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Kristóf Bérczi, ELTE EGRES
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The Young Physicists’ Tournament

by Kataŕına Cechlárová

1 Young Physicists’ Tournament

The International Young Physicists’ Tournament (IYPT), sometimes referred to as “Physics World
Cup”, is a team-oriented scientific competition between secondary school students. The partici-
pating teams present their solutions to scientific problems they have prepared over several months
and then discuss their solutions with other teams. More details can be found in the webpage
http://iypt.org/.

Before taking part in the international competition, the teams compete in national tournaments.
The rules I present here are valid in Slovakia.

The international jury publishes a set of 17 problems. Let us denote by T = {t1, t2, . . . , tm} the
set of teams that apply for the tournament. For simplicity, in what follows, we assume that the
number of teams is a multiple of 3. Each team applying for participation submits a set of exactly
3 problems from the published set, which they like most and they will report on them. Let us call
this set the team’s portfolio. We shall denote the portfolio of team ti by p1

i , p
2
i , p

3
i . Table 1 gives an

example of a set of applications.

Team Portfolio Team Portfolio
A 1,2,3 D 3,4,5
B 1,2,4 E 1,5,6
C 2,3,4 F 4,5,7

Table 1: Applications

The organizers now prepare a schedule of the tournament. The tournament consists of 3 rounds.
In each round, the set of teams is partitioned into groups of three. Each team in a group is assigned
a problem from its portfolio. The group performs a so-called Fight.

The structure of the fight is as follows. First, the ordering of teams is selected by lot, assume
this ordering is t1, t2, t3. In the first stage of the Fight, team t1 is the Reporter-Team; they present a
report on the assigned problem. Team t2 is the Opponent. After the presentation of the Reporter-
Team, they present an estimation on the presentation. Afterwards the third team, the Reviewer-
Team can ask questions to both other teams and then presents an overview of the performance of
the Opponent. In the second stage of the Fight, the roles of Reporter, Reviewer and Opponent are
performed by teams t2, t3 and t1, respectively; and in the third stage by t3, t1 and t2.

So as no team has an unjustified advantage, it is desirable that if team t presents problem
p in a Fight, neither of the two other teams in its group have problem p in their portfolio. An
example of a correct schedule for round 1 for the applications from Table 1 is given in Table 2. For
easier reference, each team is shown with its complete portflio; the problem assigned for reporting
is underlined and boldface.

A schedule is said to be feasible if

• each team is exactly in one group in each round;

• each team presents a different problem from its portfolio set in each round;

http://iypt.org/
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Group 1 Group 2
A D E B C F

123 345 156 124 234 456

Table 2: A possible round 1

• if team t presents problem p being in group with two other teams then neither of them has
problem p in its portfolio.

Questions:

• Can you design an algorithm to decide if a feasible schedule for a set of applications exists;
and if the answer is positive, to find one?

• If a feasible schedule does not exist, can you propose a simple certificate to demonstrate this?
For example, if all teams have the same portfolio, no feasible schedule is possible.

• Are there any necessary and/or sufficient conditions for the existence of a feasible schedule?

If teams are allowed to choose their portfolios completely arbitrary, the chances of a feasible
schedule may be low. Let us therefore think about another approach. Suppose that instead of
submitting a portfolio directly, each team submits a preference ordering of the problems, perhaps
it might even be allowed to label some problems as unacceptable. We seek a matching of teams to
triples of problems that enables a feasible schedule, and is in a sense optimal. Several optimality
criteria can be thought of, my favourite one is to minimize the position of the worst problem in the
portofio of each team.
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House Allocation problem

by Tamás Fleiner

An instance I of the House Allocation problem (ha), also known as the Assignment problem,
comprises a set A = {a1, a2, . . . , an1} of applicants and a set H = {h1, h2, . . . , hn2} of houses. There
is a set E ⊆ A×H of acceptable applicant–house pairs. Let m = |E|. Each applicant ai ∈ A has an
acceptable set of houses A(ai), where A(ai) = {hj ∈ H : (ai, hj) ∈ E}. Similarly each house hj ∈ H
has an acceptable set of applicants A(hj), where A(hj) = {ai ∈ A : (ai, hj) ∈ E}.

Each applicant ai ∈ A has a preference list which is a strict linear order ≺ai over A(ai).
1 Given

an applicant ai ∈ A, and given two houses hj, hk ∈ A(ai), ai is said to prefer hj to hk if hj ≺ai hk.
For a given acceptable applicant–house pair (ai, hj), define rank(ai, hj) to be 1 plus the number of
houses that ai prefers to hj.

An assignment M is a subset of E. If (ai, hj) ∈ M , ai and hj are said to be assigned to one
another. For each pk ∈ A ∪H, the set of assignees of pk in M is denoted by M(pk). If M(pk) = ∅,
pk is said to be unassigned, otherwise pk is assigned. A matching M is an assignment such that
|M(pk)| ≤ 1 for each pk ∈ A ∪ H. For notational convenience, if pk is assigned in M then where
there is no ambiguity the notation M(pk) is also used to refer to the single member of the set M(pk).
Let M denote the set of matchings in I.

