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Abstract
The pro�le vector f(U) ∈ Rn+1 of a family U of subspaces of an n-dimensional

vector space V over GF (q) is a vector of which the ith coordinate is the number
of subspaces of dimension i in the family U (i = 0, 1, ..., n). In this paper, we
determine the pro�le polytope of intersecting families (the convex hull of the
pro�le vectors of all intersecting families of subspaces).
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1 Introduction
Many problems in extremal set theory consider a set A of families of subsets of an
n-element set all having some �xed property. All subsets F possess a weight w(F )
depending only on |F |, the size of F and we ask for the family F with the largest
weight w(F) =

∑
F∈F w(F ). (Note, that asking for the family with largest size is

equivalent to asking for the family with largest weight for the constant weight 1.)
The basic tool for dealing with all kinds of weight functions simultaneously is the

pro�le vector f(F) of a family F which is de�ned by

f(F)i = |{F ∈ F : |F | = i}| (i = 0, 1, ..., n).

With this notation the weight of a family for a given weight function w is simply the
inner product of the weight vector and the pro�le vector. Therefore, as we know from
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linear programming, for any weight function the maximum weight is taken at one of
the extreme points of the convex hull of the pro�le vectors (the pro�le polytope) of
all families in A. We denote the set of pro�le vectors by µ(A), its convex hull by
〈µ(A)〉, the set of extreme points by E(A) and the families having a pro�le in E(A),
the extremal families by E(A). If the weights are non-negative, then increasing any
coordinate of the pro�le vector increases the weight of the family, so the maximum
for these weights is taken at an extreme point which is maximal with respect to the
coordinate-wise ordering. We call these vectors essential extreme points and denote
them by E∗(A) and the corresponding families by E∗(A). Note that to prove that a set
of pro�les are the extreme points of the pro�le polytope one has to express all pro�les
as a convex combination of these vectors, while to prove that a set of pro�les are the
essential extreme points of the polytope it is enough to dominate (a vector f dominates
g if it is larger in the coordinate-wise ordering) any other pro�les.

The systematic investigation of pro�le vectors and pro�le polytopes was started by
P.L. Erd®s, P. Frankl and G.O.H. Katona in [4] and [5], an overview of the topic can
be found in the book of K. Engel [3].

The notion of pro�le vector can be introduced for any ranked poset P (a poset P
is said to be ranked if there exist a non-negative integer l and a mapping r : P →
{0, 1, ..., l} such that for any p1, p2 ∈ P if p2 covers p1, we have r(p1) + 1 = r(p2) and
r(p) = 0 for some p ∈ P ). In this case the pro�le of a family F ⊆ P is de�ned by

f(F)i = |{p ∈ F : rank (p) = i}| (i = 0, 1, ..., n),

where rank (p) denotes the rank of an element p and n is the largest rank in P . Several
results are known about pro�le vectors in the generalized context as well (see e.g. [3],
[6], [11]).

One of the most studied ranked poset is the poset Ln(q) of subspaces of an n-
dimensional vector space V over the �nite �eld GF (q) with q elements (the ordering is
just set-theoretic inclusion). In this case the rank of a subspace is just its dimension,
so the pro�le vector f(U) of a family U of subspaces is a vector of length n+1 (indexed
from 0 to n) with f(U)i = |{U ∈ U : dim U = i}|, i = 0, 1, ..., n. In this paper we
determine the pro�le polytope of intersecting families in the poset Ln(q). A family U
of subspaces is called intersecting if for any U,U ′ ∈ U we have dim(U ∩ U ′) ≥ 1 (and
t-intersecting if for any U,U ′ ∈ U we have dim(U ∩ U ′) ≥ t). Two subspaces U,U ′ are
said to be disjoint if dim(U ∩ U ′) = 0 i.e. U ∩ U ′ = {0}.

We will use the symbol
[
n
k

]
q

= (qn−1)(qn−1−1)...(qn−k+1−1)
(qk−1)(qk−1−1)...(q−1)

for the Gaussian (q-nomial)
coe�cient denoting the number of k-dimensional subspaces of an n-dimensional space
over GF (q) (and q will be omitted, when it is clear from the context). The set of all
k-dimensional subspaces of a vector space V will be denoted by

[
V
k

]
.

