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L ⊆ F of length r suh that the omplement of every set in L also belongs to F . The maximumsize of suh families is also determined here and optimal onstrutions are haraterized.Key words. Extremal family, Disjoint hains, Chain-interseting family, Complement-ing-hain-pair-free family1. Introdution and preliminariesIn the present paper the following problem posed by Gyula O.H. Katona will be solvedin a more general form.Problem: Given a natural number n and a family of sets F on an n element universein whih there are no three sets A, B and C satisfying A ( B and B ∩C = ∅. How manysets an suh an F ontain at most?This problem was solved by the �rst author [1℄ and (independently, in a little morerestrited form) by the seond author [6℄. We solve, among others, the following general-ization of the above problem:Problem: Given the natural numbers n, p and q and a family of sets F on the n elementuniversal set in whih there are no sets A1 ( A2 ( · · · ( Ap and B1 ( B2 ( · · · ( Bqsuh that Ap ∩ Bq = ∅. How many sets an suh an F ontain at most?The following notations will be used.Notations: For a natural number n let [n] = {1, 2, . . . , n}. The power set of a set V willbe denoted by 2V . The omplement of a subset A of V will be denoted by A (the universalset will always be lear from the ontext). The olletion of all k element subsets of theset V will be denoted by (

V
k

). For a set family F ⊆ 2V let co(F) = {X ⊆ V : X ∈ F}.



2 Attila Bernáth, Dániel GerbnerA set family F will be alled interseting if A ∩ B 6= ∅ for A, B ∈ F . A family is alledomplementing pair free if it does not ontain a pair of omplementing sets.In the whole artile n, p, q and r will denote natural numbers with 1 ≤ p, q, r ≤ n. Ouruniversal set in this paper will always be the set [n] = {1, 2, . . . , n}. We need the followingde�nitions.De�nition 1. A family F ⊆ 2[n] is alled (p, q)-hain-interseting if there are no sets
A1 ( A2 ( · · · ( Ap and B1 ( B2 ( · · · ( Bq in F suh that Ap ∩ Bq = ∅ (the tops oftwo hains of sizes p and q in F always interset).Observe, that the p = q = 1 ase of this de�nition gives interseting families: in thispaper we will generalize the following theorem on the maximum ardinality of intersetingfamilies (see [4℄).Theorem 1. The largest ardinality of an interseting family on the n element universeis 2n−1.Proof An interseting family ertainly annot ontain omplementing sets: so for eahomplementing pair we an inlude at most one of them. It is easy to �nd intersetingfamilies ahieving this bound, the family of all sets ontaining a ommon element is anexample. �This proof is inluded here beause omplementing pair free families are used in it. Wegive the largest ardinality of a (p, q)-hain-interseting family over the n element set forany values of n, p and q. We do this using the following generalization of omplementingpair free families.De�nition 2. A r-omplementing-hain-pair is a family of form L ∪ co(L ) where
L ⊆ 2n is a hain of length r. A family F ⊆ 2[n] is alled r-omplementing-hain-pair-free if it does not ontain an r-omplementing-hain-pair.Observe that a (p, q)-hain-interseting family F is also (p + q − 1)-omplementing-hain-pair-free: if there was a (p + q − 1)-omplementing-hain-pair L ∪ co(L ) in F thenthe smallest p members and the omplements of the largest q members of L would givea forbidden on�guration.The struture of this paper is the following: in Setion 2 we introdue some r-omp-lementing-hain-pair-free families and state the main theorem about their optimality. Asa onsequene, the optimal ardinality of (p, q)-hain-interseting families is observed. InSetion 3 two simple proofs of a speial ase of the main result is given: one is usingan adaptation of the method of permutations, while the other uses a rephrasing of theproblem. Setion 4 ontains a full proof of the main theorem stated in Setion 2. Thisproof uses the method of yli permutations. The last setion ontains omments andopen problems on related topis.In the end of this setion we give some more de�nitions and ite results that will beneeded in the paper. The following theorem of Erd®s, Ko and Rado ([4℄) will be used:Theorem 2. If k and n are natural numbers with k ≤ n/2 and F ⊆

(

[n]
k

) is an intersetingfamily then |F| ≤
(

n−1
k−1

) with equality for
F ∼ {X ⊆ [n] : |X| = k and x ∈ X}for some x ∈ [n]. �



Chain interseting families 3(See the de�nition of relation∼ in De�nition 3: it is used here to express the partiularitiesof the k = n/2 ase!)A family F ⊆ 2[n] will be alled k-Sperner if it ontains no hain F0 ( F1 ( · · · ( Fkof k + 1 di�erent sets. For k = 1 this is the usual notion of Sperner families, for k = 0the only 0-Sperner family is F = ∅. We use the following theorem of [5℄ (whih is a slightextension of a theorem of Erd®s [3℄):Theorem 3. Let F be a k-Sperner family of subsets of an n-element set. Then
|F| ≤

