, in [0, 1]n) such that

M(K) = K +D =

r⋃

j=1

K + dj ;

that is,

K = M−1(K) +M−1(D).
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10 M. Elekes, T. Keleti, A. Máthé

By iterating the last equation we get

K = M−k(K) +M−k(D) +M−k+1(D) + . . .+M−1(D)

=
⋃

α1,...,αk∈D

M−k(K) +M−kαk + . . .+M−1α1.

Note that the k-th generation elementary pieces of K are the sets of the form

M−k(K)+M−k(αk)+. . .+M−1(α1) (α1, . . . , αk ∈ D) and the only 0-th generation

elementary part of K is K itself.

Definition 2.15. By the standard (or sometimes natural) probability measure on

a self-affine sponge K = K(M,D) we shall mean the self-affine measure on K

obtained by using equal weights pj = 1
r (j = 1, . . . , r).

Since the first generation elementary pieces of K are translates of each other (in

fact, so are the k-th generation elementary parts), this is indeed the most natural

self-affine measure on K. Using (5) of Facts 2.11 we get that

µ(B) = inf

{
∞∑

i=1

µ(Si) : B ⊂ ∪∞
i=1Si, Si is an elementary part of K (i ∈ N)

}

for every Borel set B ⊂ K.

Let µ̃ be the Zn-invariant extension of µ to Rn; that is, for any Borel set B ⊂ Rn

let

µ̃(B) =
∑

t∈Zn

µ
(
(B + t) ∩K

)
.

One can check that

µ̃
(
M l(H) + v

)
= rlµ(H) for any H ⊂ K Borel set, v ∈ Zn, l = 0, 1, 2, . . . . (3)

Lemma 2.16. Let m1, . . . ,mn ≥ 2 and M like in Definition 2.14 and let t ∈ Rn be

such that ‖Mkt‖ > 0 for every k = 0, 1, 2, . . ., where ‖.‖ denotes the distance from

Zn.

Then there exists infinitely many k ∈ N such that ‖Mkt‖ > 1
2max(m1,...,mn) .

Proof. This lemma immediately follows from the following clear fact:

‖u‖ ≤ 1

2 max(m1, . . . ,mn)
=⇒ ‖Mu‖ ≥ min(m1, . . . ,mn)‖u‖ ≥ 2‖u‖.

2

2.5. Invariant extension of measures to larger sets.

Lemma 2.17. Suppose that the group G acts on a set X, M is a G-invariant σ-

algebra on X, A ∈ M, MA = {B ∈ M : B ⊂ A} and µ is a measure on (A,MA).

Then the following two statements are equivalent:

(i) µ
(
g(B)

)
= µ(B) whenever g ∈ G and B, g(B) ∈ MA.
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(ii) There exists a G-invariant measure µ̃ on (X,M) such that µ̃(B) = µ(B) for

every B ∈ MA.

Proof. The implication (ii) ⇒ (i) is obvious. For proving the other implication we

construct µ̃ as follows.

If H is a set of the form

H = ∪∗∞
i=1Bi, where g1, g2, . . . ∈ G and g1(B1), g2(B2), . . . ∈ MA (4)

then let

µ̃(H) =

∞∑

i=1

µ
(
gi(Bi)

)

and let µ̃(H) = ∞ if H ∈ M cannot be written in the above form.

First we check that µ̃ is well defined; that is, if we have (4) and H = ∪∗∞
j=1Cj ,

h1, h2, . . . ∈ G and h1(C1), h2(C2), . . . ∈ MA then

∞∑

i=1

µ
(
gi(Bi)

)
=

∞∑

j=1

µ
(
hj(Cj)

)
. (5)

Using that Bi ⊂ H = ∪∗∞
j=1Cj we get that gi(Bi) = gi(∪∗∞

j=1Bi ∩Cj) = ∪∗∞
j=1gi(Bi ∩

Cj) and so

∞∑

i=1

µ
(
gi(Bi)

)
=

∞∑

i=1

µ
(
∪∗∞

j=1 gi(Bi ∩ Cj)
)

=

∞∑

i=1

∞∑

j=1

µ
(
gi(Bi ∩ Cj)

)
,

and similarly
∞∑

j=1

µ
(
hj(Cj)

)
=

∞∑

j=1

∞∑

i=1

µ
(
hj(Bi ∩ Cj)

)
.

Thus, using condition (i) for B = gi(Bi ∩Cj) and g = hjg
−1
i , we get (5).

Using the freedom in (4) and that whenever H ∈ M can be written in the form

(4) then the same is true for any H ⊃ H ′ ∈ M, it is easy to check that µ̃ is a

G-invariant measure on (X,M) such that µ̃(B) = µ(B) for every B ∈ MA. 2

We will need only the following special case of this lemma.

Lemma 2.18. Let µ be a Borel measure on a Borel set A ⊂ Rn (n ∈ N), G is group

of affine transformations of Rn and suppose that

µ
(
g(B)

)
= µ(B) whenever b ∈ G, B, g(B) ⊂ A and B is a Borel set. (6)

Then there exists a G-invariant Borel measure µ̃ on Rn such that µ̃(B) = µ(B)

for any B ⊂ A Borel set. 2

Remark 2.19. The extension we get in the above proof do not always give the

measure we expect – it may be infinity for too many sets. For example, if A ⊂ R

is a Borel set of first category with positive Lebesgue measure, G is the group of

translations and µ is the restriction of the Lebesgue measure to A then the Lebesgue
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12 M. Elekes, T. Keleti, A. Máthé

measure itself would be the natural translation invariant extension of µ, however

the extension µ̃ as defined in the proof is clearly infinity for every Borel set of second

category.

Definition 2.20. Let µ be a Borel measure on a compact set K. We say that

µ is isometry invariant if given any isometry g and a Borel set B ⊂ K such that

g(B) ⊂ K, then µ(B) = µ
(
g(B)

)
.

This definition makes sense since (by Lemma 2.18) exactly the isometry invariant

measures on K can be extended to be isometry invariant measures on Rn in the

usual sense.

As an illustration of Lemma 2.18 we mention the following special case with a

peculiar consequence.

Lemma 2.21. Let A ⊂ Rn (n ∈ N) be a Borel set such that A ∩ (A + t) is at

most countable for any t ∈ Rn. Then any continuous Borel measure µ on A

(continuous here means that the measure of any singleton is zero) can be extended

to a translation invariant Borel measure on Rn. 2

Note that although the condition that A ∩ (A+ t) is at most countable for any

t ∈ Rn seems to imply that A is very small, such a set can be still fairly large. For

example there exists a compact set C ⊂ R with Hausdorff dimension 1 such that

C ∩ (C + t) contains at most one point for any t ∈ R [14]. Combining this with

Lemma 2.21 we get the following.

Corollary 2.22. There exists a compact set C ⊂ R with Hausdorff dimension 1

such that any continuous Borel measure µ on C can be extended to a translation

invariant Borel measure on R. 2

2.6. Some more lemmas. The following simple lemmas might be known but for

completeness (and because it is easier to prove them than to find them) we present

their proof.

Recall that the support of a measure is the smallest closed set with measure zero

complement.

Lemma 2.23. Let µ be a finite Borel measure on Rn with compact support K. Then

for every ε > 0 there exists a δ > 0 such that

|u| ≥ ε =⇒ µ
(
K ∩ (K + u)

)
≤ (1 − δ)µ(K).

Proof. We prove by contradiction. Assume that there exists an ε > 0 and a sequence

u1, u2, . . . ∈ Rn such that |un| ≥ ε (for every n ∈ N) and µ
(
K∩(K+u)

)
→ µ(K) > 0

(n → ∞). By omitting some (at most finitely many) zero terms we can guarantee

that every un is in the compact annulus {x : ε ≤ |x| ≤ diam(K)} (where diam

denotes the diameter), so by taking a subsequence we can suppose that (un)

converges, say to u. Since K ∩ (K + u) is a proper compact subset of K (since

K is compact and u 6= 0, K + u ⊃ K is impossible) and K is the support of µ, we

must have µ(K) > µ
(
K ∩ (K + u)

)
= µ(K + u).
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It is well known (see e.g. [29], 2.18. Theorem) that any finite Borel measure is

outer regular in the sense that the measure of any Borel set is the infimum of the

measures of the open sets that contain the Borel set. Thus µ(K+u) < µ(K) implies

that there exists an open set G ⊃ K + u such that µ(G) < µ(K). Then whenever

|un − u| is less than the (positive) distance between K and the complement of G,

G contains K+un and so µ(K) > µ(G) ≥ µ(K+un). This is a contradiction since

un → u and µ(K + un) = µ
(
K ∩ (K + un)

)
→ µ(K). 2

Lemma 2.24. Let K ⊂ Rd be compact and µ be a probability Borel measure on K

such that any nonempty relative open subset of K has positive µ measure. Then if

the sequence (gn) of affine maps converges to an affine map g and µ
(
gn(K)∩K

)
→ 1

then µ
(
g(K) ∩K

)
= 1. Moreover, K ⊂ g(K).

Proof. Suppose that µ
(
g(K) ∩K

)
= q < 1. Let g(K)ε denote the ε-neighborhood

of g(K). Since
⋂∞

n=1(g(K)1/n ∩ K) = g(K) ∩ K and µ is a finite measure we

have µ
(
g(K)1/n ∩K

)
→ µ

(
g(K) ∩K

)
= q. Thus there exists an ε > 0 for which

µ
(
g(K)ε∩K

)
≤ 1+q

2 < 1. Since gn converges uniformly onK, for n large enough we

have gn(K) ⊂ g(K)ε and so µ
(
gn(K)∩K

)
≤ 1+q

2 , contradicting µ
(
gn(K)∩K

)
→ 1.

Therefore we proved that µ
(
g(K) ∩K

)
= 1.

Then K \ g(K) is relative open in K and has µ measure zero, so it must be

empty, therefore K ⊂ g(K). 2

3. Self-affine sets with the strong separation condition

Proposition 3.1. For any self-affine set K ⊂ Rd with the strong separation

condition there exists an open neighborhood U ⊂ AK of the identity map such

that for any g ∈ U ,

g(K) ⊃ K ⇐⇒ g = identity.

Proof. Let n denote the dimension of the affine span of K.

We shall prove that there exists a small open neighborhood V ⊂ AK of the

identity map such that for any g ∈ V we have g(K) ⊂ K ⇐⇒ g = identity. This

would be enough since then for any g ∈ V we get K ⊂ g−1(K) ⇐⇒ g = identity,

therefore U = V −1 = {g−1 : g ∈ V } has all the required properties.

Similarly as in the proof of Lemma 2.6, choose n + 1 elementary pieces

ϕI1(K), . . . , ϕIn+1
(K) of K so that if we pick one point from the convex hull of

each of them then we get a maximal collection of affine independent points in the

affine span of K.

Let d = min1≤i≤n+1 dist(ϕIi
(K),K \ ϕIi

(K)), then d > 0. Let V be a so small

neighborhood of the identity map that dist(x, g(x)) < d for any g ∈ V and x ∈ K.

Let g ∈ V and g(K) ⊂ K. Then, by the definition of d and V we have

g(ϕIi
(K)) ⊂ ϕIi

(K) for every 1 ≤ i ≤ n + 1. Then the convex hulls of these

elementary pieces are also mapped into themselves. Since each of these convex

hulls is homeomorphic to a ball, by Brouwer’s fixed point theorem we get a fixed

point of g in each of these elementary pieces. So we obtained n+ 1 fixed points of
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g such that their affine span is exactly the affine span of K. Since g is an affine

map, the set of its fixed points form an affine subspace, thus the set of fixed points

of g contains the affine span of K. Since g ∈ AK , g is defined exactly on the affine

span of K, therefore g must be the identity map. 2

Theorem 3.2. Let K = ϕ1(K) ∪∗ . . . ∪∗ ϕr(K) be a self-affine set satisfying the

strong separation condition and let µ be a self-affine measure on K. Then there

exists a c < 1 and an open neighborhood U ⊂ AK of the identity map such that

g ∈ U \ {identity} =⇒ µ
(
K ∩ g(K)

)
< c.

Proof. Using Proposition 3.1 we can choose a small open neighborhood U ⊂ AK of

the identity map such that even in the closure of U the only affine map g for which

g(K) contains K is the identity map and so that

dist(x, g(x)) < 1 for any g ∈ U and x ∈ K. (7)

Since AK is locally compact, we may also assume that the closure of U is compact.