With the above notations the main result of the present paper is the following
theorem.
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Theorem 1 The essential extreme points of the pro�le polytope of the set of inter-
secting families of subspaces are the vectors vi (1 ≤ i ≤ n/2) for even n and there is
an additional essential extreme point v+ for odd n, where

(vi)j =





0 if 0 ≤ j < i[
n−1
j−1

]
if i ≤ j ≤ n− i[

n
j

]
if j > n− i.

(1)

and

(v+)j =

{
0 if 0 ≤ j < n/2[
n
j

]
if j > n/2.

(2)

2 Intersecting families of subspaces
In this section we determine the essential extreme points of the pro�le polytope of the
set of intersecting families of subspaces. (Since the intersecting property is hereditary
-i.e. after removing any of its members an intersecting family stays intersecting-, we
know (cf. [5]) that any extreme point can be obtained from one of the essential extreme
points by changing some of the non-zero coordinates to zero.) This was implicitly done
in [2] by Bey, but he only stated that his results concerning the Boolean lattice stay
valid in the context of Ln(q). What is more important, our approach is di�erent from
his: our main tool in determining some inequalities concerning the pro�le vectors of
intersecting families of subspaces is Theorem 2. This is a generalization of a theorem
of Hsieh [10] which might be of independent interest.

To simplify our counting arguments we introduce the following
Notation. If k + d ≤ n, then

[
n
k

]∗(d)

q
denotes the number of k-dimensional sub-

spaces of an n-dimensional vector space V over GF (q) that are disjoint from a �xed
d-dimensional subspace W of V .

Here are some basic facts about these numbers:
Facts.

I.
[
n

k

]∗(d)

=

[
n− d

k

]
qdk,

II.
[
n−1
k−1

]∗(d)

[
n
k

]∗(d)
≤

[
n−1
k−1

]∗(n−k)

[
n
k

]∗(n−k)
=

1

qn−k
≤ 1

qk+1
(if 2k + 1 ≤ n),
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and so inductively for any 1 ≤ p ≤ k − 1

III.
[
n−p
k−p

]∗(d)

[
n
k

]∗(d)
≤ 1

qp(k+1)
(if 2k + 1 ≤ n).

To determine the pro�le polytope of intersecting families we follow the so-called
method of inequalities. Brie�y it consists of the following steps:

• establish as many linear inequalities valid for the pro�le of any intersecting family
as possible (each inequality determines a halfspace, therefore the pro�les must
lie in the intersection of all halfspaces determined by the inequalities),

• determine the extreme points of the polytope determined by the above halfspaces,

• for all of the above extreme points �nd an intersecting family having this extreme
point as its pro�le vector.

The last step gives that the extreme points of the polytope determined by the
halfspaces are the extreme points of the pro�le polytope that we are looking for.

The following theorem on intersecting families was �rst proved by Hsieh [10] (only
for n ≥ 2k+1) in 1977, then by Greene and Kleitman [9] (for the cases k|n so especially
if n = 2k) in 1978.

Theorem 2 (Erd®s - Ko - Rado for vector spaces, Hsieh's theorem) If F ⊆ [
V
k

]
is

an intersecting family of subspaces and n ≥ 2k, then

|F| ≤
[
n− 1

k − 1

]
.

The above theorem yields to the following inequalities concerning the pro�le vector
of any intersecting family:

• 0 ≤ fi ≤
[
n−1
i−1

]
, 0 ≤ i ≤ n/2

• 0 ≤ fi ≤
[
n
i

]
, n/2 < i ≤ n

To establish more inequalities we will need the following statement:

Theorem 3 The following generalization of Hsieh's theorem holds:
(a) if 2k ≤ n and d = 0 or d = n− k
or
(b) if n ≥ 2k + 1 and k + d ≤ n
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then for any intersecting family F of k-dimensional subspaces of an n-dimensional
vector space V with all members disjoint from a �xed d-dimensional subspace U of V

|F| ≤
[
n− 1

k − 1

]∗(d)

.