The preferences of an applicant extend to M as follows. Given two matchings M,M ′ ∈M, we
say that an applicant ai ∈ A prefers M ′ to M if either (i) ai is assigned in M ′ and unassigned in
M , or (ii) ai is assigned in both M and M ′, and ai prefers M ′(ai) to M(ai). A matching M ∈ M
is defined to be Pareto optimal if M is /-minimal. Equivalently, M is Pareto optimal if and only
if there is no other matching M ′ in I such that (i) some applicant prefers M ′ to M , and (ii) no
applicant prefers M to M ′.

2 House allocation via exchanges in a social network

In a well-studied and realistic variant of ha, each applicant ai initially owns a house M(ai), and
the goal of the applicants is to exchange these houses among themselves [8]. These exchanges can
happen either in a centralised [8, 1, 6, 9, 2] or a decentralised manner [7, 3, 4, 5].

The latter case was studied in a social network by Gourvés et al. [5]. Two applicants in a social
network either know each other, and they are capable of exchanging their houses, or they do not
know each other, in which case no exchange can happen. More formally, each applicant ai has an
acceptable set A(ai) of houses, as in the other variants of ha discussed above, but in addition ai
has an acceptable set Aa(ai) of applicants. These Aa(ai) sets trivially define a social network N ,
which is a graph N = (A,E∗), where {ai, aj} ∈ E∗ if and only if aj ∈ Aa(ai) and ai ∈ Aa(aj). As in
the case of ha, applicant ai ranks A(ai), including her initial endowment, in strict order, and she
is only inclined to participate in an exchange if the house she receives is better than the one she
currently owns.

In a social network it can happen that an exchange between applicants ai and aj that was
infeasible earlier becomes feasible later. If aj ∈ Aa(ai), and ai finds M(aj) worse than her own
house M(ai), then ai will not accept M(aj) in any feasible exchange. However, if aj participates
in an exchange following which she receives a house M ′(aj) that ai ranks higher than her current
house, then ai suddenly becomes interested in accepting aj’s new house M ′(aj).

1That is, ≺ai
is an irreflexive, transitive and linear binary relation over A(ai).
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Gourvés et al. [5] restricted their attention to swaps in social networks. Swaps are exchanges
of length 2, involving two applicants only, who swap their houses with each other, changing
{(ai,M(ai)), (aj,M(aj))} to {(ai,M(aj)), (aj,M(ai))} in the new matching. If a matching M ′

is reachable from the initial matching M by a sequence of such swaps, then we call it a reachable
matching. Similarly, houses that an applicant ai can receive via swaps belong to the set of reachable
houses. Pareto optimal matchings are also defined based on swaps. A matching M ′ is considered
to be Pareto optimal if it is reachable from M and there is no other reachable matching M ′′ that
Pareto-dominates M ′. We summarise the main results from [5] in the following three theorems.

Theorem 1 ([5]). The problem of deciding whether house hj is reachable for applicant ai is NP-
complete even if the network N is a tree. The problem becomes polynomially solvable if N is a path
and ai is a leaf on this path, or when N is a star.

Theorem 2 ([5]). The problem of deciding whether matching M ′ is reachable from matching M is
NP-complete. The problem becomes polynomially solvable if N is a tree.

Theorem 3 ([5]). The problem of finding a Pareto optimal matching is NP-hard even if the network
N is a tree. The problem becomes polynomially solvable if N is a star.

Table 3 contains a structured interpretation of the above results.

path star tree general

h reachable polynomial if ai is a leaf polynomial NP-complete NP-complete
M reachable polynomial polynomial polynomial NP-complete
Find PO matching polynomial polynomial NP-complete NP-complete

Table 3: The complexity table summarising the three problems in [5]. The columns are the type
of graph for which we pose the problem in the row, corresponding to Theorems 1, 2, and 3, in this
order.

The most striking open question regarding exchanges in social networks involves longer cycles
instead of swaps only. Strategyproofness is another topic worthy of investigation. Also, the hard
cases in Theorems 1, 2, and 3 could be tackled from a parameterised complexity viewpoint.
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9th Emléktábla Workshop 5

[5] L. Gourvès, J. Lesca, and A. Wilczynski. Object allocation via swaps along a social network.
In Proceedings of IJCAI ’17: the 26th International Joint Conference on Artificial Intelligence,
pages 213–219. AAAI Press, 2017.

[6] C. G. Plaxton. A simple family of top trading cycles mechanisms for housing markets with
indifferences. In Proceedings of the 24th International Conference on Game Theory, Stony
Brook, pages 1–23. https://www.cs.utexas.edu/users/plaxton/pubs/2013/icgt.pdf (ac-
cessed 27 May 2019), 2013.

[7] T. Sandholm. Contract types for satisficing task allocation: I theoretical results. In Proceedings
of the AAAI Spring Symposium: Satisficing Models, pages 68–75. AAAI Press, 1998.

[8] L. Shapley and H. Scarf. On cores and indivisibility. Journal of Mathematical Economics,
1:23–37, 1974.

[9] T. Sönmez and T. Switzer. Matching with (branch-of-choice) contracts at United States Mili-
tary Academy. Econometrica, 81(2):451–488, 2013.

https://www.cs.utexas.edu/users/plaxton/pubs/2013/icgt.pdf


6 Matching Theory

Three problems more-or-less related to matchings

by Tamás Király

3 A pairing approach to Woodall’s conjecture

Let D = (V,E) be a directed graph. An edge set F ⊆ E is a dijoin if it contains at least one edge
from every directed cut of D; it is a k-dijoin if it contains at least k edges from every directed cut.