We claim that we can choose an even smaller open neighborhood V ⊂ U

of the identity map such that ϕ−1
i ◦ V ◦ ϕi ⊂ U for i = 1, . . . , r and that

g(ϕi(K)) ∩ ϕj(K) = ∅ for any i 6= j and g ∈ V . Indeed, the first property can

be satisfied since AK is a topological group and those g’s for which the second

property do not hold are far from the identity map.

Now we claim that there exists a c < 1 such that g ∈ U \V =⇒ µ
(
g(K)∩K

)
< c.

Suppose that there exists a sequence (gn) ⊂ U \ V such that µ
(
K ∩ gn(K)

)
→ 1.

Since U \ V is compact there exists a subsequence gni
such that gni

→ h ∈ U \ V .

By Lemma 2.24 this implies that h(K) ⊃ K but in U \ V there is no such affine

map h.

We prove that this U and this c have the required properties; that is, g ∈
U \ {identity} =⇒ µ

(
K ∩ g(K)

)
< c.

If g ∈ U \ V then we are already done, so suppose that g ∈ V \ {identity}. Let

F denote the set of fixed points of g.

The heuristics of the remaining part of the proof is the following. The affine map

g moves K too slightly. We zoom in on small elementary pieces a(K) of K so that

each g(a(K)) intersects only a(K) in K, but g moves a(K) far enough (compared

to its size). Technically this second requirement means that a−1 ◦ g ◦ a ∈ U \ V ,

so we can use the g ∈ U \ V case for the elementary piece a(K). We find such an

elementary piece around each point of K that is not a fixed point of g, and so we

get a partition of K \ F into elementary pieces with the above property. Finally,

by adding up the estimates for these elementary pieces we derive µ
(
g(K)∩K

)
< c.

Claim 3.3. For any x ∈ K \ F there exists a largest elementary piece ϕIx
(K) of

K that contains x and for which ϕ−1
Ix

◦ g ◦ ϕIx
∈ U \ V .

Proof. Let (i1, i2, . . .) be the sequence of indices for which

{x} =

∞⋂

n=1

(ϕi1 ◦ ϕi2 ◦ . . . ◦ ϕin
)(K),
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and let In = (i1, . . . , in). Since g ∈ V , we have ϕ−1
i1

◦ g ◦ ϕi1 ∈ U by the definition

of V . If for some n we have ϕ−1
In

◦ g ◦ ϕIn
∈ V then by the definition of V we have

ϕ−1
In+1

◦ g ◦ ϕIn+1
= ϕ−1

in+1
◦ ϕ−1

In
◦ g ◦ ϕIn

◦ ϕin+1
∈ U.

Therefore it is enough to find an n such that ϕ−1
In

◦g◦ϕIn
6∈ V since then taking the

smallest such n, Ix = In has the desired property. Letting yn = ϕ−1
In

(x) we have

yn ∈ K (since {x} =
⋂∞

n=1 ϕIn
(K)) and (ϕ−1

In
◦ g ◦ ϕIn

)(yn) = ϕ−1
In

(g(x)). Since x

is not a fixed point of g, for n large enough we have

dist
(
g(x), ϕIn

(K)
)
>

dist(g(x), x)

2

def
= t > 0.

Since each ϕi is a contractive affine map, there exists an αi < 1 such that

dist(ϕi(a), ϕi(b)) ≤ αi · dist(a, b) for any a, b. Then, using the multi-index notation

αIn
= αi1 · . . . · αin

, we clearly have dist(ϕIn
(a), ϕIn

(b)) ≤ αIn
· dist(a, b) for any

a, b. Then dist
(
ϕ−1

In
(g(x)),K

)
> t/αIn

, hence dist
(
(ϕ−1

In
◦ g ◦ϕIn

)(yn),K
)
> t/αIn

,

which is bigger than 1 if n is large enough. Thus for n large enough, ϕ−1
In

◦ g ◦ ϕIn

is not in V , since it is not even in U by (7). 2

Claim 3.4. For any x ∈ K \ F we have g(ϕIx
(K)) ∩ K ⊂ ϕIx

(K), where

Ix = In = (i1, . . . , in) is the multi-index we got in Claim 3.3.

Proof. Let k ∈ {0, 1, . . . , n − 1} be arbitrary and let Ik = (i1, . . . , ik). Then

ϕ−1
Ik

◦g◦ϕIk
∈ V , hence for any l 6= ik+1 we have (ϕ−1

Ik
◦g◦ϕIk

◦ϕik+1
)(K)∩ϕl(K) = ∅,

which is the same as (g ◦ ϕIk+1
)(K) ∩ (ϕIk

◦ ϕl)(K) = ∅ (l 6= ik+1). Since

(g ◦ ϕIn
)(K) ⊂ (g ◦ ϕIk+1

)(K), this implies that

(g ◦ ϕIn
)(K) ∩ (ϕIk

◦ ϕl)(K) = ∅ (k ∈ {0, 1, . . . , n− 1}, l 6= ik+1).

Since K \ϕIn
(K) = ∪n−1

k=0 ∪l 6=ik+1
(ϕIk

◦ϕl)(K), this implies that g(ϕIn
(K))∩K ⊂

ϕIn
(K). 2

The elementary pieces {ϕIx
(K) : x ∈ K \ F} clearly cover K \ F . Since for any

x 6= y we have ϕIx
(K) ∩ ϕIy

(K) = ∅ or ϕIx
(K) ⊂ ϕIy

(K) or ϕIx
(K) ⊃ ϕIy

(K),

one can choose a

K \ F ⊂
∞
⋃∗

i=1

ϕJi
(K) (8)

countable disjoint subcover. By Claim 3.4 we have

g(ϕJi
(K)) ∩K ⊂ ϕJi

(K). (9)

Since g is not the identity map (of the affine span of K) and F is the set of

fixed points of the affine map g, the dimension of the affine subspace F is smaller

than the dimension of the affine span of K, and so we cannot have g(F ) ⊃ K. By

Lemma 2.6 this implies that µ
(
g(F ) ∩K

)
= 0. Using this last equation, (8), (9),
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and finally the definition of a self-affine measure we get that

µ
(
g(K) ∩K

)
≤ µ

(
g(F ) ∩K

)
+ µ

(
g(K \ F ) ∩K

)
= µ

(
g(K \ F ) ∩K

)

≤ µ
(

g
( ∞

⋃∗

i=1

ϕJi
(K)

)

∩K
)

=
∞∑

i=1

µ
(

g
(
ϕJi

(K)
)
∩K

)

=

∞∑

i=1

µ
(

g
(
ϕJi

(K)
)
∩ ϕJi

(K)
)

=

∞∑

i=1

µ
(

ϕJi

(
(ϕ−1

Ji
◦ g ◦ ϕJi

)(K) ∩K
))

=

∞∑

i=1

pJi
µ
(

(ϕ−1
Ji

◦ g ◦ ϕJi
)(K) ∩K

)

.

Since ϕ−1
Ji

◦ g ◦ ϕJi
∈ U \ V , the measures in the last expression are less than c.

Thus µ
(
g(K) ∩K

)
<

∑
pJi

· c =
∑
µ
(
ϕJi

(K)
)
· c = µ

( ⋃∗
i ϕJi

(K)
)
· c = c, which

completes the proof. 2

Theorem 3.5. Let K ⊂ Rd be a self-affine set with the strong separation condition

and let µ be a self-affine measure on K. Then there exists a constant c < 1 such

that for any isometry g we have µ
(
K ∩ g(K)

)
< c unless g(K) = K.

Proof. Suppose that gn ∈ IK (that is, gn is an isometry of the affine span of K)

such that gn(K) 6= K (n ∈ N) and µ
(
K ∩ gn(K)

)
→ 1. We can clearly assume

that K ∩ gn(K) 6= ∅ for each n and so the whole sequence (gn) is in a compact

subset of IK . Thus, after choosing a subsequence if necessary, we can also assume

that gn converges to an h ∈ IK . By Lemma 2.24 we must have K ⊂ h(K). It is

well known and not hard to prove that no compact set in Rd can have an isometric

proper subset, so K ⊂ h(K) implies that h(K) = K.

Applying Theorem 3.2 we get a c < 1 and an open neighborhood U ⊂ AK of the

identity such that g ∈ U \ {identity} =⇒ µ
(
K ∩ g(K)

)
< c.

Since gn → h we get gn ◦ h−1 → identity. Let n be large enough to have

gn ◦ h−1 ∈ U and µ
(
K ∩ gn(K)

)
> c. Since gn(K) 6= K but h(K) = K we cannot

have gn = h and so gn ◦ h−1 ∈ U \ {identity}. Then, by the previous paragraph,

we get µ
(
K ∩ gn(K)

)
< c, contradicting µ

(
K ∩ gn(K)

)
> c. 2

4. Self-similar sets with the strong separation property

Our first goal in this section is to prove the following theorem.

Theorem 4.1. Let K = ϕ1(K) ∪∗ . . . ∪∗ ϕr(K) be a self-similar set satisfying the

strong separation condition and µ be a self-similar measure on it. There exists c < 1

such that for every similitude g either µ
(
g(K) ∩K

)
< c or K ⊂ g(K).

Now, for the sake of transparency we outline the proof. At first we need a new

notation.

From SK we excluded those similarity maps which map everything to a single

point. So let S∗
K be the metric space of all degenerate and all non-degenerate
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Self-similar and self-affine sets 17

similarity maps in the affine span AK of K; that is,

S∗
K = SK ∪ {f | f : AK → {y}, y ∈ AK}. (10)

First we show that there exists a compact set G ⊂ S∗
K of similarity maps such

that for every g′ ∈ S∗
K there exists g ∈ G such that g′(K) ∩K = g(K) ∩K. Then

it is easy to see that it suffices to prove the theorem for g ∈ G. (It is easy to see

that no such compact set G in SK exists.)

Let µH be a constant multiple of Hausdorff measure of appropriate dimension

so that µH(K) = 1. The restriction of this measure to K is a self-similar measure.

Let us consider those h ∈ G for which K ⊂ h(K) holds. Using Hausdorff measures

and Theorem 3.2 we prove that there are only finitely many such h, and also that

the theorem holds in small neighbourhoods of each such h for the measure µH . The

maximum of the corresponding finitely many values c is still strictly smaller than 1.

Let us now cut these small neighbourhoods out of G. Using upper semicontinuity

of our measure (Lemma 2.24) we produce a c < 1 such that for the remaining

similarity maps g we have µH

(
g(K) ∩K

)
< c. Then clearly the same holds for all

elements of G, possibly with a larger c < 1, finishing the proof for the measure µH .

Applying the theorem for µH , and also in a small open neighbourhood U of the

identity for every self-similar measure µ, we show that if h ∈ G, K ⊂ h(K), and g

is in a small neighbourhood of h then µ
(
g(K) ∩K

)
< c. Then the same argument

as above (using upper semicontinuity) yields the theorem, possibly with a larger

constant again.

Proposition 4.2. Let K = ϕ1(K) ∪∗ . . . ∪∗ ϕr(K) be a self-similar set satisfying

the strong separation condition. Then there exists a compact set G ⊂ S∗
K such that

for every similarity map g′ ∈ S∗
K there is a g ∈ G for which g′(K)∩K = g(K)∩K

holds.

Proof. Let D denote the diameter of K, let δ = min1≤i<j≤r dist(ϕi(K), ϕj(K)) and

let

G = {g ∈ S∗
K : g(K) ∩K 6= ∅, the similarity ratio of g is at most D/δ} ∪ {g0},

where g0 ∈ S∗
K is an arbitrary fixed similarity map such that g(K) ∩K = ∅. It is

easy to check that G ⊂ S∗
K is compact.

Let g′ ∈ S∗
K . If g′ ∈ G or g′(K) ∩K = ∅ then we can choose g = g′ or g = g0,

respectively. So we can suppose that g′(K) ∩ K 6= ∅ and the similarity ratio of

g′ is greater than D/δ. Then the minimal distance between the first generation

elementary pieces g′(ϕj(K)) of g′(K) is larger than D. So there exists ϕi such that

g′(K) ∩ K = g′(ϕi(K)) ∩ K. Therefore g′ can be replaced by g′ ◦ ϕi, which has

similarity ratio αi times smaller than the similarity ratio of g′, where ai denotes the

similarity ratio of ϕi. Since max(α1, . . . , αr) < 1, this way in finitely many steps

we get a g with similarity ratio at most D/δ such that g(K)∩K = g′(K)∩K 6= ∅,
which completes the proof. 2

Proposition 4.3. Let K = ϕ1(K) ∪∗ . . . ∪∗ ϕr(K) be a self-similar set satisfying

the strong separation condition.
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18 M. Elekes, T. Keleti, A. Máthé

(i) Then {g ∈ SK : g(K) ⊃ K} is discrete in SK , hence countable, and also

closed in SK .