⌊(n+k−1)/2⌋
∑

i=⌊(n−k+1)/2⌋

(

n

i

)holds with equality if and only if F is the family of all sets of sizes either in the interval
[⌊(n − k + 1)/2⌋, ⌊(n + k − 1)/2⌋] or in the interval [⌈(n − k + 1)/2⌉, ⌈(n + k − 1)/2⌉].�2. Complementing-hain-pair-free familiesLet us make the following simple observation: if A ∈ F ⊆ 2[n] and A /∈ F then the family
F ′ = F \ {A} ∪ A is an r-omplementing-hain-pair-free family if and only if F was an
r-omplementing-hain-pair-free family. This follows simply from the fat that A annotbelong to a forbidden on�guration in F ′. This motivates the following de�nitions.De�nition 3. For families F ,F ′ ⊆ 2[n] we say that F is equivalent to F ′ if F ′ anbe obtained from F by replaing some sets by their omplements. This is an equivalenerelation denoted by F ∼ F ′. One member of eah equivalene lass will be distinguishedby the following de�nition: a family F will be alled upwards-arranged, if

A ∈ F and A /∈ F =⇒ |A| > |A| or (|A| = |A| and 1 ∈ A).In the following setions we give the largest ardinality of an r-omplementing-hain-pair-free family and show all the families ahieving this bound. De�ne the following:De�nition 4. For a positive integer z the upper z levels of 2[n] means the family of allsets of sizes n, n − 1, . . . , n − z + 1 ( i.e. the upper z levels in the lattie of 2[n] ). Theupper z+1/2 levels of 2[n] means the upper z levels plus the sets of size n−z ontaininga spei� element, say 1: note that this is not half of the elements on that level, unless
z = n/2. We introdue the following notations for these families:

F̃ z = {X ⊆ [n] : |X| ≥ n − z + 1}denotes the upper z levels,
F̃ z+1/2 = {X ⊆ [n] : |X| ≥ n − z + 1 or (|X| = n − z and 1 ∈ X)}

F̃ z+1/2(x) = {X ⊆ [n] : |X| ≥ n − z + 1 or (|X| = n − z and x ∈ X)}denotes the upper z + 1/2 levels with an arbitrary x ∈ [n] .For the ase n even and r = 3 we have to introdue another family.De�nition 5. For even n let F̂ be the following family
F̂ = {X ⊆ [n] : (|X| > n/2) or (|X| = n/2 − 1) or (|X| = n/2 and 1 ∈ X)}



4 Attila Bernáth, Dániel GerbnerThe set families introdued above are the optimal r-omplementing-hain-pair-freefamilies (up to the relation ∼); with these notations our main theorem is the following(the proof is given in Setion 4):Theorem 4. If F is an r-omplementing-hain-pair-free family then |F| ≤ |F̃ (n+r)/2|,with equality for� F ∼ F̃ (n+r)/2 if n + r is even,� F ∼ F̃ (n+r)/2(x) for some x ∈ [n] if n + r is odd and r 6= 3 and� F ∼ F̂ or F ∼ F̃ (n+r)/2(x) for some x ∈ [n] if n + r is odd and r = 3.As a onsequene we immediately get the following:Theorem 5. The largest ardinality of a (p, q)-hain-interseting family is equal to theardinality of the upper (n + p + q − 1)/2 levels.Proof Sine a (p, q)-hain-interseting family F is also (p + q − 1)-omplementing-hain-pair-free family it has ardinality not more than that of the upper (n+p+ q−1)/2 levels.But this bound is ahieved: the upper (n+p+q−1)/2 levels form a (p, q)-hain-intersetingfamily. �As one an see the largest ardinality of a (p, q)-hain-interseting family depends onlyon the sum of p and q. However, if one onsiders the optimal onstrutions in the ase
p+ q = 4 and n is even there is some asymmetry: the family F̂ is an optimal (2, 2)-hain-interseting family but it is not (3, 1)-hain-interseting.3. The method of permutations for a hain-pairIn this setion we show a simple proof of Theorem 4 in the ase when n + r is even. Theproof uses an adaptation of the method of permutations, �rst used by Lubell [8℄. The`uniqueness' part of the theorem is not proved, either. So we prove the following, weakertheorem:Theorem 6. If n + r is even and F is an r-omplementing-hain-pair-free family thenthe ardinality of F is not more than the ardinality of the upper (n + r)/2 levels.Proof For a permutation π of [n] we de�ne the following family of subsets:

Hπ = Aπ ∪ co(Aπ)where
Aπ = {∅, {π(1)}, {π(1), π(2)}, . . . , {π(1), π(2), . . . , π(n − 1)}} .