Woodall [8, 9] conjectured that the maximum number of edge-disjoint dijoins in a digraph equals
the minimum size of a directed cut. This conjecture is still open – there are only a few classes of
graphs for which it is known to hold (source-sink connected graphs, series-parallel graphs, transitive
closure of directed trees).

A possible generalization would be that a k-dijoin of a digraph always contains k edge-disjoint
dijoins. However, Schrijver [7] showed that this is not true in general. His counterexample also
shows that there is a directed graph D = (V,E) and a 2-dijoin F ⊆ E such that for any F ′ ⊆ F ,
there is a directed cut that contains at most 3 edges from F and is disjoint from either F ′ or F −F ′.

In [6], we showed that for every k ≥ 2, if D = (V,E) is a directed graph and F ⊆ E is a 2k-
dijoin, then there exists F ′ ⊆ F such that both F ′ and F − F ′ contain k edges from every directed
cut that has at most 2k + 1 edges in F . We conjectured that the following is also true: if k ≥ 2,
then any 2k-dijoin can be partitioned into two k-dijoins.

Let D = (V,E) be a directed graph and F ⊆ E a subset of edges. We use the notation

dinF (X) := |{uv ∈ F : u ∈ V −X, v ∈ X},
doutF (X) := |{uv ∈ F : u ∈ X, v ∈ V −X},
dF (X) := dinF (X) + doutF (X).

Let us define the following families of sets:

I := {∅ 6= X ( V : doutE (X) = 0},
Ij := {X ∈ I : dF (X) = j}.

The proof in [6] relies on the following lemma:

Lemma 1 ([6]). Let D = (V,E) be a digraph, k ≥ 2 an integer, and F ⊆ E a 2k-dijoin. There is
a pairing M of the nodes with dF (v) odd such that

dM(X) = 0 if X ∈ I2k,

dM(X) = 1 if X ∈ I2k+1.

Corollary 2. Let D = (V,E) be a digraph, k ≥ 2 an integer, and F ⊆ E a 2k-dijoin. There is an
edge set F ′ ⊆ F so that

min{dF ′(X), dF−F ′(X)} ≥ k for every X ∈ I2k ∪ I2k+1.

Proof. Let M be the pairing that exists according to Lemma 1, and let G be the even-degree graph
obtained by taking the union of M and the edges of F without orientation. We select an arbitrary
Eulerian orientation ~G of G, and denote by F ′ the set of edges in F that have the same orientation
in ~G as in D. If X ∈ I2k, then dM(X) = 0, so dF ′(X) = din~G (X) = k. If X ∈ I2k+1, then dM(X) = 1,

so dF ′(X) ≤ din~G (X) = k + 1 and dF ′(X) ≥ din~G (X)− dM(X) = k.
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Note that Corollary 2 is not true for k = 1 by the counterexample of Schrijver [7]. It is an
interesting open question whether Theorem 1 can be generalized by requiring dM(X) ≤ dF (X)−2k
for every X ∈ I.

Question 1. Let D = (V,E) be a digraph, k ≥ 2 an integer, and F ⊆ E a 2k-dijoin. Is there a
pairing M of the nodes with dF (v) odd such that dM(X) ≤ dF (X)− 2k for every X ⊆ V for which
doutE (X) = 0?

If true, this would imply the following relaxation of the capacitated version of Woodall’s con-
jecture.

Question 2. Let D = (V,E) be a digraph, k ≥ 2 an integer, and F ⊆ E a 2k-dijoin. Is it true that
F can be partitioned into two k-dijoins?

We note that it is open if there is a function f(k) such that every f(k)-dijoin of a digraph can be
partitioned into k dijoins. An affirmative answer to the above questions would confirm the existence
of such a function.

4 Popular arborescences

The popular arborescence problem is related to the popular matching problem (see e.g. [1, 4, 5]),
but there are no results on this topic yet, so there are plenty of open questions.

Let D = (V +r, E) be a digraph with a specified root node r. For every v ∈ V , ≺v is a preference
order defined on the incoming edges. We obtain different problems based on whether ≺v is required
to be a total order or only a partial order. Given spanning arborescences A and A′ of D rooted at
r, a node v ∈ V prefers A to A′ if δinA (v) �v δ

in
A′(v).

Definition. A spanning arborescence A is popular ( strongly popular) if for any spanning arbores-
cence A′ 6= A, the number of nodes preferring A′ to A is less or equal (strictly less) than the number
of nodes preferring A to A′.

To decide whether a given arborescence A is popular, we can assign weights to the edges of the
digraph such that the maximum weight of an arborescence is positive if and only if A is not popular.
A similar technique works for deciding if A is strongly popular.

Exercise 3. Show a digraph with preferences where no popular arborescence exists.

Question 3. Can we decide in polynomial time if there is a popular arborescence?

Question 4. Can we decide in polynomial time if there is a strongly popular arborescence?

The same questions can be asked if each v ∈ V has a weight wv, and the vote of v is worth wv

when deciding popularity. It can still be decided whether a given arborescence is popular using the
minimum weight arborescence algorithm.