(ii) Let µH be a constant multiple of Hausdorff measure of appropriate dimension

so that µH(K) = 1. There exists c < 1 such that for every similitude g either

µH

(
g(K) ∩K

)
< c or K ⊂ g(K).

Proof. By Lemma 2.24 {g ∈ SK : g(K) ⊃ K} is closed. Since every discrete subset

of a subspace of Rd2+d is countable, in order to prove (i) it is enough to prove that

{g ∈ SK : g(K) ⊃ K} is discrete.

Let ε be a positive number to be chosen later, and h be a similitude for which

K ⊂ h(K). Denote by Kδ the δ-neighbourhood of K. As µH

(
h(K)

)
is finite, there

is a small δ > 0 such that µH

(
Kδ ∩ (h(K) \ K)

)
< ε. Applying Theorem 3.2 to

K and µH we obtain an open neighbourhood U ⊂ AK and a constant cH . There

exists an open neighbourhood Wε ⊂ SK of the identity such that

(a) Wε = W−1
ε ⊂ U ,

(b) dist(g(x), x) < δ for every x ∈ K,

(c) µH

(
g(B)

)
≤ (1 + ε)µH(B) for every g ∈Wε and Borel set B,

where for (c) we use that a similitude of ratio α multiplies the s-dimensional

Hausdorff measure by αs.

Let g ∈ Wεh and g 6= h. Clearly Wεh is an open neighbourhood of h and g◦h−1,

h ◦ g−1 ∈Wε \ {identity}, and (h ◦ g−1)(K) ⊂ Kδ. Hence

µH

(
K ∩ g(K)

)
≤ (1 + ε)µH

(
(h ◦ g−1)(K ∩ g(K))

)
=

= (1 + ε)µH

(
(h ◦ g−1)(K) ∩ h(K)

)
=

= (1 + ε)µH

(
(h ◦ g−1)(K) ∩K

)
+ (1 + ε)µH

(
(h ◦ g−1)(K) ∩ (h(K) \K)

)
≤

≤ (1 + ε)cH + (1 + ε)µH

(
Kδ ∩ (h(K) \K)

)
≤ (1 + ε)cH + (1 + ε)ε. (11)

The last expression is clearly smaller than 1 if ε is small enough, so let us fix

such an ε. Therefore if g ∈ Wεh and g 6= h then g(K) 6⊃ K, which shows that

{g ∈ SK : g(K) ⊃ K} is discrete finishing the proof of (i).

In order to prove (ii) suppose towards a contradiction that sup {µH(g(K)∩K) :

g ∈ S∗
K , g(K) 6⊃ K} = 1. Then we also have sup {µH(g(K) ∩ K) : g ∈

G, g(K) 6⊃ K} = 1. Let (gn) be a convergent sequence in G so that gn(K) 6⊃ K,

µH

(
gn(K) ∩K

)
→ 1, gn → h. Lemma 2.24 yields h(K) ⊃ K, hence gn 6= h. If n

is large enough then gn ∈ Wεh and, by (11),

µH

(
K ∩ gn(K)

)
≤ (1 + ε)cH + (1 + ε)ε, contradicting µH

(
gn(K) ∩K

)
→ 1. 2

Proof of Theorem 4.1. By Proposition 4.2 we can assume g ∈ G. Let cH be the

constant yielded by Proposition 4.3 (ii). Fix h ∈ G with h(K) ⊃ K. There are only

finitely many such h by Proposition 4.3 (i) and the compactness of G.
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Self-similar and self-affine sets 19

Let us now apply Lemma 2.12 to the self-similar set h(K), µH , 0 < ε ≤ 1 − cH
and B = K ⊂ h(K). We obtain ϕI such that

µH

(
K ∩ h(ϕI(K))

)
≥ (1 − ε)µH

(
h(ϕI(K))

)
.

Hence Proposition 4.3 (ii) applied to the self-similar set h(ϕI(K)) and the similitude

(h ◦ ϕI)
−1 gives K ⊃ h(ϕI(K)).

Since h(ϕI(K)) is open in h(K), it is also open in K and so it can be written

as a union of elementary pieces of K. Since h(ϕI(K)) is compact this implies

that h(ϕI(K)) is a finite union of elementary pieces of K. Let ϕJ (K) be one

of these elementary pieces. So ϕJ (K) ⊂ h(ϕI(K)) ⊂ K ⊂ h(K). As ϕJ (K)

is open in K, it is also open in h(ϕI(K)), hence also in h(K). Therefore

dist(ϕJ (K), h(K) \ ϕJ (K)) > 0, and so for every g that is close enough to h we

have
(
g ◦ h−1

)(
h(K) \ ϕJ (K)

)
∩ ϕJ (K) = ∅.

Thus, as ϕJ (K) ⊂ h(K), for every such g we have

g(K) ∩ ϕJ(K) =
(
g ◦ h−1

)(
h(K)

)
∩ ϕJ (K) =

(
g ◦ h−1

)(
ϕJ(K)

)
∩ ϕJ(K).

On the other hand, Theorem 3.2 yields that there exists a c < 1 such that if g is

close enough to h and g 6= h then

µ
(
(g ◦ h−1)(ϕJ (K)) ∩ ϕJ(K)

)
< c · µ

(
ϕJ (K)

)
= c · pJ .

Therefore µ
(
g(K) ∩ ϕJ (K)

)
= µ

(
(g ◦ h−1)(ϕJ (K)) ∩ ϕJ(K)

)
< c · pJ and

µ
(
g(K) ∩K

)
= µ

(
g(K) ∩ ϕJ(K)

)
+ µ

(
g(K) ∩ (K \ ϕJ (K))

)

< c · pJ + 1 − pJ = 1 − (1 − c)pJ . (12)

As we only considered finitely many h’s, there exists c′ < 1 such that if g is close to

one of these h’s, but distinct from it, then µ
(
g(K) ∩K

)
< c′. This, together with

Lemma 2.24 provides a c′′ < 1 such that for every g ∈ G either µ
(
g(K) ∩K

)
< c′′

or g(K) ⊃ K. (Just like at the end of the proof of Proposition 4.3.) Finally, by

Proposition 4.2 this also holds outside G. 2

We will apply this theorem to elementary pieces of K instead of K itself. It is

easy to see that the same c works for every elementary piece; that is, we have the

following corollary of Theorem 4.1.

Corollary 4.4. Let K = ϕ1(K) ∪∗ . . . ∪∗ ϕr(K) be a self-similar set satisfying

the strong separation condition and µ be a self-similar measure on it. There exists

c < 1 such that for every similitude g and every elementary piece a(K) of K either

µ
(
g(K) ∩ a(K)

)
< c · µ

(
a(K)

)
or a(K) ⊂ g(K). 2

Now we are ready to prove the second main result of this section.

Theorem 4.5. Let K = ϕ1(K) ∪∗ . . . ∪∗ ϕr(K) be a self-similar set satisfying the

strong separation condition, µ be a self-similar measure on it, and g be a similitude.

Then µ
(
g(K)∩K

)
> 0 if and only if the interior (in K) of g(K)∩K is nonempty.

Moreover, µ
(
intK(g(K) ∩K)

)
= µ

(
g(K) ∩K

)
.
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20 M. Elekes, T. Keleti, A. Máthé

Proof. If the interior (in K) of g(K) ∩K is nonempty then clearly it is of positive

measure, since the measure of every elementary piece is positive.

Let c be the constant given by Corollary 4.4, and let g be a similitude such that

µ
(
g(K)∩K

)
> 0. Applying Lemma 2.13 for B = g(K)∩K and ε = 1−c we obtain

countably many disjoint elementary pieces ai(K) of K such that

µ
(
g(K) ∩ ai(K)

)
= µ

(
(g(K) ∩K) ∩ ai(K)

)
> c · µ

(
ai(K)

)
(13)

and
(
g(K) ∩ K

)
\ ⋃∗

i ai(K) is of µ-measure zero. By Corollary 4.4, (13) implies

that ai(K) ⊂ g(K). Since ai(K) is open in K, it is open in g(K) ∩ K, so
⋃∗

i ai(K) ⊂ intK(g(K) ∩K). Hence

µ
(
g(K) ∩K

)
= µ

(
g(K) ∩K ∩

⋃∗

i

ai(K)
)

+ µ
(
(g(K) ∩K) \

⋃∗

i

ai(K)
)

= µ
( ⋃∗

i

ai(K)
)
≤ µ

(
intK(g(K) ∩K)

)
,

proving the theorem. 2

As an immediate consequence we get the following.

Corollary 4.6. Let K ⊂ Rd be a self-similar set satisfying the strong separation

condition, and let µ1 and µ2 be self-similar measure on K. Then for any similitude

g of Rd,

µ1

(
g(K) ∩K

)
> 0 ⇐⇒ µ2

(
g(K) ∩K

)
> 0.

We also get the following fairly easily.

Corollary 4.7. Let K ⊂ Rd be a self-similar set satisfying the strong separation

condition, let AK be the affine span of K and let µ be a self-similar measure on

K. Then the set of those similitudes g : AK → Rd for which µ
(
g(K) ∩K

)
> 0 is

countably infinite.

Proof. It is clear that there exist infinitely many similitudes g such that µ
(
g(K) ∩

K
)
> 0 since the elementary pieces of K are similar to K and have positive µ

measure.

By Lemma 2.6, µ
(
g(K) ∩ K

)
> 0 implies that g ∈ SK and, by Theorem 4.5,

that g(K) contains an elementary piece of K. Therefore it is enough to show that

for each fixed elementary piece a(K) of K there are only countably many g ∈ SK

such that g(K) ⊃ a(K), which is the same as (a−1 ◦ g)(K) ⊃ K. By the first part

of Proposition 4.3 there are only countably many such a−1 ◦ g ∈ SK , so there are

only countably many such g ∈ SK . 2

From the first part of Proposition 4.3 we get more results about those similarity

maps that map a self-similar set into itself. These results will be used in the next

section and they are also related to a theorem and a question of Feng and Wang

[8] as it will be explained before Corollary 4.10.
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Lemma 4.8. Let K = ϕ1(K) ∪∗ . . . ∪∗ ϕr(K) be a self-similar set with strong

separation condition. There exists only finitely many similitudes g for which

g(K) ⊂ K holds and g(K) intersects at least two first generation elementary pieces

of K.

Proof. The similarity ratios of these similitudes g are strictly separated from zero.

Thus the similarity ratio of their inverses have some finite upper bound, and also

K ⊂ g−1(K) holds. The set of similitudes with the latter property form a discrete

and closed set according to the first part of Proposition 4.3.

Those h ∈ S∗
K similarity maps (cf. (10)) whose similarity ratio is under some

fixed bound and for which h(K)∩K 6= ∅ holds form a compact set in S∗
K (see proof

of Proposition 4.2). Since a discrete and closed subspace of a compact set is finite,

the proof is finished. 2

Theorem 4.9. Let K = ϕ1(K) ∪∗ . . . ∪∗ ϕr(K) be a self-similar set with strong

separation condition and let λ be a similitude for which λ(K) ⊂ K. There exist an

integer k ≥ 1 and multi-indices I, J such that λk ◦ ϕI = ϕJ .

Proof. For every integer k ≥ 1 there exists a smallest elementary piece ϕI(K) which

contains λk(K). For this multi-index I, (ϕ−1
I ◦λk)(K) is a subset ofK and intersects

at least two first generation elementary pieces of K. There are only finitely many

similitudes with this property according to Lemma 4.8, hence there exist k < k′, I,

I ′ such that ϕ−1
I ◦ λk = ϕ−1

I′ ◦ λk′

. By rearrangement we obtain ϕI′ ◦ ϕ−1
I = λk′−k

and λk′−k ◦ ϕI = ϕI′ . 2

Feng and Wang [8, Theorem 1.1 (The Logarithmic Commensurability Theorem)]

proved that if K = ϕ1(K)∪ . . .∪ϕr(K) is a self-similar set in R satisfying the open

set condition with Hausdorff dimension less than 1 and such that each similarity

map ϕi is of the form ϕi(x) = bx + ci with a fixed b and aK + t ⊂ K for some

a, t ∈ R then log |a|/ log |b| ∈ Q. They also posed the problem (Open Question 2)

of generalizing this result to higher dimensions. If we assume the strong open set

condition instead of the open set condition then the above Theorem 4.9 tells much

more about the maps ϕ1, . . . , ϕr and ax + t and immediately gives the following

higher dimensional generalization of the Logarithmic Commensurability Theorem

of Feng and Wang, in which we can also allow non-homogeneous self-similar sets.