Hπ will be alled a full hain pair and let H := Hid (where id denotes the identitypermutation). For a positive integer z let Hz
π = Hπ ∩ F̃ z and H

z+1/2
π = Hz

π ∪ {X} where
X is one of the two n − z-element sets of Hπ (so here we really have a `half level', butthere is no set family F satisfying ∀π : H

z+1/2
π = Hπ ∩ F).Denote by di the number of sets of size i in Hπ: that is d0 = dn = 1 and d1 = d2 =

· · · = dn−1 = 2.Let F be any r-omplementing-hain-pair-free family. We will evaluate the followingdouble sum in two ways
∑

π

∑

F∈Hπ∩F

1

d|F |

(

n

|F |

)

=
∑

F∈F

∑

π:F∈Hπ

1

d|F |

(

n

|F |

)

. (1)



Chain interseting families 5The right hand side an be ounted exatly: for a subset F the number of permutations
π with F ∈ Hπ is d|F ||F |!(n − |F |)!. So the sum above is |F|n!.Now let us �x a permutation π and give an upper bound on ∑

F∈Hπ∩F
1

d|F |

(

n
|F |

). Sine Fis an r-omplementing-hain-pair-free family, there an be at most r− 1 sets F ∈ Hπ ∩Fwith F also in Hπ ∩F : learly the middle r− 1 levels of the sublattie Hπ of 2[n] give thelargest 1
d|F |

(

n
|F |

) value (for any i between 1 and n − 1 we have 1
di

(

n
i

)

> 1
dn

(

n
n

)

= 1, so it isreally not worth hoosing the empty set or [n] instead of sets `in the middle'). For everyother member F ∈ Hπ at most one of F and F an belong to F , but these give the samevalue of 1
d|F |

(

n
|F |

), so assume that the larger of them is in F . So
∑

F∈Hπ∩F

1

d|F |

(

n

|F |

)

≤
∑

F∈H
(n+r)/2
π

1

d|F |

(

n

|F |

)

. (2)The upper bounds are ahieved for any π if F is the family of the upper (n + r)/2 levelswhere n + r is even, in whih ase the sum is just the ardinality of the upper (n + r)/2levels. This gives the following
∑

F∈Hπ∩F

1

d|F |

(

n

|F |

)

≤
∑

F∈Hπ∩F̃(n+r)/2

1

d|F |

(

n

|F |

)

= |F̃ (n+r)/2|. (3)So we really obtained that |F| ≤ |F̃ (n+r)/2| as stated above. �It should be noted that if n + r is odd then the argument above gives only a bound onthe size of F that is not tight if r > 1.In the end of this setion an even simpler proof of Theorem 6 is given by rephrasingthe problem (though we still want to inlude the proof above for later referene). We anwrite any family F ⊆ 2[n] in the form of a disjoint union F = F1 ∪ F2 where F1 onsistsexatly of those members X of F , for whih X belongs to F , too. Obviously F1 is losedunder omplementation. Observe that
F is r-omplementing-hain-pair-free ⇐⇒ F1 is (r − 1)�Sperner.The proof of Theorem 6 is based on this observation.Proof (Proof of Theorem 6) In the above deomposition of the optimal r-omplementing-hain-pair-free family F the subfamily F2 will obviously ontain exatly one of X or Xfor every X /∈ F1. So we have:

F is an optimal r-omplementing-hain-pair-free family⇐⇒
F1 is optimal among families that are

(r − 1)�Sperner and losed under omplementation(and |F2 ∩ {X, X}| = 1 for eah X /∈ F1).If n + r is even then � aording to Theorem 3 � the unique optimal r − 1-Spernerfamily is losed under omplementation, so this has to be F1; the theorem is proved andwe also obtained that the optimal r-omplementing-hain-pair-free family is unique (upto the relation ∼). �The observations given above together with Theorem 4 (to be proved in the nextsetion) will give us the following result:



6 Attila Bernáth, Dániel GerbnerTheorem 7. The maximum size of a family that is k�Sperner and losed under omple-mentation is� ∑(n+k−1)/2
i=(n−k+1)/2

(

n
i

) if n + k − 1 is even and� ∑(n+k−2)/2
i=(n−k+2)/2

(

n
i

)