Note that the d = 0 case is just Hsieh's theorem.

Proof: If k|d|n or k|n and d = 0 then the argument of Greene and Kleitman
[9] works. One can partition V \ U into isomorphic copies of Vk \ {0}, where Vk is
a k-dimensional vector space over GF (q). Since F cay contain at most one of the
k-dimensional spaces of each partitioning set, the statement of the theorem follows.

So now we can assume 2k + 1 ≤ n. We follow the argument in [10]. First we verify
the validity of the lemmas from [10] in our context. For x ∈ V (A 6 V ) let Fx (FA)
denote the set of subspaces in F containing x (A).

Lemma A (the analogue of Lemma 4.2. in [10]) Suppose n ≥ 2k + 1 and let
F be an intersecting family of k-subspaces of an n-dimensional space V such that all
k-subspaces belonging to F are disjoint from a �xed d-dimensional subspace W of V

(where d ≤ n− k). If for all x ∈ V we have |Fx| ≤
[
k
1

]p[n−1−p
k−1−p

]∗(d), then

|F| <
[
n− 1

k − 1

]∗(d)

or |FA| ≤
[
n− 1− p

k − 1− p

]∗(d)[
k

1

]p−1

for all 2-dimensional subspaces A, where 1 ≤ p ≤ k − 1.
Proof: First we check the validity of the following consequence of the "facts":

[
n− 1

k − 1

]∗(d)

> qp

[
k

1

]p[
n− 1− p

k − 1− p

]∗(d)

≥
[
s

1

][
k

1

]p[
n− 1− p

k − 1− p

]∗(d)

, (3)

for 1 ≤ s ≤ p. Indeed,
[
n−1
k−1

]∗(d)

[
n−1−p
k−1−p

]∗(d)
≥

[
n−1
k−1

]∗(n−k)

[
n−1−p
k−1−p

]∗(n−k)
= qp(n−k) > qp

(
qk − 1

q − 1

)p

= qp

[
k

1

]p

,

where the �rst inequality is Fact III and the second one uses the assumption n ≥ 2k+1.
Let us take an arbitrary 2-dimensional subspace 〈x, y〉 ⊂ V . If U ∈ F implies

U ∩ 〈x, y〉 6= {0}, then by (3) (and the assumption of the lemma) we have

|F| ≤
∑

Z⊂〈x,y〉,Z1−dim

|FZ | ≤
[
2

1

][
k

1

]p[
n− 1− p

k − 1− p

]∗(d)

<

[
n− 1− p

k − 1− p

]∗(d)

.
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Thus we can suppose there is some U1 ∈ F such that U1 ∩ 〈x, y〉 = {0}. Take 0 6= z1 ∈
U1. If U ∈ F implies U ∩ 〈x, y, z1〉 6= {0}, then (again using (3))

|F| ≤
[
3

1

][
k

1

]p[
n− 1− p

k − 1− p

]∗(d)

<

[
n− 1− p

k − 1− p

]∗(d)

.

Thus we can suppose that there is some U2 ∈ F such that U2 ∩ 〈x, y, z1〉 = {0}. Hence
|Fx,y,,z1| ≤

[
k
1

][
n−4
k−4

]∗(d), and so |Fx,y| ≤
[
k
1

]2[n−4
k−4

]∗(d).
Suppose that for 1 ≤ j ≤ i, 0 6= zj ∈ Uj and 〈x, y, z1, ..., zj〉 ∩ Uj+1 = {0}. Take

0 6= zi+1 ∈ Ui+1. If U ∈ F implies U ∩ 〈x, y, z1, ..., zi+1〉 6= {0}, then by (3)

|F| ≤
[
i + 3

1

][
k

1

]p[
n− 1− p

k − 1− p

]∗(d)

<

[
n− 1− p

k − 1− p

]∗(d)

.

Thus we can suppose that there is some Ui+2 ∈ F such that Ui+2 ∩ 〈x, y, z1, ..., zi+1〉 =
{0}. Hence we have

|Fx,y,Z1,...,zi+1
| ≤

[
k

1

][
n− i− 4

k − i− 4

]∗(d)

,

and by induction we obtain

|Fx,y| ≤
[
k

i

]∗(d)

.