Corollary 4.10. Let K = ϕ1(K)∪∗ . . .∪∗ ϕr(K) be a self-similar set with strong

separation condition and suppose that λ is a similitude for which λ(K) ⊂ K. If

a1, . . . , ar and b denote the similarity ratios of ϕ1, . . . , ϕr and λ, respectively, then

log b must be a linear combination of log a1, . . . , log ar with rational coefficients.

5. Isometry invariant measures

In this section all self-similar sets we consider will satisfy the strong separation

condition, even if we do not mention it every time.

Before we start to study and characterize the isometry invariant measures on a

self-similar set of strong separation condition, we have to pay some attention to the
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connection of a self-similar set and the self-similar measures living on it.

We have called a compact set K self-similar with SSC if K = ϕ1(K) ∪∗ . . . ∪∗

ϕr(K) holds for some similitudes ϕ1, . . . , ϕr. A presentation of K is a finite

collection of similitudes {ψ1, . . . , ψs}, such that K = ψ1(K) ∪∗ . . . ∪∗ ψs(K) and

s ≥ 2. Clearly, a self-similar set with SSC has many different presentations. For

example, if {ϕ1, ϕ2, . . . , ϕr} is a presentation of K, then {ϕi ◦ ϕj : 1 ≤ i, j ≤ r} is

also a presentation.

As we shall see in the next section, it can even happen that a self-similar set

has no “smallest” presentation. We say that a presentation F1 = {ψ1, ψ2, . . . , ψs}
is smaller than the presentation F = {ϕ1, ϕ2, . . . , ϕr}, if for every 1 ≤ i ≤ r

there exists a multi-index I, such that ϕi = ψI . This defines a partial ordering

on the presentations; let us denote by F1 ≤ F if F1 is smaller than F . We call a

presentation minimal, if there is no smaller presentation (excluding itself). We call

a presentation smallest, if it is smaller than any other presentation.

There exists a self-similar set with SSC which has more than one minimal

presentations; that is, it has no smallest presentation (see Section 6).

The notion of a self-similar measure on a self-similar set depends on the

presentation. Thus, when we say that µ is a self-similar measure on K, we always

mean that µ is self-similar measure with respect to the given presentation of K.

Clearly if F1 ≤ F , then there are less self-similar measures with respect to F1 than

to F . It will turn out that the isometry invariant self-similar measures are the same

independently of the presentations.

Notation 5.1. For the sake of simplicity, for a similitude λ with λ(K) ⊂ K let

µ(λ) denote µ
(
λ(K)

)
. In the composition of similitudes we might omit the mark ◦,

so g1g2 stands for g1 ◦ g2, and by gk we shall mean the composition of k many g’s.

Clearly, given any self-similar measure µ, µ ◦ ϕI = µ(ϕI) · µ holds for

the similitudes ϕI arising from the presentation of K. According to the next

proposition, if for a given self-similar measure µ the congruent elementary pieces

are of equal measure, then the same holds for any similitude λ satisfying λ(K) ⊂ K;

that is, we have µ ◦ λ = µ(λ) · µ as well.

Proposition 5.2. Let K = ϕ1(K) ∪∗ . . . ∪∗ ϕr(K) be self-similar set with strong

separation condition, and µ be a self-similar measure on K for which the congruent

elementary pieces are of equal measure.

1. Then for every similitude λ with λ(K) ⊂ K, µ ◦ λ = µ
(
λ(K)

)
· µ holds; that

is, for any Borel set H ⊂ K we have µ
(
λ(H)

)
= µ

(
λ(K)

)
· µ

(
H

)
.

2. For every elementary piece ϕI(K) and for every isometry g for which

g(ϕI(K)) ⊂ K holds, we have µ
(
ϕI(K)

)
= µ

(
g(ϕI(K))

)
.

Proof. According to Lemma 4.8 there are only finitely many similitudes λ for which

λ(K) ⊂ K holds and λ(K) intersects at least two first generation elementary pieces.

Denote these by λ0, λ1, . . . , λt, where λ0 should stand for the identity.
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We claim that it is enough to prove the first part of the proposition for these

similitudes only. Let λ be a similitude for which λ(K) ⊂ K. Let ϕI(K) the smallest

elementary piece which contains λ(K). Then the similitude ϕ−1
I ◦ λ maps K into

itself and the image intersects at least two first generation elementary pieces, hence

it is equal to a similitude λi for some i. Thus λ = ϕI ◦ λi. The measure µ being

self-similar we have µ ◦ ϕJ = pJ · µ = µ
(
ϕJ (K)

)
· µ for every multi-index J , hence

for any Borel set H ⊂ K we obtain

µ
(
λ(H)

)
= µ

(
(ϕI ◦λi)(H)

)
= µ

(
ϕI(K)

)
·µ

(
λi(H)

)
= µ

(
ϕI(K)

)
·µ

(
λi(K)

)
·µ

(
H

)

= µ
(
(ϕI ◦ λi)(K)

)
· µ

(
H

)
= µ

(
λ(K)

)
· µ

(
H

)
,

as we stated.

According to Theorem 4.9 for every integer i with 0 ≤ i ≤ t there exist multi-

indices Ii, Ji and a positive integer ki, for which λki

i ◦ ϕIi
= ϕJi

. Let bi
def
= ϕIi

,

ci
def
= ϕJi

, hence λki

i bi = ci.

Let

µ∗(λi)
def
= ki

√

µ(ci)

µ(bi)
.

Our aim is to show that µ∗(λi) = µ(λi).

For every integer i with 0 ≤ i ≤ t and for every multi-index I there exists an

integer j, 0 ≤ j ≤ t, and a multi-index J such that λi ◦ϕI = ϕJ ◦λj (let ϕJ(K) be

the smallest elementary piece which contains (λi ◦ ϕI)(K)).

We define the congruency equivalence relation among similitudes: for similitudes

g1 and g2 let g1 ≈ g2 denote that g1 ◦ g−1
2 is an isometry; that is, for every set H

the sets g1(H) and g2(H) are congruent. This is the same as that the similarity

ratio of g1 and g2 are equal. Hence congruency is independent of the order of the

composition, so g1 ◦ g2 ≈ g3 ⇐⇒ g2 ◦ g1 ≈ g3. Using the equalities λiϕI = ϕJλj ,

λki

i bi = ci and λ
kj

j bj = cj we obtain

λ
kikj

i ϕ
kikj

I
︸ ︷︷ ︸

≈ϕ
kikj

J
λ

kikj

j

b
kj

i bki

j ≈ ϕ
kikj

J b
kj

i λ
kikj

j bki

j
︸ ︷︷ ︸

≈c
ki
j

≈ ϕ
kikj

J b
kj

i cki

j ,

λ
kikj

i ϕ
kikj

I b
kj

i bki

j ≈ λ
kikj

i b
kj

i
︸ ︷︷ ︸

≈c
kj

i

ϕ
kikj

I bki

j ≈ c
kj

i ϕ
kikj

I bki

j .

Comparing these we get

ϕ
kikj

J b
kj

i cki

j ≈ c
kj

i ϕ
kikj

I bki

j .

Since all the similitudes bi, bj , ci, cj are some composition of similitudes of the

presentation, the elementary pieces
(
ϕ

kikj

J b
kj

i cki

j

)
(K) and

(
c
kj

i ϕ
kikj

I bki

j

)
(K) are

congruent, so they are of equal measure. The measure is self-similar, thus

µ(ϕJ )kikjµ(bi)
kjµ(cj)

ki = µ(ci)
kjµ(ϕI)

kikjµ(bj)
ki ,
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hence by the definition of µ∗ we get

µ(ϕJ)kikjµ∗(λj)
kikj = µ∗(λi)

kikjµ(ϕI)
kikj ,

µ∗(λj)µ(ϕJ ) = µ∗(λi)µ(ϕI).

Therefore

µ(λiϕI) = µ(ϕJλj) = µ(ϕJ )µ(λj) =
µ∗(λi)µ

(
ϕI

)

µ∗
(
λj

) µ
(
λj

)
.

Altering this we got the following: for every i and I there exists j such that

µ(λiϕI) = µ∗(λi)
µ(λj)

µ∗(λj)
µ(ϕI).

Note that µ∗(λj) 6= 0.

Let m be an index for which

µ(λm)

µ∗(λm)
≤̇ µ(λi)

µ∗(λi)

for every index 0 ≤ i ≤ t. We label some inequalities by a dot so we can refer to

them later. Then for any ϕI ,

µ(λmϕI) = µ∗(λm)
µ(λj)

µ∗(λj)
µ(ϕI) ≥̇ µ∗(λm)

µ(λm)

µ∗(λm)
µ(ϕI) = µ(λm)µ(ϕI)

for some index j with 0 ≤ j ≤ t.

Let {ϕIi
(K)} be a finite partition of K with elementary pieces such that the

partition includes ϕI(K). Then

µ
(
λm(K)

)
= µ

(

λm

(⋃∗
ϕIi

(K)
))

= µ
(⋃∗

λm(ϕIi
(K))

)

=
∑

µ(λmϕIi
)

≥̇
∑

µ(λm)µ(ϕIi
) = µ(λm),

hence equality holds everywhere, so µ(λmϕI) = µ(λm)µ(ϕI) for every multi-index

I.

Let H ⊂ K be a Borel set. By the definition of the measure µ, there

exist elementary pieces aij(K) for which H ⊂ ⋂

j

⋃∗
i aij(K) and µ(H) =

infj µ
(⋃∗

i aij(K)
)

= µ
( ⋂

j

⋃∗
i aij(K)

)
hold. Then

µ(λm(H)) ≤ µ
(

λm

(⋂

j

⋃∗

i

aij(K)
))

= µ
(⋂

j

⋃∗

i

λm(aij(K))
)

≤ inf
j
µ
( ⋃∗

i

λm(aij(K))
)

= inf
j

∑

i

µ(λmaij) = inf
j

∑

i

µ(λm)µ(aij)

= µ(λm) inf
j

∑

i

µ(aij) = µ(λm)µ
( ⋂

j

⋃∗

i

aij(K)
)

= µ(λm)µ(H).

Repeating this argument for Hc def
= K \H we obtain µ

(
λm(Hc)

)
≤ µ(λm)µ(Hc).

Summing these we get µ
(
λm(H))

)
+ µ

(
λm(Hc)

)
≤ µ(λm)µ(H) + µ(λm)µ(Hc), in
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fact this is an equality, so we have µ
(
λm(H)

)
= µ(λm)µ(H). Thus µ ◦ λm =

µ(λm) · µ.

From this we obtain that for any Borel set H ⊂ K,

µ
(
λn

m(H)
)

= µ
(
λm(λn−1

m (H))
)

= µ(λm)µ
(
λn−1

m (H)
)
,

and by induction we get that µ
(
λn

m(H)
)

= µ(λm)nµ(H), hence µ(λn
m) = µ(λm)n.

Therefore µ(λkm
m bm) = µ(λm)kmµ(bm) holds. From the definition of µ∗(λm) we

have µ(cm) = µ∗(λm)kmµ(bm) and cm = λkm
m bm, thus

µ(λm)kmµ(bm) = µ(λkm
m bm) = µ(cm) = µ∗(λm)kmµ(bm).

Since µ(bm) > 0, we get µ(λm) = µ∗(λm). Since m was chosen to be that index i

for which µ(λi)
µ∗(λi)

is minimal, we get that µ∗(λi) ≤̇ µ(λi) for every 0 ≤ i ≤ t.

Now we can repeat the whole argument for such an index m for which µ(λm)
µ∗(λm) ≥

µ(λi)
µ∗(λi)

holds for every index i (0 ≤ i ≤ t). We just have to reverse the inequalities

labelled with a dot, and we obtain that for every index i (0 ≤ i ≤ t), µ∗(λi) ≥ µ(λi)

holds. Thus for every i (0 ≤ i ≤ t) we have µ∗(λi) = µ(λi). Therefore we could

choose any i (0 ≤ i ≤ t) as m, so for every i the equality µ ◦ λi = µ(λi) · µ holds.