5 Weighted bipartite edge colouring

Let G = (S, T ;E) be a bipartite graph, with weights w : E → [0, 1]. A proper weighted edge
colouring is a colouring of the edges such that at each vertex, the sum of weights of edges of the
same colour is at most 1. A lower bound for the number of colours is the minimum number of unit
bins needed to pack the weights incident to any vertex, denoted by b. Chung and Ross [2] asked
the following question.
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Question 5. Is there always a proper weighted edge colouring using 2b− 1 colours?

Currently, the best bound is 20b/9 + o(b) by Khan and Singh [3]. Their proof uses the configu-
ration LP of the bin packing problem.
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Necklace folding and Exact matching

by Zoltán Király

6 Necklace folding problem

Given a necklace with n red (+1) and n blue (−1) beads.

1. Folding 2/3 of a +- necklace

Conjecture 1: Given a cyclic binary (alphabet={+, -} )sequence, 

where the number of « + » = number of « - », then there exists  

     a subsequence of the form   x,   - x reversed,  i.e. a ‘folding’ , 

     containing at least 2/3 of the elements. 

Example:
+

+
-

-

-
+

-

+
-+

-

+

-
+

+
-

+
-

-
+
-+ + -

A slide of András Sebő

Given a cyclic sequence c0, . . . , c2n−1 where ci ∈ {−1,+1} and
∑
ci = 0.

A matching consists of mutually disjoint pairs (ci1 , cj1), (ci2 , cj2), . . . , (cim , cjm) where for all 1 ≤
k ≤ m we have cik + cjk = 0.



10 Matching Theory

A matching is cross-free if no:

A crossing

Exercise 1. Show that there is always a perfect cross-free matching.

A secant is a pair of indices 0 ≤ s1 6= s2 ≤ 2n − 1. We think that we cut the necklace along a
secant, i.e., between cs1 and cs1+1; and also between cs2 and cs2+1 (the indices of c are always meant
modulo 2n).

Definition 2. A matching (ci1 , cj1), (ci2 , cj2), . . . , (cim , cjm) is secant-respecting if there is a secant
s1, s2 such that s1 ≤ ik ≤ s2 and s2 ≤ jk ≤ s1.

A matching is proper if it is cross-free and secant-respecting.

A proper matching

Exercise 3. Show that there is always a proper matching of size dn/2e.

Exercise 4. Show that the largest proper matching be found in O(n3).

Exercise 5. Show examples where the maximum size of a proper matching is (2n/3) + 1.

Conjecture 1 (Lingsø-Pedersen (1999) and Giberti-Preissmann-Sebő (2004)). There is always a
proper matching of size 2n/3.

Definition 6. An arc is ci, ci+1, . . . , cj. An arc is a half-circle if j = i + n − 1. A secant is a
diameter if the two arcs it defines are both half-circles (s2 = s1 + n).

Conjecture 2 (Strong). There is always a proper matching of size 2n/3 where the secant is a
diameter.

It would be interesting and instructive if someone has a counterexample to the Strong Conjecture.

Conjecture 3 (Weak). There is always a proper matching of size 0.51 · n.

Definition 7. An arc is unbalanced if
∣∣∣∑j

i ck

∣∣∣ > 0.51 · n.

Exercise 8. If there is an unbalanced half-circle, then the weak conjecture is true.
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7 Exact matching

Definition 9. Given G = (V,E) with |V | = 2n, a two-coloring E → {red, blue} and positive
integer k; a perfect matching of G consisting of exactly k red (and n − k blue) edges is called an
exact matching.

Problem 4. Decide in deterministic polynomial time whether an exact matching exists or not.

Problem 5. Suppose G is bipartite. Decide in deterministic polynomial time whether an exact
matching exists or not.

An edge-coloring is defined by a vertex-subset R if edge uv is red if and only if u, v ∈ R.

Problem 6. Suppose the edge-coloring is defined by a vertex-subset R. Decide in deterministic
polynomial time whether an exact matching exists or not.

Problem 7. Suppose G is bipartite and the edge-coloring is defined by a vertex-subset R. Decide
in deterministic polynomial time whether an exact matching exists or not.

An edge-coloring is defined by a two-patition V = X ∪ Y if edge uv is red if and only if u ∈ X
and v ∈ Y .

Problem 8. Suppose the edge-coloring is defined by a two-patition V = X ∪ Y . Decide in deter-
ministic polynomial time whether an exact matching exists or not.

Problem 9. Suppose G is bipartite and the edge-coloring is defined by a two-patition V = X ∪ Y .
Decide in deterministic polynomial time whether an exact matching exists or not.

Exercise 10. Show that Problems 6 and 8 are ‘equivalent’. Problems 7 and 9 are also ‘equivalent’.

Exercise 11. Given an instance of Problem 8 (or Problem 9), and suppose we found a perfect
matching having k′ red edges. Show that if k − k′ is odd, then no exact matching exists.

All of these are open! The first two were investigated several times while the latest four were
not.

Theorem 12 (Karzanov, 1987). There are good characterizations yielding deterministic polynomial
time algorithms for the Problems 4 and 5 in the two special cases when G = K2n or G = Kn,n.

Theorem 13 (Lovász, 1979; and Mulmuley-Vazirani-Vazirani, 1987). The most general Problem 4
is in RP, moreover, it is in RNC 2. In RNC 2 the matching required can also be found if it exists.