Thus for 1 ≤ i ≤ p, either we have |F| <
[
n−1
k−1

]∗(d) or |Fx,y| ≤
[
k
1

]i−1[n−1−i
k−1−i

]∗(d), as a
special case with i = p we have |Fx,y| ≤

[
k
1

]p−1[n−1−p
k−1−p

]∗(d). ¤

We will need one more lemma from Hsieh's paper (actualized to our context):

Lemma B (the analogue of Lemma 4.3. in [10]) Let F be a family of intersecting
k-subspaces of an n-dimensional space V of which all subspaces are disjoint from a
�xed d-dimensional subspace W of V . Furthermore if
(a) q ≥ 3 and n ≥ 2k + 1 and for all x we have |Fx| ≤

[
k
1

]k−1,
or if

(b) q = 2 and
- n ≥ 2k + 1

- and for all x we have |Fx| ≤
[
k
1

]min{k−1,n−k−d} ∏k−1−(n−k−d)
i=1

([
k
1

]− [
i
1

])
(if k − 1 ≤

n− k − d, then the product is empty and equals 1),
then

|F| <
[
n− 1

k − 1

]∗(d)

.

Proof: In all cases |F| is at most
[
k
1

]
times the bound on |Fx|.
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Now if q ≥ 3, then

|F| ≤
[
k

1

]k

=

(
qk − 1

q − 1

)k

≤ qk2−1 ≤ q(k−1)(n−k) =

[
n− 1

k − 1

]∗(n−k)

≤
[
n− 1

k − 1

]∗(d)

.

If q = 2, then for any n ≥ 2k + 1 and d = n− k we have

|F| ≤
k−1∏
i=1

([
k

1

]
−

[
i

1

])
<

[
k

1

]k−1 ([
k

1

]
−

[
k − 1

1

])
< (qk)k−1qk−1 =

qk2−1 ≤ q(k−1)(n−k) =

[
n− 1

k − 1

]∗(n−k)

.

Since n ≥ 2k + 1, we have n− 2k + 1 ≥ 2 holds. This gives

|F| ≤
[
k

1

]k

=

(
qk − 1

q − 1

)k

< q2(k−1) (q
2k−2 − 1)(q2k−3 − 1)...(qk − 1)

(qk−1 − 1)(qk−2 − 1)...(q − 1)
≤

≤ q(k−1)(n−2k+1)

[
2k − 2

k − 1

]
=

[
n− 1

k − 1

]∗(n−2k+1)

.

This establishes the lemma for 0 ≤ d ≤ n−2k+1. For the remaining cases (n−2k+1 <

d < n − k) put ad =
[
k
1

]n−k−d+1 ∏k−1−(n−k−d)
i=1

([
k
1

]− [
i
1

])
, bd =

[
n−1
k−1

]∗(d). We have to
prove that ad

bd
≤ 1 holds for all n− 2k + 1 < d < n− k. To see this observe that

ad

bd
ad+1

bd+1

=

[
k
1

]
[
k
1

]− [
d−(n−2k)

1

] ·
[
n−1
k−1

]∗(d+1)

[
n−1
k−1

]∗(d)
=

[
k
1

]
[
k
1

]− [
d−(n−2k)

1

] ·
[
n−2−d

k−1

]
q(d+1)(k−1)

[
n−1−d

k−1

]
qd(k−1)

=

qk − 1

qk − qd−(n−2k)
· qn−k−d − 1

qn−d−1 − 1
qk−1 =

qn+k−d−1 − q2k−1 − qn−d−1 + qk−1

qn+k−d−1 − q2k−1 − qk + qd−(n−2k)
≤ 1.