By the observation we made at the beginning of the proof we get that for every

similitude λ with λ(K) ⊂ K, µ ◦ λ = µ(λ) · µ holds, thus µ ◦ λn = µ(λ)n · µ holds

as well for any positive integer n.

Now we shall prove the second part of the proposition. Suppose that the isometry

g maps the elementary piece ϕL(K) into K, so g(ϕL(K)) ⊂ K. By Theorem 4.9

there exist multi-indices I, J and a positive integer k such that (g ◦ϕL)k ◦ϕI = ϕJ .

Using the first part of this proposition (which is already proven) we get

µ(ϕJ ) = µ
(
(g ◦ ϕL)k ◦ ϕI

)
= µ(g ◦ ϕL)kµ(ϕI). (14)

Clearly ϕJ = (g ◦ ϕL)k ◦ ϕI ≈ (ϕL)kϕI , thus

µ(ϕJ ) = µ
(
(ϕL)kϕI

)
= µ(ϕL)kµ(ϕI). (15)

By (14) and (15) we obtain

µ(g ◦ ϕL)kµ(ϕI) = µ(ϕL)kµ(ϕI),

µ(g ◦ ϕL) = µ(ϕL),

which proves the proposition. 2

Theorem 5.3 (Characterization of isometry invariant measures)

Let K = ϕ1(K) ∪∗ . . . ∪∗ ϕr(K) be a self-similar set with the strong separation

condition and µ a self-similar measure on K for which congruent elementary pieces

are of equal measure. Then µ is an isometry invariant measure on K.

Proof. We have to show that for any isometry g and Borel set H ⊂ K if g(H) ⊂ K

then µ(H) = µ
(
g(H)

)
.
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Let c < 1 be the constant given by Theorem 4.1. At first consider a set H ⊂ K of

positive measure. Applying Lemma 2.12 for the set H with ε = 1−c we obtain that

there exists an elementary piece a(K) for which µ
(
H ∩ a(K)

)
> c · µ

(
a(K)

)
. Since

H ⊂ g−1(K), we have µ
(
g−1(K) ∩ a(K)

)
> c · µ

(
a(K)

)
, so applying Theorem 4.1

a(K) ⊂ g−1(K), g(a(K)) ⊂ K. Put λ = g ◦ a. According to the second part of

Proposition 5.2 we have µ(λ) = µ(a) (where µ(λ) is an abbreviation of µ
(
λ(K)

)
),

and putting H0
def
= a−1(a(K) ∩H) we have µ

(
λ(H0)

)
= µ(λ)µ(H0), thus

0 < c · µ
(
a(K)

)
< µ

(
a(K) ∩H

)
= µ

(
a(H0)

)
= µ(a)µ(H0) = µ(λ)µ(H0)

= µ
(
λ(H0)

)
= µ

(
g(a(H0))

)
= µ

(
g(a(K) ∩H)

)
≤ µ

(
g(H)

)
,

so g(H) is of positive measure. Thus a congruent copy of a set of positive measure

is of positive measure, and a congruent copy of a negligible set is also negligible.

Now let H ⊂ K be any Borel set, g an isometry, for which g(H) ⊂ K. Apply

Lemma 2.13 with some 0 < ε < 1 − c. We obtain elementary pieces ai(K) such

that

µ
(
H ∩ ai(K)

)
> (1 − ε) · µ

(
ai(K)

)
and µ

(
H \

⋃∗

i

ai(K)
)

= 0.

Then H ⊂ g−1(K), therefore µ
(
g−1(K) ∩ ai(K)

)
> (1 − ε) · µ

(
ai(K)

)
. According

to Theorem 4.1, g−1(K) ⊃ ai(K), so g(ai(K)) ⊂ K. By the second part of

Proposition 5.2 we get µ
(
g(ai(K))

)
= µ

(
ai(K)

)
, and using the fact that a congruent

copy of a set of zero measure is also of zero measure,

µ
(
g(H)

)
= µ

(

g
(

H∩
⋃∗

i

ai(K)
))

+µ
(

g
(

H\
⋃∗

i

ai(K)
))

= µ
(

g
(

H∩
⋃∗

i

ai(K)
))

=
∑

i

µ
(
g(H ∩ ai(K))

)
≤

∑

i

µ
(
g(ai(K))

)
=

∑

i

µ
(
ai(K)

)

≤ 1

1 − ε
·
∑

i

µ
(
H ∩ ai(K)

)
=

1

1 − ε
· µ

(

H ∩
⋃∗

i

ai(K)
)

=
1

1 − ε
· µ(H).

This is true for any 0 < ε < 1 − c, hence µ
(
g(H)

)
≤ µ

(
H

)
. Repeating this

argument for g(H) instead of H and for g−1 instead of g gives µ
(
H

)
≤ µ

(
g(H)

)
,

hence µ
(
H

)
= µ

(
g(H)

)
. Thus µ is isometry invariant. 2

Remark 5.4. Using this theorem it is relatively easy to decide whether a self-

similar measure is isometry invariant or not. Denote the similarity ratio of the

similitude ϕi by αi. It is clear that two elementary pieces are congruent if and

only if they are image of K by similitudes of equal similarity ratio. Thus a self-

similar measure µ is isometry invariant if and only if provided that αi1αi2 . . . αin
=

αj1αj2 . . . αjm
holds, the equality pi1pi2 . . . pin

= pj1pj2 . . . pjm
also holds for the

weights of the measure µ. By switching from the similarity ratios αi and weights

pi to the negative of their logarithm we get a system of linear equations for the

variables − log pi. The solutions of this system (which also satisfy the normalizing

equation
∑

i pi = 1) give those weight vectors which define isometry invariant

measures on K.
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For example, it is easy to see that if the positive numbers − logαi (i = 1, . . . , r)

are linearly independent over Q, then every self-similar measure is isometry

invariant.

So, to the r dimensional vectors, formed by the − log pi weights of the isometry

invariant measures, correspond the intersection of a linear subspace of Rr and the

hypersurface corresponding to
∑

i pi = 1. That this subspace is of dimension at

least 1 and intersects the positive part of the space Rr, we know from the existence of

Hausdorff measure. (Or rather from the fact that the weights pi = αs
i automatically

satisfy all the equalities.)

The notion of a self-similar measure depended on the the choice of the

presentation. However, the converse is true for the notion of an isometry invariant

self-similar measure.

Theorem 5.5. Let K be self-similar with the strong separation condition and

{ϕ1, ϕ2, . . . , ϕr} a presentation of it. Let µ be isometry invariant and self-similar

with respect to this presentation. Then µ is self-similar with respect to any

presentation of K. Thus the class of isometry invariant self-similar measures is

independent of the choice of presentation.

Proof. Let {ψ1, . . . , ψs} be an other presentation of K. According to Theorem 4.9

there exist positive integer k and elementary pieces ϕI , ϕJ such that ψk
i ◦ϕI = ϕJ ,

so applying the first part of Proposition 5.2 we get

0 < µ(ϕJ ) = µ(ψk
i ◦ ϕI) = µ(ψi)

kµ(ϕI),

that is, µ(ψi) > 0 for every 1 ≤ i ≤ s.

According to the first part of Proposition 5.2, µ ◦ ψi = µ(ψi) · µ, and since
∑
µ
(
ψi(K)

)
= 1 holds, this means exactly that µ is a self-similar measure with

respect to the presentation {ψ1, . . . , ψs}. 2

Definition 5.6. Let K = ϕ1(K) ∪∗ . . . ∪∗ ϕr(K) be a self-similar set with strong

separation condition. Put S = {− logαi : 1 ≤ i ≤ r}, where αi is the similarity

ratio of ϕi. The algebraic dependence number (of this presentation) is the dimension

over Q of the vectorspace generated by S minus one.

By Remark 5.4 it is easy to see that the algebraic dependence number of

a presentation is exactly the same as the topological dimension of the surface

corresponding to the isometry invariant self-similar measures on K. Thus, by

Theorem 5.5, one can prove the following.

Theorem 5.7. The algebraic dependence number of a self-similar set does not

depend on the presentation we choose.

We mention that it is easy to show that the algebraic dependence number is the

same for two presentations F1 and F2 if F1 ≤ F2; that is, when one of them extends

the other in the trivial way we defined at the beginning of this section. However,

there are self-similar sets with two presentations which have no common extension
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and they are not an extension of the same third presentation (see Theorem 6.4).

Thus we have no direct (or trivial) proof for Theorem 5.7.

An easy consequence of the characterization theorem is the following.

Corollary 5.8. Let K = ϕ1(K) ∪∗ . . . ∪∗ ϕr(K) be a self-similar set with strong

separation condition, µ be a self-similar measure on K. Then if µ is invariant

under orientation preserving isometries, then it is invariant under all isometries.

Proof. According to Theorem 5.3 it is enough to show that congruent elementary

pieces are of equal measure. Let ϕI(K) and ϕJ(K) be congruent elementary

pieces. Then ϕ2
I(K) and ϕ2

J (K) are also congruent elementary pieces, ϕ2
I and

ϕ2
J are orientation preserving similitudes, so ϕ2

I ◦ ϕ−2
J is an orientation preserving

isometry, hence by the assumption µ
(
ϕ2

I(K)
)

= µ
(
ϕ2

J(K)
)
. Since µ is self-

similar, µ
(
ϕ2

I(K)
)

= µ
(
ϕI(K)

)2
and µ

(
ϕ2

J (K)
)

= µ
(
ϕJ (K)

)2
, thus µ

(
ϕI(K)

)
=

µ
(
ϕJ(K)

)
. This proves the statement. 2

6. Minimal presentations

At first we give an example for a self-similar set on the line (with strong separation

condition) which has no smallest presentation, that is, it has more than one minimal

presentations. Set ϕ1(x) = x
3 , ϕ2(x) = x

3 + 2
3 , let K be the compact set for which

K = ϕ1(K)∪ϕ2(K), apparently this is the triadic Cantor set. Set ψ1(x) = −x
3 + 1

3 .

Then K = ψ1(K)∪∗ ϕ2(K) as well, and it is clear, that both of these two different

presentations are minimal, since they consist of only two similitudes.

However, these two presentations are not “essentially different”: the sets

{ϕ1(K), ϕ2(K)} and {ψ1(K), ϕ2(K)} coincide. On essential presentation we shall

mean not the set of the similitudes but rather the set of the first generation

elementary pieces. We shall say that the essential presentation {a1(K), . . . , ar(K)}
is briefer than the essential presentation {b1(K), . . . , bs(K)}, if for every j = 1, . . . , s

there exists 1 ≤ i ≤ r such that bj(K) ⊂ ai(K). We call an essential presentation

minimal if the only briefer essential presentation is itself, and we call it the smallest

if it is briefer than any other essential presentation. It is easy to check that the

triadic Cantor set possesses a smallest essential presentation.

In the followings we shall present a self-similar set which has got no smallest

essential presentation, that is, it has minimal essential presentations more than

one.

Remark 6.1. The following statement is true for many self-similar sets K: If λ1

and λ2 are similitudes for which λ1(K) ⊂ K, λ2(K) ⊂ K and λ1(K) ∩ λ2(K) 6= ∅,
then λ1(K) ⊂ λ2(K) or λ2(K) ⊂ λ1(K). The proofs of Section 4 would have

been much simpler if this statement has held for every self-similar set satisfying

the strong separation condition. However this statement does not hold generally

as we shall show in our following construction. We note that this statement is not

necessarily equivalent to that K has only one minimal essential presentation. See

also the end of Section 9 and especially Question 9.3.
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Theorem 6.2. There exists a self-similar set K with the strong separation

condition which has no smallest essential presentation. Moreover, there exists

similitudes λ1 and λ2 such that λ1(K) ∩ λ2(K) 6= ∅, but λ1(K) 6⊂ λ2(K) and

λ2(K) 6⊂ λ1(K).

Proof. We present a figure of our construction. One may check the proof of this

theorem just by looking at that figure.

Let a, b, c positive integers for which a+ b+ a+ c+ a+ b+ a = 1 and b = a · c.
It is easy to see that for every 0 < a < 1/4 there exist a unique b and c with these

conditions. Let ϕ1 be the orientation preserving similitude mapping the interval

[0, 1] onto the interval [0, a]. Let ϕ2 take the interval [0, 1] onto [a + b, a + b + a],

ϕ3 onto [1 − a− b− a, 1 − a− b], and ϕ4 onto [1 − a, 1], all of them preserving the

orientation. That is, ϕ1(x) = a ·x, ϕ2(x) = a ·x+a+ b, ϕ3(x) = a ·x+1−a− b−a,
ϕ4(x) = a · x+ 1 − a.