+ 2
(

n
(n−k)/2−1

) if n + k − 1 is odd.The optimal families orrespond to the optimal (k+1)-omplementing-hain-pair-free fam-ilies. �4. The full proof of the main theoremIn our proof we will use the method of yli permutations developed by Gyula O.H.Katona in [7℄. First of all let us introdue some terminology.Let the elements of the set [n] be plaed around a irle (`a round table') suh that
i+1 is next to i for all i = 1, 2, . . . , n− 1 and 1 is next to n in the lokwise diretion: wewill also say that i+1 is to the left of i, just as if they were persons around the table. Wewill simply write i+1, i+2, . . . and mean that if we get a number greater than n then wesubtrat n (almost like modulo n addition, but we do not want to hange the underlyingset to {0, 1, . . . , n − 1}). Elements next to eah other will be alled onseutive. A setof onseutive elements will be alled an interval (∅ and [n] are also onsidered to beintervals). Denote the interval of elements between a and b by [a, b] (endpoints inluded):this is the set of elements a, a + 1, . . . , b. The family of all intervals on the irle will bedenoted by I , the family of intervals of length k will be denoted by I k. The intersetionof the set of intervals with the upper z (or z+1/2) levels of 2[n] will be alled the upper z(or z +1/2) levels on the irle. For onveniene we introdue the following notations:

G̃z = (F̃ z ∩ I ) \ {[n]}, G̃z+1/2 = (F̃ z+1/2 ∩ I ) \ {[n]},

G̃z+1/2(x) = (F̃ z+1/2(x) ∩ I ) \ {[n]}, Ĝ = (F̂ ∩ I ) \ {[n]}.Sine the omplement of an interval is again an interval, the equivalene relation
∼ is also well de�ned among the families on the irle. Fortunately, if F ∼ F ′ then
∑

F∈F ′

(

n
|F |

)

=
∑

F∈F

(

n
|F |

) whih will be useful in our lemma.We simply say that the r-omplementing-hain-pair-free family G is optimal if
∑

G∈G′

(

n
|G|

)

≤
∑

G∈G

(

n
|G|

) for any r-omplementing-hain-pair-free family G′ (optimalityin this sense will only be used on the irle).Essentially the method of yli permutations is an adaptation of the method of per-mutations on the irle, so we will need the analogous result (Lemma 2) on the irle.Lemma 1. If G is an optimal and upwards-arranged r-omplementing-hain-pair-freefamily of intervals on the irle then m := min{|G| : G ∈ G} ≥ (n − r + 1)/2.Proof Suppose, for a ontradition, that m < (n−r+1)/2. For an m element set G = [a, b]in G onsider the following sequene of intervals:
SG = [a, b], [a, b], [a, b + 1], [a, b + 1], . . . , [a, b + r − 1], [a, b + r − 1].Observe that SG 6⊆ G, beause G is an r-omplementing-hain-pair-free family. Denotethe �rst member of SG \ G by AG. We laim that AG1 6= AG2 for di�erent m element sets

G1 = [a1, b1] and G2 = [a2, b2]. This is true sine a set in SG1 ∩ SG2 an only be of the



Chain interseting families 7form [a1, b1 + k] = [a2, b2 + l] (possibly with G1 and G2 exhanged) with a1 = b2 + l + 1and a2 = b1 + k + 1, thus l = n − k − 2m. But this set annot be equal to both AG1 and
AG2 , sine this would mean that the �rst 2k members of SG1 and the �rst 2l +1 membersof SG2 all belong to G, but these together give a hain of length k + l = n − 2m > r − 1belonging to G with all omplements, ontraditing the r-omplementing-hain-pair-freeproperty.We will want to perform the following operation:
(∗) Exhange every m element set G in G for AG.Then we want to prove that the family obtained is again r-omplementing-hain-pair-free. However, the proof beomes tehnially a little bit simpler if � before performingoperation (∗) � we �rst apply the following preparatory operation: for all m element sets
G = [a, b] whih have AG = [a, b + l] for some l ≥ 0 (note that l > 0 sine G is upwards-arranged), replae AG in G with AG: we obtain another optimal family (denoted againby G) whih might not be upwards-arranged, but all m element sets G = [a, b] will have
AG in the form [a, b + k] for some k > 0. When performing this preparatory operationwe do not introdue any new m element sets (sine the only m element set in SG was G,aording to the hypothesis m < (n − r + 1)/2 and every m element set remains in G.Let us introdue the following notation: for an m element set G = [a, b] in G onsider thefollowing hain:

L G = [a, b], [a, b + 1], [a, b + 2], . . . , [a, b + r − 1].So AG is the smallest member of L G \ G.Now we an perform operation (∗): for every m element set G in G we replae G by
AG. The family obtained will be denoted by G′. Note that |G| = |G′|, m′ = min{|G| : G ∈
G′} > m and