Interestingly enough, Yuster gave an ‘approximation’ for Problem 4 in the following strong sense.

Theorem 14 (Yuster, 2007 (APPROX), 2011 (Algorithmica)). There is a deterministic polynomial
time algorithm which either correctly asserts that no perfect matching contains exactly k red edges,
or exhibits a matching of size at least n− 1 with exactly k red edges.
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Some problems in Popular / Pareto-optimal / Stable Matchings

by Kavitha Telikepalli

In all the problems listed here, the input is a bipartite graph G = (A∪B,E) where each vertex
has a preference list ranking its neighbors. Such a graph G is typically called a marriage instance
(with incomplete lists). Let |A∪B| = n and |E| = m. In the first 4 sections we assume preferences
are strict.

8 Popular Matchings

Given a vertex u and a matching M such that u is matched in M , let M(u) be u’s partner in M .
A vertex u prefers matching M to matching N if either (i) u is matched in M and unmatched in
N or (ii) u is matched in both M,N and u prefers M(u) to N(u). For any two matchings M and
N , let φ(M,N) be the number of vertices that prefer M to N .

Definition 1. A matching M is popular if φ(M,N) ≥ φ(N,M) for all matchings N in G.

Thus a popular matching never loses a head-to-head election against any matching where every
vertex casts a vote for the matching that it prefers. It is easy to show that every stable matching
is popular [4]. The question we consider here is:

• given an instance G = (A∪B,E), how efficiently can we decide if every popular matching in
G is stable? That is, is {popular matchings} ⊃ {stable matchings} or {popular matchings} =
{stable matchings}?

It is known that every stable matching is a min-size popular matching [7]. We also know how
to compute a max-size popular matching in linear time [10]. Thus it can be determined in linear
time if G admits popular matchings of more than one size. If so, then G admits unstable popular
matchings.

Suppose all popular matchings in G have the same size. Then how do we answer the above
question? There is an O(m2) algorithm for this problem [1] and it works with dominant matchings.
A dominant matching M is a popular matching that is more popular than all larger matchings.
That is, (i) M is popular and (ii) if |M ′| > |M | then φ(M,M ′) > φ(M ′,M). Dominant matchings
always exist in G [7] and such a matching can be computed in linear time [10].

It was shown in [2] that if G admits an unstable popular matching then G has to admit an un-
stable dominant matching. The algorithm for deciding if G admits an unstable dominant matching
or not checks for each e ∈ E, if there exists a dominant matching in G with e as a blocking edge.
This can be done in linear time. If no such dominant matching exists for any edge e, then every
dominant matching in G is stable and hence every popular matching in G is stable. The total time
taken by this algorithm is O(m ·m) = O(m2).

Question 1. Is there a faster way to solve the above problem? In particular, can we decide in
linear time if G has a popular matching that is not stable?
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9 Weighted-Popular Matchings

This is a more general variant of the popular matching problem. The input here is a marriage
instance G = (A ∪ B,E) where every vertex v has a weight wv. For any two matchings M and
N , let φ(M,N) be the sum of weights of vertices that prefer M to N . Thus in the first problem,
wv = 1 for all v ∈ A ∪B.

∗ A matching M is weighted-popular if φ(M,N) ≥ φ(N,M) for all matchings N in G.

Note that a weighted-popular matching need not exist in a given instance. Consider the following
simple example:

• Let A = {a1, a2, a3} and B = {b1, b2, b3}. The edge set E = A×B. Let wa = 2 for each a ∈ A
and wb = 1 for each b ∈ B.

• For i ∈ {1, 2, 3}, the preference list of ai is b1 � b2 � b3, i.e., b1 is its first choice, b2 is its second
choice, and b3 is its third choice. For i ∈ {1, 2, 3}, the preference list of bi is a1 � a2 � a3.

The matching M1 = {(a1, b1), (a2, b2), (a3, b3)} is stable, however it is not weighted-popular since
the matching M2 = {(a2, b1), (a3, b2), (a1, b3)} defeats it. Observe that a2, a3, and b3 prefer M2 to M1

while a1, b1, and b2 prefer M1 to M2. So φ(M2,M1) = 2+2+1 = 5 while φ(M1,M2) = 2+1+1 = 4.

Similarly, M2 is not weighted-popular since M3 = {(a3, b1), (a1, b2), (a2, b3)} defeats it. Observe
that a1, a3, and b2 prefer M3 to M2 while a2, b1, and b3 prefer M2 to M3. Thus φ(M3,M2) =
2 + 2 + 1 = 5 while φ(M2,M3) = 2 + 1 + 1 = 4.

Similarly, M3 is not weighted-popular as M1 defeats it. Observe that a1, a2, and b1 prefer M1

to M3 while a3, b2, and b3 prefer M3 to M1. Thus φ(M1,M3) = 2 + 2 + 1 = 5 while φ(M3,M1) =
2 + 1 + 1 = 4. It is easy to check that no weighted-popular matching exists in this instance.

Question 2. Given a weighted-popular matching instance G = (A∪B,E), what is the complexity
of deciding if a weighted-popular matching exists or not in G? Is it NP-hard or does it admit a
polynomial time algorithm?