0 1

a b a c aba

ϕ1([0, 1]) ϕ2([0, 1]) ϕ3([0, 1]) ϕ4([0, 1])

ψ1([0, 1]) ψ2([0, 1])

Let K be the unique compact set for which K = ϕ1(K) ∪∗ ϕ2(K) ∪∗ ϕ3(K) ∪∗

ϕ4(K). Thus the first generation elementary pieces of K are of diameter a, and

there are ,,holes” between them of length b, c and b. It is clear that K ⊂ [0, 1] and

K is symmetric to 1
2 .

The second row of the figure symbolizes this presentation of K, more precisely

it shows the intervals ϕi([0, 1]) (choosing a = 0.15, c = 0.4
1.3 ). In the first row

the interval [0, 1] can be seen. The third row of the figure shows the intervals

ϕi(ϕj([0, 1])) (1 ≤ i, j ≤ 4). The fifth row tries to present the set K.

Set ψ1(x) = a ·x+a2 +a ·b+a2+a ·c and ψ2(x) = a ·x+1−a−b−a2−a ·b−a2.

In the fourth row of the figure the images of the interval [0, 1] by the similitudes

ϕ2
1, ϕ1 ◦ ϕ2, ψ1, ϕ2 ◦ ϕ3, ϕ2 ◦ ϕ4, ϕ3 ◦ ϕ1, ϕ3 ◦ ϕ2, ψ2, ϕ4 ◦ ϕ3, ϕ

2
4 are shown.

We claim that ψ1(K) ⊂ K and ψ2(K) ⊂ K, moreover

{ϕ2
1, ϕ1 ◦ ϕ2, ψ1, ϕ2 ◦ ϕ3, ϕ2 ◦ ϕ4, ϕ3 ◦ ϕ1, ϕ3 ◦ ϕ2, ψ2, ϕ4 ◦ ϕ3, ϕ

2
4}

is a presentation of K (see the fourth row of the figure). For this it is sufficient to

prove that ψ1 ◦ϕ1 = ϕ1 ◦ϕ3, ψ1 ◦ϕ2 = ϕ1 ◦ϕ4, ψ1 ◦ϕ3 = ϕ2 ◦ϕ1, ψ1 ◦ϕ4 = ϕ2 ◦ϕ2,

and ψ2 ◦ ϕ1 = ϕ3 ◦ ϕ3, ψ2 ◦ ϕ2 = ϕ3 ◦ ϕ4, ψ2 ◦ ϕ3 = ϕ4 ◦ ϕ1, ψ2 ◦ ϕ4 = ϕ4 ◦ ϕ2.

These can be easily checked, all equalities rely on the choice of b = a · c.
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Now we prove that there does not exist an essential presentation

{̺1(K), . . . , ̺r(K)} of the self-similar set K which is briefer than both of the

essential presentations corresponding to the original presentation {ϕ1, ϕ2, ϕ3, ϕ4}
and the presentation just defined above. This would prove that K has no unique

minimal essential presentation. (In fact both of these essential presentations

are minimal.) Indirectly suppose that there exists an essential presentation

{̺1(K), . . . , ̺r(K)} of this kind. Since ϕ1(K) ∩ ψ1(K) 6= ∅, for some i ϕ1(K) ∪
ψ1(K) ⊂ ̺i(K). For the same i we also have ϕ2(K) ∪ ψ1(K) ⊂ ̺i(K). Similarly

there exists an index j such that ϕ3(K) ∪ ψ2(K) ∪ ϕ4(K) ⊂ ̺j(K). From this we

conclude that K = ̺i(K) ∪∗ ̺j(K), but then the similitudes ̺i and ̺j could only

be the ones mapping [0, 1] onto [0, a+ b + a] and [1 − a − b − a, 1]. This yields to

b = (a+ b+ a) · c, which contradicts b = a · c.
The similitudes λ1 and λ2 we promised can chosen to be ϕ1 and ψ1. 2

Remark 6.3. This example (and many other results of the present article) is

contained in the Master Thesis of the third author [18]. Independently, Feng and

Wang in [8] exhibit an almost identical example. Moreover, much of their paper

is devoted to the investigation of the structure of possible presentations of given

self-similar sets; or, using their terminology, the structure of generating iterated

function systems of self-similar sets. They also prove positive results (that is, when

a smallest presentation does exist) under various assumptions.

Theorem 6.4. There exists a self-similar set K with the strong separation

condition and two (essential) presentations of K, F1 and F2, such that there is

no presentation G which is a common extension of F1 and F2, nor there exists an

(essential) presentation which is smaller (briefer) than F1 and F2.

Thus, Theorem 5.7 cannot be proved in the trivial way (see our remarks after

that theorem). We leave the proof of Theorem 6.4 to the reader, with the

instructions that one should choose the self-similar set K constructed above, and

the presentations of the second and fourth row of the figure should be chosen as F1

and F2.

7. Intersection of translates of a self-affine Sierpiński sponge

The following is the key lemma for all results of this section.

Proposition 7.1. Let K = K(M,D) and µ be like in Definition 2.14 and let

t ∈ Rn be such that ‖Mkt‖ > 0 for every k = 1, 2, . . ..

Then µ
(
K ∩ (K + t)

)
> 0 implies that there exists a

w ∈ {−1, 0, 1}× . . .× {−1, 0, 1} \ {(0, . . . , 0)}

such that D + w = D modulo (m1, . . . ,mn); that is,

D + w +M(Zn) = D +M(Zn) = D − w +M(Zn).
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Proof. To make the argument intuitive and precise we shall present the same proof

in an informal and in a formal way separately.

The informal proof: According to Lemma 2.16 and Lemma 2.12 we can find a

k such that Mkt is not very close to any point of Zn, and a k − 1-th generation

elementary part S of K in which the density of K + t is almost 1. Then in all the

r k-th generation elementary parts of K that are in S the density of K + t is still

very close to 1.

Each of these subparts intersect some k-th generation elementary parts of K+ t.

The key observation is that there are at most 2n possible ways how these parts can

intersect each other.

Since Mkt is not very close to the lattice points, these intersections are

intersections of sets similar to K such that one is always a not very close translate

of the other. Hence Lemma 2.23 implies that they cannot have big intersection.

Since the density of K+t is very close to 1 in all k-th generation elementary parts

of K that are in S, this implies that in the two directions for which the possible

intersection has biggest measure, K + t must have a k-th generation elementary

part.

Hence we get two periods of the pattern D such that their difference w is in

{−1, 0, 1}× . . .× {−1, 0, 1}.
The formal proof: Applying Lemma 2.23 for ε = 1/(2 max(m1, . . . ,mn)) we get

a 0 < δ < 1 such that

µ
(
K ∩ (K + u)

)
≤ 1 − δ whenever |u| ≥ 1

2 max(m1, . . . ,mn)
. (16)

Applying Lemma 2.12 for B = (K + t) ∩K and ε = δ
2nr and Lemma 2.16 we get a

k ∈ N and a k − 1-th generation elementary part S of K such that

µ
(
S ∩ (K + t)

)
>

1 − δ
2nr

rk−1
(17)

and

‖Mkt‖ > 1

2 max(m1, . . . ,mn)
. (18)

Let Φ be the similarity map which maps S to M(K) = K +D; that is,

Φ(x) = Mk(x− (M−(k−1)αk−1 + . . .+M−1α1))

= Mkx− (Mαk−1 +M2αk−2 + . . .+Mk−1α1),

where S = Mk−1(K) +M−(k−1)αk−1 + . . .+M−1α1.

Using that Φ(S) = K +D = ∪r
j=1K + dj , applying (3) and (17) we get

µ̃
( r⋃

j=1

(K + dj) ∩ (Φ(K + t))
)

= µ̃
(
Φ(S ∩ (K + t))

)
= rkµ

(
S ∩ (K + t)

)

> rk 1 − δ
2nr

rk−1
= r − δ

2n
.
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Since µ̃(K + dj) = 1 (j = 1, . . . , r) and the sets can intersect each other only at

a set of µ̃-measure zero this implies that

µ̃
(
(K + dj) ∩ Φ(K + t)

)
> 1 − δ

2n
for every j = 1, . . . , r. (19)

Since Φ(K) = Mk(K)−(Mαk−1+. . .+Mk−1α1) andMk(K) ⊂ K+D+M(Zn),

we have Φ(K) ⊂ K+D+M(Zn), and so Φ(K+ t) ⊂ K+D+Φ(t)+M(Zn). Thus

(K + dj) ∩ Φ(K + t)

⊂ (K + dj) ∩
(
K +D + Φ(t) +M(Zn)

)

=
r⋃

i=1

(
K ∩ (K + di + Φ(t) − dj +M(Zn))

)
+ dj .

Combining this with (19) and (3) (for l = 0) we get

1 − δ

2n
< µ̃

(
(K + dj) ∩ Φ(K + t)

)

≤
r∑

i=1

µ̃
((
K ∩ (K + di + Φ(t) − dj +M(Zn))

)
+ dj

)
(20)

=

r∑

i=1

µ
(
K ∩ (K + di + Φ(t) − dj +M(Zn))

)
(j = 1, . . . , r).

Clearly, we have µ
(
K ∩ (K + di + Φ(t) − dj +M(Zn))

)
= 0 whenever

di + Φ(t) − dj 6∈ (−1, 1)× . . .× (−1, 1) +M(Zn).

Hence there are at most 2n vectors v ∈ Zn such that v+Φ(t) ∈ (−1, 1)×. . .×(−1, 1);

let these vectors be v1, v2, . . . , vp, (p ≤ 2n).

Thus, by omitting some zero terms on the right-hand side of (20) we can rewrite

(20) as

1 − δ

2n
<

∑

l : (∃i) di−dj∈vl+M(Zn)

µ
(
K ∩ (K + vl + Φ(t))

)
(j = 1, . . . , r). (21)

Let

βl = µ
(
K ∩ (K + vl + Φ(t))

)
(l = 1, . . . , p).

By rearranging v1, . . . , vp if necessary, we may assume that

β1 ≥ β2 ≥ . . . ≥ βp. (22)

Since vl ∈ Zn and K ⊂ [0, 1]n, the sets K + vl + Φ(t) (l = 1, . . . , p) are pairwise

disjoint and clearly K = ∪p
l=1K ∩ (K + vl + Φ(t)), we get

1 = µ(K) =

p
∑

l=1

βl. (23)
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Since, using (18), ‖Mkt‖ > 1
2max(m1,...,mn) , we have |v1+Φ(t)| > 1

2 max(m1,...,mn) .

Thus, by (16),

β1 = µ
(
K ∩ (K + v1 + Φ(t))

)
≤ 1 − δ. (24)

Clearly (22), (23) and (24) implies that β1 ≥ β2 ≥ δ
p−1 >

δ
2n and so

β1 + β3 + β4 + . . . β2n < 1 − δ

2n
and

β2 + β3 + β4 + . . . β2n < 1 − δ

2n
.

Combining this with (21) we get that for every j ∈ {1, . . . , r} there must be an

i1 such that di1 −dj ∈ v1 +M(Zn) and an i2 such that di2 −dj ∈ v2 +M(Zn). Since

D = {d1, . . . , dr}, this means that for every d ∈ D we must have d + v1, d + v2 ∈
D +M(Zn).

Therefore D+M(Zn) ⊃ D+v1 and so D+M(Zn) ⊃ D+M(Zn)+v1. Applying

this m1 · . . . ·mn many times we get

D +M(Zn) ⊃ D +M(Zn) + v1 ⊃ D +M(Zn) + 2v1 ⊃ . . .

. . . ⊃ D +M(Zn) +m1 · . . . ·mnv1 = D +M(Zn). (25)

Therefore D + M(Zn) = D + M(Zn) + v1 and similarly D + M(Zn) =

D+M(Zn)+ v2. Thus D+M(Zn)+ v1− v2 = D+M(Zn) = D+M(Zn)+ v2− v1.
Noting that, by definition, w = v1 − v2 ∈ {−1, 0, 1}× . . .×{−1, 0, 1} \ {(0, . . . , 0)},
the proof is complete. 2

In order to use Proposition 7.1 effectively we need a discrete lemma.