Thus the sequence ad

bd
is monotone increasing, and since an−k

bn−k
≤ 1 holds, so does

ad

bd
≤ 1 for all n− 2k + 1 < d < n− k.
This �nishes the proof of the lemma. ¤

Before we get into the details of the proof of Theorem 3, we just collect its main
ideas:

the heart of the proof is the concept of covering number. For a family of subsets
F ⊆ 2[n] this is the size of the smallest set S ⊆ [n] that intersect all sets in F (S
need not be in F). For a family of subspaces F ⊆ [

V
k

]
its covering number is the

smallest number τ such that there is a τ -dimensional subspace U of V that intersects
all subspaces that belong to F . Observe that the proof of Lemma A was done by
an induction on the covering number. The proof of Theorem 2 is again based on an
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induction on the covering number of F . (During the proof, almost all computations
will use the "facts" about Gaussian coe�cients, all inequalities without any further
remarks follow from them.)

If x ∈ ∩F for some 0 6= x ∈ V then |F| ≤ [
n−1
k−1

]∗(d). Thus we can suppose that
∩F = {0}.

Let x1 6= 0 be such that |Fx1| = maxx∈V |Fx|.
By our assumption, there is some A1 ∈ F not containing x1. Thus |Fx1| ≤[

k
1

][
n−2
k−2

]∗(d).
Suppose that there are two independent vectors z1, z2 ∈ A1 such that A ∈ F ⇒

A ∩ 〈x1, zi〉 6= {0} for i = 1, 2. If ui ∈ 〈x1, zi〉 \ 〈x1〉, then the ui's are independent.
Thus

|F| ≤ |Fx1|+
∑

Ui⊂(〈x1,zi〉\〈x1〉)∪{0}, dim(Ui)=1

|FU1,U2|

≤
[
k

1

][
n− 2

k − 2

]∗(d)

+

([
2

1

]
− 1

)2 [
n− 2

k − 2

]∗(d)

<

[
n− 1

k − 1

](∗(d))

.

Thus we can suppose that there is at most one z ∈ A1 such that A ∈ F ⇒ A∩〈x1, z〉 6=
{0}. Suppose that z ∈ A1 is such. Take x ∈ A1 \ 〈z〉, then there is some A ∈ F such
that A ∩ 〈x1, x〉 = {0} and hence |Fx1,x| ≤

[
k
1

][
n−3
k−3

]∗(d). Thus

|Fx1| ≤ |Fx1,z|+
∑

X⊂(A1\〈z〉)∪{0}, dim(X)=1

|Fx1,X | ≤
[
n− 2

k − 2

]∗(d)

+

[
k

1

]2[
n− 3

k − 3

]∗(d)

.

But then

|F| ≤
∑

X⊂〈x1,z〉,dim(X)=1

|FX | ≤
[
2

1

] ([
n− 2

k − 2

]∗d
+

[
k

1

]2[
n− 3

k − 3

]∗(d)
)
≤

[
n− 1

k − 1

]∗(d)

.

Thus we can suppose that for all x ∈ A1 there is some A ∈ F such that A∩〈x1, x〉 = {0},
and hence |Fx1,x| ≤

[
k
1

][
n−3
k−3

]∗(d). Thus |Fx1| ≤
[
k
1

]2[n−3
k−3

]∗(d).
In general, suppose that for 1 ≤ p ≤ k−3 we have non-zero vectors y1, y2, ..., yp ∈ V

and A1, A2, ..., Ap+1 ∈ F such that yi ∈ A and Ai+1∩〈x1, y1, .., yp〉 = {0} for 1 ≤ i ≤ p.
(We have just proved that either for any y1 ∈ A1 there exists such an A2 ∈ F or the
statement of the theorem holds.) Thus

|Fx1,y1,...,yp | ≤
[
k

1

][
n− p− 2

k − p− 2

]∗(d)

,

and so inductively we obtain that

|Fx1| ≤
[
k

1

]p+1[
n− p− 2

k − p− 2

]∗(d)