10 Popular roommates

Given a roommates instance G = (V,E) (i.e., G need not be bipartite), the problem of deciding if
G admits a popular matching or not is the popular roommates problem. Note that we are back to
wv = 1 for all v ∈ V . The popular roommates problem is NP-hard [3, 5].

The popular roommates problem admits a “simply” exponential time algorithm, i.e., one that
runs in time O∗(kn) for some constant k. But the constant k we have for this problem is huge!
Our algorithm is based on enumerating candidate matchings and testing each such matching for
popularity. It uses the following facts:

• all stable matchings in a marriage instance can be enumerated with an algorithm given in [6]
that takes O∗(N) time where N is the number of stable matchings in this instance

• the number of stable matchings in a marriage instance with n vertices on each side is at most
cn for a constant c [9].

Our algorithm for popular roommates has running time O∗(kn), where k ≤ c2 ≤ 234.
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Question 3. Is there a fast exponential time algorithm for the popular roommates problem?

11 Pareto-optimal Matchings

We now move to a much larger class than the set of popular matchings. This is the set of Pareto-
optimal matchings. As in the first two problems, the input is a marriage instance G = (A ∪B,E).

Definition 2. A matching M in G is Pareto-optimal if there is no matching N such that φ(N,M) >
0 and φ(M,N) = 0.

So if there are one or more vertices that prefer some matching N to a Pareto-optimal matching
M , then there has to exist at least one vertex that prefers M to N . Pareto-optimal matchings
always exist in G = (A ∪B,E) since every stable matching is Pareto-optimal.

There always exists a max-size matching in G that is Pareto-optimal and such a matching can be
computed in polynomial time. Thus the max-size Pareto-optimal matching problem is tractable and
this is so even in roommates instances. However the max-weight Pareto-optimal matching problem
is NP-hard even in a marriage instance with a weight function w : E → {1, 2}.

Question 4. What is the complexity of computing a min-size Pareto-optimal matching? What is
the complexity of computing a Pareto-optimal matching in G = (A∪B,E) with a forced/forbidden
edge?

12 Weakly Stable Matchings

We now assume that preference lists admit ties. As before, we have a marriage instance G =
(A∪B,E) where each vertex in A∪B has a preference list (with ties allowed) ranking its neighbors.

Definition 3. A matching M is weakly stable if M has no blocking edge, i.e., a pair of vertices
that prefer each other to their respective assignments in M .

Though computing weakly stable matchings is easy, computing a max-size weakly stable match-
ing is NP-hard. The current best approximation algorithm for this problem is from 2009 with an
approximation ratio of 3/2 [12]. There are more recent linear time algorithms that achieve this
approximation ratio [11, 13].

The factor of 3/2 matches the integrality gap of a natural LP associated with this problem: in
particular, the integrality gap is at least (3`− 2)/(2`− 3) where ` is the maximum tie length [8]. It
is known that getting an approximation ratio of 4/3− ε, for any constant ε > 0, is UGC-hard [14].

Question 5. Can we show an improved approximation algorithm for the max-size weakly stable
matching problem? Or can we improve the lower bound?
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Contributed Problems

Erdős-Ko-Rado for tilings

by Casey Tompkins

The classical Erdős-Ko-Rado theorem asserts that a pairwise intersecting r-uniform, n-vertex
hypergraph with 2r ≤ n, contains at most

(
n−1
r−1

)
hyperedges.

Butler, Horn and Tressler [1] introduced a variation of this problem for tilings of a 2 by n
chessboard with dominos. Their theorem may be reformulated equivalently for tilings of a 1 by n
chessboard with squares and dominos as follows:

Theorem 1 (Butler, Horn and Tressler reformulated). Let T be a collection of tilings of a 1 by n
chessboard with 1 by 1 squares and 2 by 1 dominos. Assume moreover that for any S, T ∈ T , we
have that S and T have at least one square or domino in the same position. Then |T | is at most
the Fibonacci number fn, that is, the size of the set of tilings all containing a square in the first
position.

The proof of this theorem is very short and elegant and is included at the end. If instead of 1
by 1 and 2 by 1 dominos, we consider 1 by 1 and ` by 1 dominos (`-ominos) the same proof goes
through basically unchanged. However even for the case of tilings with 1 by 1, 2 by 1 and 3 by 1
dominos we don’t know the answer.

Problem 1. Let L be a set of tile lengths. Call a set of tilings T consisting of tiles of the form `
by 1 where ` ∈ L intersecting if every pair of tilings from T has a tile occupying the same positions.
Determine the maximum size of such a set of tilings T . In particular if L = {1, 2, 3}, is the optimum
to take all tilings starting (or ending) with a square?

Proof of Butler, Horn and Tressler: We simply introduce an injection φ from the set of
tilings starting with a domino to those starting with a square in such a way that T and φ(T ) are
nonintersecting. The following injection works. Let us denote a square/domino tiling by a sequence
of 2’s and 1’s in the obvious way. Partition any such sequence into blocks starting with a 2 followed
by any number of 1’s, say 21 . . . 1. If the number of 1’s is even φ(21 . . . 1) = 112 . . . 2, if the number of
1’s is odd φ(21 . . . 1) = 12 . . . 2. Performing this operation block-wise defines the required injection.
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Ordered Ramsey numbers of matchings

by Martin Balko

An ordered graph G is a pair (G,≺) where G is a graph and ≺ is a total ordering of its vertices.
The ordered Ramsey number R(G) is the minimum N ∈ N such that every 2-coloring of the edges
of the ordered complete graph KN on N vertices contains a monochromatic copy of G. That is, we
want to find G as a monochromatic subgraph with a fixed order of vertices; see Figure 1.