Lemma 7.2. Let M and D be like in Definition 2.14, l ∈ {1, 2, . . . , n}, i ∈ N,

Di = M i−1(D) +M i−2(D) + . . .+M(D) +D,

and suppose that

Di + (1, . . . , 1
︸ ︷︷ ︸

l

, 0, . . . , 0) +M i(Zn) = Di +M i(Zn). (26)

Then at least one of the following two statements hold.

(a) We have m1 = . . . = ml and a1 = . . . = al for every (a1, . . . , an) ∈ D.

(b) For some l′ ∈ {1, 2, . . . , l − 1} we have

Di−1 + (1, . . . , 1
︸ ︷︷ ︸

l′

, 0, . . . , 0) +M i−1(Zn) = Di−1 +M i−1(Zn).

Proof. Let w = (1, . . . , 1
︸ ︷︷ ︸

l

, 0, . . . , 0). From (26) we get

Di + kw +M i(Zn) = Di +M i(Zn) (k ∈ Z). (27)

First suppose that a1 = . . . = al does not hold for some a = (a1, . . . , an) ∈ D.

Then we can suppose that a1 = . . . = aj < aj+1 ≤ . . . ≤ al for some
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j ∈ {1, . . . , l − 1}. Let b = (b1, . . . , bn) ∈ Di−1 be arbitrary. Then Mb + a ∈
M(Di−1) +D = Di. Thus applying (27) for k = −(a1 + 1) we get

Mb+ a− (a1 + 1)w ∈ Di +M i(Zn).

Rewriting both sides we get

M((b1 − 1, . . . , bj − 1, bj+1, . . . , bn))

+ (m1 − 1, . . . ,mj − 1, aj+1 − a1 − 1, . . . , al − a1 − 1, al+1, . . . , an)

∈M(Di−1 +M i−1(Zn)) +D.

Since the second term of the left-hand side is in {0, 1 . . . ,m1−1}×{0, 1, . . . ,mn−1},
we must have

(b1 − 1, . . . , bj − 1, bj+1, . . . , bn) ∈ Di−1 +M i−1(Zn).

Since b = (b1, . . . , bn) ∈ Di−1 was arbitrary we get that

Di−1 − (1, . . . , 1
︸ ︷︷ ︸

j

, 0, . . . , 0) ⊂ Di−1 +M i−1(Zn),

which implies, similarly like in (7), that

Di−1 + (1, . . . , 1
︸ ︷︷ ︸

j

, 0, . . . , 0) +M i−1(Zn) = Di−1 +M i−1(Zn).

Thus we proved that if a1 = . . . = al does not hold for some (a1, . . . , al) ∈ D

then the statement (b) must hold. Exactly the same way (but ordering so that

m1 − a1 ≤ . . . ≤ mn − an and applying (27) for k = m1 − a1 instead of k = a1)

we get that if m1 − a1 = . . . = ml − al does not hold for some (a1, . . . , an) ∈ D

then again the statement (b) must hold. Therefore the negation of (a) implies (b),

which completes the proof of the Lemma. 2

Lemma 7.3. Let K = K(M,D) be a self-affine Sierpiński sponge in Rn and µ

the natural probability measure on it as described in Definition 2.14, let Dn =

Mn−1(D) + Mn−2(D) + . . . + M(D) + D and suppose that there exists a wn ∈
{−1, 0, 1}× . . .× {−1, 0, 1} \ {(0, . . . , 0)} such that

Dn + wn +Mn(Zn) = Dn +Mn(Zn).

Then K is of the form K = L×K0, where L is a diagonal of a cube [0, 1]l, where

l ∈ {1, 2, . . . , n} and K0 is a smaller dimensional self-affine Sierpiński sponge.

Proof. Since every condition is invariant under any autoisometry of the cube

[0, 1]n and by such a transformation we can map wn to a vector of the form

(1, . . . , 1, 0, . . . , 0) we can suppose that

wn = (1, . . . , 1
︸ ︷︷ ︸

ln

, 0, . . . , 0), where ln ∈ {1, 2, . . . , n}.
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Now we can apply Lemma 7.2 for i = n, l = ln. If statement (b) of Lemma 7.2

holds then let ln−1 = l′ and apply the lemma again for i = n − 1, l = ln−1. If (b)

holds again then we continue. Since n ≥ ln > ln−1 > ln−2 > . . . ≥ 1 we cannot

repeat this for more than n− 1 times, hence for some 1 ≤ i ≤ n (a) of Lemma 7.2

must hold when we apply the lemma for i, l = li. This way we get i, l ∈ {1, . . . , n}
such that (26) and (a) of Lemma 7.2 hold.

It is easy to see that (26) implies that

D + (1, . . . , 1
︸ ︷︷ ︸

l

, 0, . . . , 0) +M(Zn) = D +M(Zn)

and also that this and (a) of Lemma 7.2 implies that D must be of the form

D = {(a, . . . , a
︸ ︷︷ ︸

l

) : a ∈ {0, 1, . . . ,m1 − 1}} ×D′,

where D′ ⊂ {0, 1, . . . ,ml+1−1}× . . .×{0, 1, . . . ,mn−1} and m1 = . . . = ml. Then

K = K(M,D) must be exactly of the claimed form, which completes the proof. 2

Now we are ready to characterize those self-affine sponges for which µ(K∩(K+t))

can be positive for “irregular” translations.

Theorem 7.4. Let K = K(M,D) be a self-affine Sierpiński sponge in Rn and µ

the natural probability measure on it as described in Definition 2.14 and let t ∈ Rn.

Then µ
(
K ∩ (K + t)

)
= 0 holds except in the following two trivial exceptional

cases:

(i) There exists two elementary parts S1 and S2 of K such that S2 = S1 + t.

(ii) K is of the form K = L × K0, where L is a diagonal of a cube [0, 1]l, where

l ∈ {1, 2, . . . , n} and K0 is a smaller dimensional self-affine Sierpiński sponge.

Proof. If ‖Mkt‖ = 0 for some k ∈ {0, 1, 2, . . .} then for any two k-th generation

elementary parts S1 and S2 of K, S2 and S1 + t are either identical or µ
(
(S1 + t)∩

S2

)
= 0. Therefore in this case either (i) or µ

(
K ∩ (K + t)

)
= 0 holds, thus we can

suppose that ‖Mkt‖ > 0 for every k = 0, 1, 2, . . . and µ
(
K ∩ (K + t)

)
> 0.

Let Di = M i−1(D) +M i−2(D) + . . . +M(D) + D. Notice that, by definition,

K(M,D) = K(M i, Di) for any i ∈ N. Therefore we can apply Proposition 7.1 to

(Mn, Dn) to obtain w ∈ {−1, 0, 1}n \ {(0, . . . , 0)} such that

Dn + wn +Mn(Zn) = Dn +Mn(Zn).

Then we can apply Lemma 7.3 to get that K = K(M,D) must be exactly of the

form as in (ii) of Theorem 7.4, which completes the proof. 2

Remark 7.5. Clearly, case (i) holds if and only if t is of the form
∑k

j=1M
−j(αj −

βj), where k ∈ {0, 1, 2, . . .} and α1, β1, . . . , αk, βk ∈ D.

Remark 7.6. It follows from the proof that in the coordinates of L every mi must

be the same hence in case (ii) we must have l = 1 if m1, . . . ,mn are all distinct.

In particular, if n = 1 then (ii) means K = [0, 1].
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The following statement is the analogue of Theorem 4.5.

Corollary 7.7. Let K ⊂ Rn (n ∈ N) be a self-affine Sierpiński sponge and µ the

natural probability measure on it (as described in Definition 2.14) and let t ∈ Rn.

The set K ∩ (K + t) has positive µ-measure if and only if it has non-empty

interior (relative) in K.

Proof. If K ∩ (K + t) has non-empty interior in K then clearly µ
(
K ∩ (K + t)

)
> 0.

We shall prove the converse by induction. Assume that the converse is true for

any smaller dimensional self-affine Sierpiński sponge. Suppose that µ
(
K∩(K+t)

)
>

0 and apply Theorem 7.4. If (i) of Theorem 7.4 holds then clearly K ∩ (K + t) has

non-empty interior in K, so we can suppose that (ii) holds: K = L × K0, L is

a diagonal of [0, 1]l and K0 is a smaller dimensional self-affine Sierpiński sponge.

Then µ = cλ × µ0, where 1/c is the length of L (that is, c = 1/
√
l), λ is the (one-

dimensional) Lebesgue measure on L and µ0 is the natural probability measure on

K0.

Let tα = (t1, . . . , tl) and tβ = (tl+1, . . . , tn) and we suppose that the coordinates

of L are the first l coordinates. Then

K ∩ (K+ t) = (L×K0)∩ ((L+ tα)× (K0 + tβ)) = (L∩ (L+ tα))× (K0∩ (K0 + tβ)).

Therefore we have

0 < µ
(
K ∩ (K + T )

)
= cλ

(
L ∩ (L+ tα)

)
· µ0

(
K0 ∩ (K0 + tβ)

)

and so λ
(
L∩(L+tα)

)
> 0 and µ0

(
K0∩(K0+tβ)

)
> 0. This implies that L∩(L+tα)

has non-empty interior in L and, by our assumption, K0∩ (K0 + tβ) has non-empty

interior in K0. Thus K∩ (K+ t) = (L∩ (L+ tα))× (K0∩ (K0 + tβ)) has non-empty

interior in K = L×K0. 2

For getting the analogue of Theorem 4.1 we need one more lemma.

Proposition 7.8. Let K = K(M,D) and µ be like in Definition 2.14, and let

0 6= t ∈ Rn be such that µ
(
K ∩ (K + t)

)
> 1 − 1

r2 .

Then there exists a

w ∈ {−1, 0, 1}× . . .× {−1, 0, 1} \ {(0, . . . , 0)}

such that D + w = D modulo (m1, . . . ,mn); that is,

D + w +M(Zn) = D +M(Zn)

Proof. By Proposition 7.1 we are done if ||Mkt|| > 0 for every k = 1, 2, . . .. Thus

we can suppose that this is not the case and choose a minimal k ∈ {1, 2, . . .} such

that ||Mkt|| = 0. Then, letting u = Mkt, we have u ∈ Zn \M(Zn).

Let

Dk = Mk−1(D) +Mk−2(D) + . . .+M(D) +D,

and define the measure µk so that µk(MkA) = rkµ(A) for any Borel set A ⊂
K. Then by definition we have MkK = K + Dk, and for each d ∈ Dk we
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have µk(K + d) = 1. Using the above facts and definitions and the condition

µ
(
K ∩ (K + t)

)
> 1 − 1

r2 , we get

rk−2(r2 − 1) = rk
(

1 − 1

r2

)

< rkµ
(
K ∩ (K + t)

)
= µk

(
MkK ∩ (MkK +Mkt)

)

= µk

(
(K +Dk) ∩ (K +Dk + u)

)
= #(Dk ∩ (Dk + u)),

where #(.) denotes the number of the elements of a set.

Then by the pigeonhole principle there exists an e ∈ Mk−1(D) + Mk−2(D) +

· · · + M2(D) ⊂ M2(Zn) such that e + M(D) + D ⊂ Dk + u. This implies that

M(D) +D+M2(Zn) ⊂ Dk + u+M2(Zn) = M(D) +D+ u+M2(Zn). Similarly,

we can prove that M(D)+D+ u+M2(Zn) ⊂M(D)+D+M2(Zn). Therefore we

get

M(D) +D + u+M2(Zn) = M(D) +D +M2(Zn). (28)

In particular, we have D + u+M(Zn) = D +M(Zn).

Then, starting from arbitrary f0 ∈ D we can get a sequence (fi) ⊂ D so that

fi + u+M(Zn) = fi+1 +M(Zn) (i = 0, 1, 2, . . .). (29)

Since u 6∈ M(Zn) we have fi 6= fi+1 for each i. This and the fact that the

sequence (fi) is contained in a finite set imply that there must be a j ∈ N such that

fj+1 − fj 6= fj − fj−1.

Let e ∈ D be arbitrary. Applying (28) and (29) we get that there exist e′, e′′ ∈ D

such that

Me′ + fj−1 + u+M2(Zn) = Me+ fj +M2(Zn)

and

Me′ + fj + u+M2(Zn) = Me′′ + fj+1 +M2(Zn),

which implies

(fj − fj−1) − (fj+1 − fj) = M(e′′ − e) +M2(Zn).