∑

G∈G

(

n

|G|

)

<
∑

G∈G′

(

n

|G|

) (4)sine (

n
|G|

)

<
(

n
|AG|

) for every m element set G ∈ G.We will now prove that G′ is also an r-omplementing-hain-pair-free family and so (4)ontradits the optimality of G. Suppose the ontrary and onsider a hain L = {A1 (
A2 ( · · · ( Ar} suh that L ∪ co(L ) ⊆ G′. Of ourse L ∪ co(L ) annot be ontained in
G: suppose L 6⊆ G (otherwise exhange L and co(L )). For every A ∈ (L ∪ co(L )) \ Gthere was an m element set G ∈ G that got substituted by A (that is A = AG).We show in two steps that there was a r-omplementing-hain-pair in G, whih is aontradition.The �rst step is the following: let k = max{i : Ai /∈ G}. Let l = |Ak|. Observe that
k ≤ l − m. Then there was an m element set G in G that got replaed with Ak whihmeans that Ak is the �rst member of L G that was not in G. So there are l − m ≥ kmembers of L G belonging to G along with their omplements before Ak. Then we anreplae the �rst k elements of L by the �rst k members of L G and obtain a hain L ′.If co(L ′) still ontains members of G′ \ G then a seond step is needed; otherwise weare done (L ′ ∪ co(L ′) ⊆ G gives the ontradition). In this seond step replae L ′ by
co(L ′) and repeat the preeding proedure: �nd the largest member A = AG of L ′ \ Gand exhange the beginning of L ′ for the beginning of L G to obtain a hain L ′′ of thesame length with L ′′ ∪ co(L ′′) ⊆ G, whih is a ontradition. �



8 Attila Bernáth, Dániel GerbnerWe note that the operation we used in the preeding proof works in other situations,too. Let us give the skeleton of it:
(∗) In a set family F replae every set G of minimum size with the �rst member of
SG \ F .This operation depends on the de�nition of SG. Let us give two examples:1. If F is a (p, q)-hain-interseting family on the irle with SG de�ned as above and

m < (n−(p+q−1)+1)/2 then this operation also preserves the (p, q)-hain-intersetingproperty of the family F : with this observation one an work out what the optimal
(p, q)-hain-interseting families are.2. If F is an r-omplementing-hain-pair-free family (not neessarily on the irle) and SGis de�ned by means of a symmetri hain partition (a partition of 2[n] into hains,eah of form L = {L1 ( L2 ( · · · ( Lh} with |L1| + |Lh| = n and |Lj| − |Lj−1| =
1 (∀j ∈ {2, . . . , h}); suh a partition exists, see for example [2℄) and m < (n− r +1)/2then similar arguments show that the operation preserves the r-omplementing-hain-pair-free property. This method gives a full proof of Theorem 4 for the ase when n+ris even, but it annot handle the di�ulties when it is odd.Lemma 2. Suppose that we are given an r-omplementing-hain-pair-free family G on theirle not ontaining ∅ and [n]. Then

∑

G∈G

(

n

|G|

)

≤
∑

G∈G̃(n+r)/2

(

n

|G|

)

. (5)If equality holds then� G ∼ G̃(n+r)/2 if n + r is even� G ∼ G̃(n+r)/2(x) for some x ∈ [n] if n + r is odd and r 6= 3� G ∼ Ĝ or G ∼ G̃(n+r)/2(x) for some x ∈ [n] if n is even and r = 3.Proof Lemma 1 implies the result if n + r is even. It remains to onsider the ase when
n + r is odd and the minimum ardinality of a set in G is m = (n− r + 1)/2. In the proofwe assume that G is an optimal and upwards-arranged family.Note that all sets of size > n − m = (n + r − 1)/2 have to be in G, beause theiromplements are not present: so only sets of size between m and n − m are of interest(the `middle r levels' whih are well de�ned here).The lemma will be proved by indution on r. If r = 1 then the result is obvious andwell known: G ∩ I n/2 is an interseting family on the irle, ontains no omplements:optimal onstrutions are families of all sets ontaining a ommon element or those thatan be obtained from them by omplementing some sets. If G is also upwards-arrangedthen G = G̃(n+r)/2, as stated above.If r = 2 (so m = (n − 1)/2) then G′ = G ∩ (I (n−1)/2 ∪ I (n+1)/2) is a 2-omplement-ing-hain-pair-free family of maximum size among families in I (n−1)/2 ∪ I (n+1)/2 (all setshave equal weight, so maximizing the weight is the same as maximizing the size). So, forevery a ∈ [n] we have |K a ∩ G| ≤ 3, where