CA CB CC

Figure 1: Pairwise non-isomorphic ordered cycles on four vertices. The ordered Ramsey numbers
are R(CA) = 14, R(CB) = 10, and R(CC) = 11. The Ramsey number of (unordered) C4 is 6.

Let R(G) be the Ramsey number of G. It is easy to see that R(G) ≤ R(G) for each vertex-
ordering G of G. We also have R(G) ≤ R(Kn) = R(Kn) and thus ordered Ramsey numbers are
always finite and at most exponential in the number of vertices.

For an even positive integer n, a matching on n vertices is formed by n/2 pairwise disjoint edges.
In the 1980s, Chvátal, Rödl, Szemerédi, and Trotter [3] showed that the Ramsey number R(G) of
every n-vertex graph G with constant maximum degree is linear in n. In sharp contrast to this
result, Balko, Cibulka, Král, and Kynčl [1] and, independently, Conlon, Fox, Lee, and Sudakov [2]
showed that there are ordered matchings Mn on n vertices with R(Mn) superpolynomial in n. In
particular, these results give R(Mn) ≥ nΩ(logn/ log logn). It follows from a result of Conlon et al. [2]
that every ordered matching M on n vertices satisfies R(M) ≤ nO(logn). There is a gap between
these lower and upper bounds and it would be interesting to close it.

Problem 1 ([2]). Close the gap between the bounds on ordered Ramsey numbers of ordered match-
ings on n vertices.

Very little is known for the case with more than two colors. For an ordered graph G and
q ∈ N, let R(G; q) be the minimum N ∈ N such that each q-coloring of the edges of KN contains
a monochromatic copy of G. Conlon et al. [2] showed R(M; q) ≤ n(2 log2 n)q−1

for each ordered
matching M on n vertices and q ≥ 3. However, they believe that a stronger bound should hold.

Problem 2 ([2]). Show that, for q ≥ 3, there exists a constant c = c(q) such that R(M; q) ≤ nc·log2 n

for every ordered matching M on n vertices.

Plenty of other open problems about ordered Ramsey numbers can be found in [1, 2].
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Face-free 2-matchings in plane graphs

by Kristóf Bérczi

Given a plane graph G = (V,E), a subset F ⊆ E is a 2-matching if dF (v) ≤ 2 for each v ∈ V .
We call F face-free if it does not contain any of the faces as a connected component.

Problem 1. Given a planar embedding of a graph G = (V,E), find a maximum face-free 2-matching
of G.

Although the problem is probably difficult in general, it would be interesting to see the borderline
between the tractable and non-tractable cases. For some reason -that is not well-understood yet-
the complexity of some graph optimization problems show a strong connection to discrete convex
analysis (more precisely, to whether the underlying structure is a jump system or not). For example,
this is the case for restricted 2-matchings: finding a maximum 2-matching not containing cycles
of length at most k is NP-complete for k ≥ 5 and is solvable for k = 3 (the case k = 4 is open).
Meanwhile, the degree sequences of 2-matchings not containing cycles of length at most k form a
jump system for k ≤ 4 and do not form a jump system for k ≥ 5. There are other examples where a
similar phenomenon appears. For the proposed problem, it is not difficult to find a planar graph in
which the degree sequences of face-free 2-matchings do not form a jump system. Once again, this
does not imply anything regarding the complexity of the problem, but at least calls for caution.

However, it would be enough to say something about maximal planar graphs. The motivation
is the following. Given an undirected graph G = (V,E), we call a subset S of vertices a dominating
set if every vertex of G has at least one neighbour both in S and V −S. The domatic number of G is
the maximum number of pairwise disjoint dominating sets in G. Determining the domatic number
is NP-hard. However, Goddard and Henning [1] conjectured the following: For every triangulated
planar graph G on at least 4 vertices, the domatic number is at least 2.

So let G = (V,E) be a maximal plane graph. The conjecture of Goddard and Henning basically
says that G has a bipartite subgraph intersecting the boundary of the wheel of every vertex (given
a vertex v, let v1, . . . , vk denote its neighbours in a cyclic order; then the boundary consists of
the edges v1v2, . . . , vkv1). Indeed, if you have such a bipartite subgraph then its colour classes are
defining a proper coloring.

If we take the dual graph G∗, then it is a simple 2-connected 3-regular plane graph. It is not
difficult to see that if you can find a face-free 2-factor in this graph (note that a 2-factor exists by
Petersen’s theorem), then the corresponding edge set in the original graph form a bipartite graph
which intersects the boundary of the wheel of every vertex, and so it is a certificate showing that
the domatic number is at least 2. That is, the original conjecture would follow from the following.

Problem 2. Prove that every 2-connected 3-regular simple plane graph has a face-free 2-factor.