Thus there exists a w ∈ Zn such that

Mw = (fj − fj−1) − (fj+1 − fj) = M(e′′ − e) +M2(Zn). (30)

Since e, e′′, fj−1, fj, fj+1 ∈ D ⊂ {0, 1, . . . ,m1−1}× . . .×{0, 1, . . . ,mn −1}, (30)

implies that

e+ w +M(Zn) = e′′ +M(Zn)

and

w ∈ {−1, 0, 1}× . . .× {−1, 0, 1} \ {(0, . . . , 0)}.

Since e ∈ D was arbitrary, e′′ ∈ D and w does not depend on e we get that

D + w +M(Zn) = D +M(Zn),

which completes the proof. 2

Prepared using etds.cls



38 M. Elekes, T. Keleti, A. Máthé

Theorem 7.9. Let K = K(M,D) be a self-affine Sierpiński sponge in Rn and µ

the natural probability measure on it as described in Definition 2.14 and let t ∈ Rn.

Then µ
(
K ∩ (K + t)

)
≤ 1 − 1

r2 holds (where r denotes the number of elements

in the pattern D) except in the following two trivial exceptional cases:

(i) t = 0.

(ii) K is of the form K = L × K0, where L is a diagonal of a cube [0, 1]l, where

l ∈ {1, 2, . . . , n} and K0 is a smaller dimensional self-affine Sierpiński sponge.

Proof. Suppose that t 6= 0 and µ(K ∩ (K + t)) > 1 − 1
r2 . For Dn = Mn−1(D) +

Mn−2(D) + . . . + M(D) + D, by definition, K(M,D) = K(Mn, Dn). Therefore

we can apply Proposition 7.8 to (Mn, Dn) to obtain wn ∈ {−1, 0, 1}n \ {(0, . . . , 0)}
such that

Dn + wn +Mn(Zn) = Dn +Mn(Zn).

Then Lemma 7.3 completes the proof. 2

8. Translation invariant measures for self-affine Sierpiński sponges

As an easy application of Theorem 7.4 (and Lemma 2.18) we get the following.

Theorem 8.1. For any self-affine Sierpiński sponge K ⊂ Rn (n ∈ N) there exists

a translation invariant Borel measure ν on Rn such that ν(K) = 1.

Proof. Let µ be the natural probability Borel measure on K (see Definition 2.14).

We shall prove by induction that µ can be extended to Rn as a translation invariant

Borel measure. Assume that this is true for any smaller dimensional self-affine

Sierpiński sponge.

First suppose that K is of the form K = K1 ×K2, where K1 and K2 are smaller

dimensional self-affine Sierpiński sponges. Then µ = µ1 × µ2, where µ1 and µ2 are

the natural probability Borel measures on K1 and K2, respectively. Then, by our

assumption, µ1 and µ2 has translation invariant extensions µ̃1 and µ̃2 and then one

can easily check that µ̃ = µ̃1 × µ̃2 is a translation invariant Borel measure on Rn

and an extension of µ.

If K is not of the form K = K1 ×K2 then we shall check that condition (6) of

Lemma 2.18 is satisfied, so then Lemma 2.18 will complete the proof. Fix B ⊂ K

and t ∈ Rn such that B + t ⊂ K. Then B ⊂ K ∩ (K − t) and B + t ⊂ K ∩ (K + t),

so we have µ(B) = 0 = µ(B + t) unless

µ
(
K ∩ (K + t)

)
> 0 or µ

(
K ∩ (K − t)

)
> 0 (31)

By Theorem 7.4 and since case (ii) of Theorem 7.4 is already excluded, (31) implies

(i) of Theorem 7.4. On the other hand, if (i) of Theorem 7.4 holds then the

translation by t maps elementary parts of B to elementary parts of B + t and

then the condition (6) clearly holds.

Since we checked all cases, the proof is complete. 2

We also show a more direct proof for the above theorem, which does not use

Theorem 7.4 and which works for a slightly larger class of self-affine sets.
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Theorem 8.2. Let ϕ be a contractive affine map, t1, . . . , tr ∈ Rn and K ⊂ Rn the

compact self-affine set such that K = ∪r
i=1ϕ(K) + ti. Suppose that the standard

natural probability measure on K has the property that

µ
(

K ∩
((

(ϕ(K) + ti) ∩ (ϕ(K) + tj)
)
+ u

))

= 0 (∀ 1 ≤ i < j ≤ r, u ∈ Rn). (32)

(a) Then for any t ∈ Rn and elementary part S of K we have

µ
(
K ∩ (S + t)

)
≤ µ(S).

(b) There exists a translation invariant Borel measure ν on Rn such that ν(K) =

1. In fact, ν is an extension of µ.

Proof. First we prove (a). Suppose that S is a k-th generation elementary part of

K. Then K can be written as

K = ∪rk

j=1S + hj

for some h1, . . . , hrk ∈ Rn and by (32) the sets S + hj are pairwise almost disjoint.

Using this and that µ(A) = µ(A+ hj) for any Borel set A ⊂ S we get that

µ
(
K ∩ (S + t)

)
= µ

( rk

⋃

j=1

(S + hj) ∩ (S + t)

)

=

rk

∑

j=1

µ
(

(S + hj) ∩ (S + t)
)

=
rk

∑

j=1

µ
((
S ∩ (S + t− hj)

)
+ hj

)

=

rk

∑

j=1

µ
(

S ∩ (S + t− hj)
)

. (33)

Using (32) we get that for any i 6= j we have

µ
((
S ∩ (S + t− hi)

)
∩

(
S ∩ (S + t− hj)

))

= µ
(

S ∩
((

(S + hj) ∩ (S + hi)
)

+ t− hi − hj

))

= 0. (34)

Thus we can continue (33) as

µ
(
K ∩ (S + t)

)
=

rk

∑

j=1

µ
(
S ∩ (S + t − hj)

)
= µ

(

S ∩
rk

⋃

j=1

(S + t− hj)

)

≤ µ(S),

which completes the proof of (a).

For proving (b) define

ν(H) = inf

{
∞∑

j=1

µ(Sj) : H ⊂ ∪∞
j=1Sj + uj, Sj is an elem. part of K,uj ∈ Rn

}
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for any H ⊂ Rn. Then ν is clearly a translation invariant outer measure on Rn.

We claim that ν is a metric outer measure; that is, ν(A ∪ B) = ν(A) + ν(B)

if A,B ⊂ Rn have positive distance. Indeed, in this case in the cover A ∪ B ⊂
∪∞

j=1Sj + uj in the definition of ν(A ∪ B) we can replace replace each Sj by

its small elementary parts such that each small elementary part covers only at

most one of A and B. Since this transformation does not change
∑∞

j=1 µ(Sj) this

implies that ν(A ∪ B) ≥ ν(A) + ν(B). Since ν is an outer measure we get that

ν(A ∪B) = ν(A) + ν(B).

It is well known (see e. g. in [6]) that restricting a metric outer measure to the

Borel sets we get a Borel measure.

So it is enough to prove that ν(K) = 1. The definition of ν(K) implies that

ν(K) ≤ µ(K) = 1.

For proving ν(K) ≥ 1 let K ⊂ ∪∞
j=1Sj + uj be an arbitrary cover such that each

Sj is an elementary part of K and uj ∈ Rn. Then, using the already proved (a)

part we get that

∞∑

j=1

µ(Sj) ≥
∞∑

j=1

µ
(
K ∩ (Sj + uj)

)
≥ µ

( ∞⋃

j=1

(K ∩ (Sj + uj))
)

= µ(K),

which completes the proof of (b). 2

Using Lemma 2.9, the above theorem has the following consequence.

Corollary 8.3. Let K = ϕ1(K)∪ . . .∪ϕr(K) be a self-affine set with the convex

open set condition and suppose that ϕ1(K), . . . , ϕr(K) are translates of each other.

Then the natural probability measure on K can be extended as a translation

invariant measure on Rn. 2

9. Concluding remarks

Our results might be true for much larger classes of self-similar or self-affine sets.

We have no counter-example even for the strongest very naive conjecture that the

intersection of any two affine copies of any self-affine set is of positive measure

(according to any self-affine measure on one of the copies) if and only if it contains

a set which is open in both copies.

We do not even know whether this very naive conjecture holds at least for

two isometric copies of a self-affine Sierpiński sponge. (Note that if we allow

only translated copies then Corollary 7.7 provides an affirmative answer.) For

generalizing our results about Sierpiński sponges from translates to isometries the

following statement could help.

Conjecture 9.1. If K is a self-affine sponge, µ is the natural probability measure

on it, ϕ is an isometry and µ
(
K ∩ϕ(K)

)
> 0 then there exists a translation t such

that K ∩ ϕ(K) = K ∩ (K + t).

This conjecture and the above mentioned Corollary 7.7 would clearly imply that

Corollary 7.7 holds for isometric copies of self-affine Sierpiński sponges as well.
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Then, in the same way as Theorem 8.1 is proved, we could get an isometry-invariant

Borel measure ν for an arbitrary Sierpiński sponge K such that ν(K) = 1.

For getting this stronger version of Theorem 8.1 the other natural way could

be a generalization of Theorem 8.2 for isometries at least for self-affine Sierpinśki

sponges. Since part (b) of Theorem 8.2 follows from (a) for isometries as well

it would be enough to show (a), that is, it would be enough to show that

µ
(
K∩ϕ(S)

)
≤ µ(S), for any elementary piece S of any self-affine Sierpiński sponge

K with natural measure µ. We do not know whether this last mentioned statement

holds or not.

As we saw in Theorem 7.9, the instability results are not true for arbitrary self-

affine sets, not even for self-similar sets with the open set condition: the simplest

counter-example is K = C× [0, 1], where C denotes the classical triadic Cantor set.

Then K is self-similar (with six similitudes of ratio 1/3), the open set condition

clearly holds and if µ is the evenly distributed self-similar measure on K (that is,

p1 = . . . = p6) then µ
(
K ∩ (K + (0, ε)

)
= 1 − ε. The instability results might

be true for totally disconnected (which means that each connected component is a

singleton) self-affine sets.

In the definition of self-affine sets we allowed only contractive affine maps. If we

allowed non-contractive affine maps as well then the above K = C× [0, 1] set would

be a self-affine set (with two affine maps) with the strong separation condition, so

it would be a counter-example for both theorems (Theorem 3.2 and Theorem 3.5)

about self-affine sets.

We do not know whether the analogues of Theorem 4.1, Theorem 4.5 and

Corollary 4.7 hold for self-affine sets with the strong separation condition. Although

Theorem 3.5 says that for self-affine sets and isometries the analogue of Theorem 4.1

holds, and Theorem 4.5 was proved from Theorem 4.1, we cannot get the same way

that for self-affine sets and at least for isometries the analogue of Theorem 4.5

holds. This is because in the proof of Theorem 4.5 it was important that the maps

ϕ1, . . . , ϕr that generated the self-similar sets were also in the group (in this case the

group of similitudes) for which we had Theorem 4.1. In order to get any analogue

of Theorem 4.5 for self-affine sets in the same way we need to prove a self-affine

analogue of Theorem 4.1 for a group of transformation containing the affine maps

ϕ1, . . . , ϕr that generates the self-affine set.

From a positive answer for the following question we could get fairly easily that

the self-affine analogue of Theorem 4.1 holds at least for affine maps from any

compact subset of the space of affine maps. Then, if we could also show that we

can assume that the affine maps are from a compact set (as in Proposition 4.2 for

similitudes) then we would get that all the main results of Section 4 also hold for

self-affine sets and affine maps as well.

Question 9.2. Let K ⊂ Rd be a self-affine set satisfying the strong separation

condition and let f be an affine map such that f(K) ⊂ K. Does this imply that

f(K) is a relative open set in K?

Note that for f(K) being a relative open set in K means that it is the union
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of countably many pairwise disjoint elementary pieces of K, and since f(K) is

compact this means that f(K) is a finite union of elementary pieces of K.

A positive answer at least for the following self-similar special case of the above

question could make the proof of Theorem 4.1 simpler. However, we cannot answer

this question even for d = 1.

Question 9.3. Let K ⊂ Rd be a self-similar set satisfying the strong separation

condition and let f be a similitude such that f(K) ⊂ K. Does this imply that f(K)

is a relative open set in K (or in other words f(K) is a finite union of elementary

pieces of K)?

Note that in Section 6 we saw that self-similar set (even in R) may contain similar

copies of itself in non-trivial ways.
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