K a = {[a, a + m − 1], [a, a + m − 1], [a, a + m], [a, a + m]}.So if we onsider
∑

a∈[n]

∑

G∈K a∩G′

1 =
∑

G∈G′

∑

a:G∈K a

1 (6)



Chain interseting families 9then we see that the right hand side is exatly 2|G′| while the left hand side is at most
3n (this is similar to what we did in Setion 3 in the permutation method but it givesa tight bound in this speial ase, though n + r is odd, but this works only on theirle). So we really obtained that |G′| ≤ 3n/2. This implies |G′| ≤ ⌊3n/2⌋ = |G̃(n+r)/2 ∩
(

I (n−1)/2 ∪ I (n+1)/2

)

|, whih also gives
∑

G∈G

(

n

|G|

)

≤
∑

G∈G̃(n+r)/2

(

n

|G|

)

. (7)If there were two disjoint sets of size (n−1)/2 then their omplements would also be in Gbeause of the upwards-arranged property, but this would ontradit the 2-omplement-ing-hain-pair-free property. So sets of size (n − 1)/2 pairwise interset eah other, butthen there are at most ⌊n/2⌋ of them and learly the only interseting families of intervalsin I (n−1)/2 of ardinality ⌊n/2⌋ are those ontaining a ommon element x. So we reallyhave
G′ = {X ⊆ [n] : |X| = (n + 1)/2 or (|X| = (n − 1)/2 and x ∈ X)}for some x ∈ [n], �nishing the ase r = 2.Assume that r ≥ 3. We laim that all (inlusionwise) minimal members of G are of size

m or m+1. Suppose indiretly that there is a minimal member G = [a, a+m−1+ l] of Gwith l ≥ 2. This means that neither of the m+1 element sets [a, a+m] and [a+1, a+m+1]is in G. But in this ase their intersetion, the m element [a + 1, a + m] (whih was not in
G) ould be added to G while maintaining its r-omplementing-hain-pair-free property.This is beause a hain of length r in G∪{[a+1, a+m]} whose omplements are also in Ghas to ontain intervals from all of the middle r levels, but a hain in G ∪ {[a + 1, a + m]}starting at [a + 1, a + m] will not ontain any m + 1 element interval. Hene we provedthat all minimal sets in G are of size m or m + 1.Let us denote by A the family of minimal members of G, that is A = {X ∈ G : ∄Y ∈
G with Y ( X} and let G1 = G \ A. It is easy to see that G1 is also upwards-arranged if
r > 3; in the ase r = 3 this is not neessarily true, but this will ause no problem. Welaim that G1 is an (r−2)-omplementing-hain-pair-free family G1. This is proved by thefollowing argument: suppose there is a (r−2)-omplementing-hain-pair L ∪co(L ) ⊆ G1.Note that L ∪ co(L ) must be ontained in the middle r − 2 levels. But then there wouldbe members of G ontained in the minimal members of L and co(L ): the omplementsof these would be in G, too, beause of the upwards-arranged property if m + 1 < n/2whih is true for r > 3 (if r = 3 the hains L and co(L ) are of length 1: they have toform a omplementing set pair of size n/2 = m + 1 so the sets below them are of size mand have omplement in G, too). So there would be a r-omplementing-hain-pair in G,a ontradition.By indution ∑

G∈G1

(

n
|G|

)

≤
∑

G∈G̃(n+r−2)/2

(

n
|G|

). The di�erene A = G \G1 is a Spernerfamily with all sets of size m or m + 1. We use the following observation (originally dueto Zoltán Füredi): a Sperner family on the irle has at most n members and if it has
n members then all its elements are of equal size. If all members of A are of size mthen ∑

G∈A

(

n
|G|

)

= n
(

n
m

). If less than m members of A are of size m then G was notoptimal, sine G̃(n+r)/2 is stritly better. So if there are sets of size m+1 in A as well then
∑

G∈A

(

n
|G|

)

≤ m
(

n
m

)

+ (n − m − 1)
(

n
m+1

) with equality for
A = A(x) = {X ∈ I : (|X| = m and x ∈ X) or (|X| = m + 1 and x /∈ X)}



10 Attila Bernáth, Dániel Gerbnerwith an element x ∈ [n] (only families of this form will be disjoint from an optimal (r−2)-omplementing-hain-pair-free family and it is easy to see that G1 has to be suh a familyif G is an optimal r-omplementing-hain-pair-free family).It is easy to prove that n
(

n
m

)

≤ m
(

n
m

)

+ (n−m− 1)
(

n
m+1

) if m ≤ n/2− 1 whih is truefor r ≥ 3 (with equality only for r = 3). So
∑

G∈G

(

n

|G|

)