It is worth mentioning that there is a long list of results on restricted 2-factors in (not necessarily
planar) graphs, namely on 2-factors not containing short cycles. The motivation is that this is, in
some sense, a relaxation of the Hamiltonian cycle problem.
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Independent sets in tangled grids

by Dömötör Pálvölgyi

A poset P is called an n × n tangled grid if it can be partitioned into chains A1, . . . , An, and
also into chains B1, . . . , Bn, which have the additional property that |Ai ∩Bj| ≤ 1 for any i, j.

Problem 1. What is the maximum number f(n) of antichains that can occur in an n× n tangled
grid?

It was observed in [2] that f(n) also gives an upper bound for the maximum possible number of
stable matching among n men and n women. Here the Ai correspond to the men and the Bj to the
women of the stable matching, and every intersection corresponds to an operation called rotation.
In fact, since in each rotation there are at least two-two men and women, some elements of this
poset should be contracted, but for an upper bound it will do.

It was proved in [2] that f(n) ≤ Cn for some large enough C. The goal would be to determine the
best possible C, which I conjecture to be 4 (with possibly some polynomial multiplicative factor).
This is attained in the (untangled) n × n grid ordered as a diamond (with a unique smallest and
largest element), there the answer is

(
2n
n

)
.

A possible approach to bound f(n) is to denote the maximum number of antichains among
n × n tangled grids with m elements by F (m) = Fn(m) (note that f(n) ≤ F (n2)) and apply the
counting argument used also for the famous proof of the Crossing-lemma https://en.wikipedia.

org/wiki/Crossing_number_inequality#Proof. This, however, doesn’t give any good bounds on
C. Nevertheless, I sketch it below.

We obviously have F (m) ≤ 2m. Denote by r the number of (x, y) ∈
(
P
2

)
that are in strict

relation, that is, for which x <P y and there is no i or j for which x, y ∈ Ai or ∈ Bj (i.e., they are
not contained in the same chain). It is easy to see that r ≥ m − 2n. If we keep every chain with
probability p = 3n

m
, then the new poset will have n′ = pn chains2, m′ = p2m elements and r′ = p4r

strict relations. The inequality r′ ≥ m′−2n′ is equivalent to p4r ≥ p2m−2pn, which gives r ≥ m3

27n2 .

This means that for some element p ∈ P is in (strict) relation with at least m2

27n2 other elements.

Depending whether p is a part of the antichain of not, we get F (m) ≤ F (m− 1) +F (m− 1− m2

27n2 )
(using the convexity of F ). This is practically the same recursion as the one obtained in [1], which
finishes the proof. Unfortunately, the exponent is quite bad, and it has been improved very little,
so this approach might not give any good bound.

In [2] they obtain the weaker recursion that some element p ∈ P is in relation with Ω
(
m

3
2

n
3
2

)
other

elements, but both from above and below, which gives a simpler but weaker recursion.
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An enumerative analogue of Hall’s theorem for bipartite graphs

by Nika Salia

Triesch (1997) [25] conjectured that Hall’s classical theorem on matchings in bipartite graphs is
a special case of a phenomenon of monotonicity for the number of matchings in such graphs.

Conjecture 1. Suppose that G = (V,E) and G′ = (V,E ′) are bipartite graphs on the same vertex
set V and with the same 2-colouring V = U ∪W , where both colour classes U and W contain n
vertices. Assume further that for all A ⊂ U the number of neighbours in G is at least as large as in
G′,

NG(A) ≥ NG′(A).

Then the number of perfect matchings in G is at least as large as in G′.

The most recent work, in my knowledge, [2] settles the problem for ‘very’ dense graphs.
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Perfect matching of monotone boolean function

from MathOverflow (Mikaël Monet, ed. by Dömötör Pálvölgyi)

Problem 1. If for some downwards closed family F ⊂ {0, 1}n we have
∑

i fi(−1)|i| = 0, where fi
is the number of sets with i elements in F , then is there a perfect matching in F or in {0, 1}n \F?

The problem is taken from https://cstheory.stackexchange.com/questions/42626/, where
you can find more comments. For example,

• it is not true that we can guarantee a perfect matching in F ,

• monotonicity is needed,

• there are no counterexamples for n ≤ 5.

https://cstheory.stackexchange.com/questions/42626/
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Discrete Optimization under Intersection Constraints

by Jannik Matuschke

We consider the following generic optimization problem:

Problem A. We are given a ground set E, two set families B1,B2 ⊆ 2E, two weight functions
c1, c2 ∈ QE, and an integer k. Our goal is to find B1 ∈ B1 and B2 ∈ B2 minimizing

∑
e∈B1

c1(e) +∑
e∈B2

c2(e) under the constraint that |M1 ∩M2| ≥ k.
Variants: Replace “≥ k” by “≤ k” or “= k”, respectively.

Frank, Iwata, Peis, and Zenklusen [1] observed that for the case that B1 and B2 are base sets of
two matroids, the “≥”- and “≤”-variant of the problem can be reduced to a matroid intersection
problem. The “=”-variant can be solved using a Lagrangian relaxation approach.

Question: What is the complexity of Problem A when E is the edge set of a graph and B1 = B2

is the set of perfect matchings of that graph?

Remark. A special case of the “≤”-variant is determining the existence of two disjoint perfect
matchings. This is equivalent to finding a two-factor consisting of even-length cycles, which is
NP-hard [2]. However, note that this hardness no longer holds when the graph is bipartite.
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