=
∑

G∈G1

(

n

|G|

)

+
∑

G∈A

(

n

|G|

) (8)
≤

∑

G∈G̃(n+r−2)/2

(

n

|G|

)

+ m

(

n

m

)

+ (n − m − 1)

(

n

m + 1

) (9)
=

∑

G∈G̃(n+r)/2

(

n

|G|

)

. (10)Suppose we have equality here: then G1 has to be an optimal family for the r− 2 ase.If r > 3 then A = A(x); if r = 3 then A = {X ∈ I : |X| = m} or A = A(x) (where
x ∈ [n]). By indution� If r = 3 then G1 ∼ G̃(n+r−2)/2 and� A = {X ∈ I : |X| = m} whih gives G = Ĝ (sine G is upwards-arranged) or� A = A(x) whih is disjoint from G1 if G1 = G̃(n+r−2)/2(x) giving G = G̃(n+r)/2(x).� If r > 3 and r 6= 5 then G1 = G̃(n+r−2)/2(y) whih is disjoint from A = A(x) if x = ygiving G = G̃(n+r)/2(x).� If r = 5 then A = A(x) and� G1 = G̃(n+r−2)/2(y) whih is disjoint from A = A(x) if x = y giving G = G̃(n+r)/2(x)or� G1 = Ĝ whih annot be disjoint from A so gives no other solution.

�Now we an prove our main theorem (Theorem 4) using the method of yli permutations.Proof (Proof of Theorem 4) We prove by indution on r: the ase r = 1 is trivial. Suppose
n > r > 1 (the ase r = n is again simple).If F is an optimal r-omplementing-hain-pair-free family then it ontains at least oneof the sets ∅ and [n]: suppose [n] ∈ F .If ∅ is also in F then F ′ = F \ {∅} is an (r − 1)-omplementing-hain-pair-free: if itontained a hain L ′ of length r − 1 with L ′ ∪ co(L ′) ⊆ F ′ then L = L ′ ∪ {[n]} wouldgive L ∪ co(L ) ⊆ F , a ontradition. So in this ase F ould not be optimal, sine

|F| ≤ |F̃ (n+r−1)/2| + 1 < |F̃ (n+r)/2|. (11)We an suppose that F is upwards-arranged. Hene [n] ∈ F and ∅ /∈ F . Consider thefamily F ′ = F \ {[n]}. Evaluate the following double sum in two ways
∑

π

∑

F∈Iπ∩F ′

(

n

|F |

)

=
∑

F∈F ′

∑

π:F∈Iπ

(

n

|F |

)

, (12)where π is an arbitrary yli permutation and Iπ is the family of sets that form aninterval in π.



Chain interseting families 11The right hand side an be ounted exatly: for a nonempty proper subset F thenumber of yli permutations π with F ∈ Iπ is |F |!(n−|F |)!. So the sum above is |F ′|n!.Aording to Lemma 2, for any �xed yli permutation π

∑

F∈Iπ∩F ′

(

n

|F |

)

≤
∑

F∈Iπ∩F0

(

n

|F |

)

= m

(

n

m

)

+

n−1
∑

k=m+1

(

n

k

)

= n|F0|, (13)where F0 = F̃ (n+r)/2 \ {[n]}. So we obtain the inequality |F| ≤ |F̃ (n+r)/2|. This is satis�edwith equality if and only if F ′ ∩ Iπ is an optimal family on the irle for every ylipermutation π (of ourse F ′ ∩ Iπ will be upwards-arranged for any π). By Lemma 1 thisannot be true if m = min{|F | : F ∈ F} < (n − r + 1)/2 : so we are again done in thease n + r even.Suppose n + r is odd and m = min{|F | : F ∈ F} = (n − r + 1)/2 in the family F .Consider �rst the ase r 6= 3. All sets of size > m must be in F , otherwise a suitableyli permutation would give a family that is not G̃(n+r)/2(x), so annot be optimal onthe irle. But in this ase the family of sets of size m in F must be interseting beause ofthe r-omplementing-hain-pair-free property: so they form a maximum sized intersetingsubfamily of (

[n]
m

). By the Erd®s-Ko-Rado theorem (Theorem 2), F ∩
(

[n]
m

)

= {X ⊆ [n] :
|X| = m and x ∈ X} for some x ∈ [n].Now suppose r = 3. Again, all sets of size > n/2 must be in F . If there are 2 disjointsets of size n/2 in F then all sets of size n/2 have to be in F , otherwise we ould easily �nda yli permutation that gives a family whih is not optimal on the irle (if X, X ∈ Fand Z /∈ F , eah of size n/2 then we an �nd a permutation that takes all of them intointervals). So in this ase F = F̃ (n+r)/2 (again, sets of size m pairwise interset here). Ifsets of size n/2 in F pairwise interset then F an ontain all sets of size m, so F = F̂ .
�5. Comments and open problemsRelated problems an be obtained from the following de�nitions:De�nition 6. A family F ⊆ 2[n] is alled strongly (p, q)-hain-interseting if thereare no sets A1 ( A2 ( · · · ( Ap and B1 ( B2 ( · · · ( Bq in F suh that Ap ∩ B1 = ∅(the top of a hain of length p always intersets the bottom of a hain of length q in F).De�nition 7. A family F ⊆ 2[n] is alled totally (p, q)-hain-interseting if there areno sets A1 ( A2 ( · · · ( Ap and B1 ( B2 ( · · · ( Bq in F suh that A1 ∩ B1 = ∅ (thebottoms of two hains of sizes p and q in F always interset).Note, that the seond de�nition is symmetri in p and q, while the �rst one is not. Alsonote that totally (p, q)-hain-interseting property of a family implies its strong (p, q)-hain-interseting property and strong (p, q)-hain-interseting property implies (p, q)-hain-interseting property.Another thing to notie is that if F is strongly (p, q)-hain-interseting then it is also
p-omplementing-hain-pair-free if p ≥ q. Consequently:Theorem 8. If p ≥ q then the largest ardinality of a strongly (p, q)-hain-intersetingfamily is equal to the ardinality of the upper (n + p)/2 levels.



12 Attila Bernáth, Dániel GerbnerProof Sine a strongly (p, q)-hain-interseting family F is also a p-omplementing-hain-pair-free family if p ≥ q, it has ardinality not more than that of the upper (n + p)/2levels. But this bound is ahieved: the upper (n+ p)/2 levels form a strongly (p, q)-hain-interseting family. �Conjeture 1. If F is a strongly (p, q)-hain-interseting and p < q, then |F| ≤
max(|R1|, |R2|), where R1 is the upper (n + p)/2 levels and R2 is the middle q − 1levels of 2[n].One an see, that the onjeture is true on the full hain pair H, more preisely

∑

F∈H∩F

1

d|F |

(

n

|F |

)

≤ max





∑

F∈H(n+p)/2

1

d|F |

(

n

|F |

)

,
∑

F∈R2∩H

1

d|F |

(

n

|F |

)



 , (14)(see the notation in the proof of Theorem 6 on page 4). Note that R1 and R2 are strongly
(p, q)-hain-interseting.The onjeture follows in the ase n + p is even or when the seond quantity gives themaximum, with the same argument as in the proof of Theorem 6. If n + p is odd and the�rst quantity is bigger then this gives only an upper bound, whih is tight when p = 1.Turning to the totally (p, q)-hain-interseting ase, it is easy to see that in the fullhain pair H the optimal totally (p, q)-hain-interseting family is the following: q−1 setsfrom either hain, and the omplete other hain, exept ∅ and [n] (where, wlog. p ≥ qis assumed). Unfortunately there is no family of sets F suh that Hπ ∩ F would be thisoptimal family for every permutation π. So it remains open to determine the size of theoptimal totally (p, q)-hain-interseting family.Referenes1. A. Bernáth, On a problem in extremal set theory, Mat. Lapok (N.S.) 10 (2000/01), no. 2, 2�4(2005).2. N. G. de Bruijn, Ca. van Ebbenhorst Tengbergen, and D. Kruyswijk, On the set of divisorsof a number, Nieuw Arh. Wiskunde (2) 23 (1951), 191�193.3. P. Erd®s, On a lemma of Littlewood and O�ord, Bull. Amer. Math. So. 51 (1945), 898�902.4. P. Erd®s, Chao Ko, and R. Rado, Intersetion theorems for systems of �nite sets, Quart. J.Math. Oxford Ser. (2) 12 (1961), 313�320.5. P. L. Erd®s, Z. Füredi, and G. O. H. Katona, Two-part and k-Sperner families: new proofsusing permutations, SIAM J. Disrete Math. 19 (2005), no. 2, 489�500 (eletroni).6. D. Gerbner, On an extremal problem of set systems, Mat. Lapok (N.S.) 10 (2000/01), no. 2,5�12 (2005).7. G. O. H. Katona, A simple proof of the Erd®s-Chao Ko-Rado theorem, J. CombinatorialTheory Ser. B 13 (1972), 183�184.8. D. Lubell, A short proof of Sperner's lemma, J. Combinatorial Theory 1 (1966), 299.