.
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By Lemma A, we have

|Fx,y| ≤
[
k

1

]p[
n− p− 2

k − p− 2

]∗(d)

for all 2-dimensional 〈x, y〉 ⊂ V .
Suppose that there are p + 2 linearly independent vectors z1, z2, ..., zp+2 in Ap+2

such that 〈x1, y1, ..., yp, zi〉 ∩ A 6= {0} for all A ∈ F and i = 1, 2, ..., p + 2. Let ui ∈
〈x1, y1, ..., yp, zi〉 \ 〈x1, y1, ..., yp〉, i = 1, 2, ..., p + 2, then u1, u2, ..., up+2 are independent.
Thus

|F| ≤
∑

X⊂〈x1,y1,...,yp〉,dim(X)=1

|FX |+
∑

Ui⊂(〈x1,y1,...,yp,zi〉\〈x1,y1,...,yp〉)∪{0},dim(Ui)=1

|FU1,U2,...,Up+2|

≤
[
p + 1

1

][
k

1

]p+1[
n− p− 2

k − p− 2

]∗(d)

+

([
p + 2

1

]
−

[
p + 1

1

])p+2 [
n− p− 2

k − p− 2

]∗(d)

≤
[
p + 1

1

][
k

1

]p+1[
n− p− 2

k − p− 2

]∗(d)

+ q(p+1)(k−1)

[
n− p− 2

k − p− 2

]∗(d)

≤
([

p + 1

1

]
+ 1

)[
k

1

]p+1[
n− p− 2

k − p− 2

]∗d
<

[
n− 1

k − 1

]∗(d)

.

Thus we can suppose that there are at most p + 1 such zi's. Hence

|Fx1,y1,...,yp| ≤
[
k

1

]2[
n− p− 3

k − p− 3

]∗(d)

+

[
p + 1

1

][
n− p− 2

k − p− 2

]∗(d)

,

and so
|Fx1| ≤

[
k

1

]p+2[
n− p− 3

k − p− 3

]∗(d)

+

[
p + 1

1

][
k

1

]p[
n− p− 2

k − p− 2

]∗(d)

.

Suppose that we do have independent vectors z1, z2 ∈ Ap+2 such that A ∈ F ⇒
A ∩ 〈x1, y1, ..., yp, zi〉 6= {0} for i = 1, 2. Then

|F| ≤
∑

X⊂〈x1,y1,...,yp〉,dim(X)=1

|FX |+
∑

Ui⊂(〈x1,y1,...,yp,zi〉\〈x1,y1,...,yp〉)∪{0},dim(Ui)=1

|FU1,U2|

≤
[
p + 1

1

] ([
k

1

]p+1[
n− p− 3

k − p− 3

]∗(d)

+

[
p + 1

1

][
n− p− 2

k − p− 2

]∗(d)
)

+

+

([
p + 2

1

]
−

[
p + 1

1

])2 [
k

1

]p[
n− p− 2

k − p− 2

]∗(d)

=

[
p + 1

1

][
k

1

]p+2[
n− p− 3

k − p− 3

]∗(d)

+

([
p + 2

1

]2

+ q2(p+1)

[
k

1

]p
) [

n− p− 2

k − p− 2

]∗(d)
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≤
[
p + 1

1

][
k

1

]p+2[
n− p− 3

k − p− 3

]∗(d)

+ qp

[
k

1

]p+1[
n− p− 2

k − p− 2

]∗(d)

≤
([

p+1
1

]

qp+2
+

1

q

)[
n− 1

k − 1

]∗(d)

<

[
n− 1

k − 1

]∗(d)

.

Thus we can suppose that there is at most one such z. Hence

|Fx1| ≤
[
k

1

]p+2[
n− p− 3

k − p− 3

]∗(d)

+

[
k

1

]p[
n− p− 2

k − p− 2

]∗(d)

.

Suppose that z1 ∈ Ap+1 is such a z, then

|F| ≤
∑

X⊂〈x1,y1,...,yp,z1〉,dim(x)=1

|FX | ≤
[
p + 2

1

] ([
k

1

]p+2[
n− p− 3

k − p− 3

]∗(d)

+

[
k

1

]p[
n− p− 2

k − p− 2

]∗(d)
)

<

[
p + 2

1

]
(

[
k

1

]p+2[
n− p− 3

k − p− 3

]∗(d)

+
1

q

[
k

1

]p+1[
n− p− 2

k − p− 2

]∗(d)

≤
([

p+2
1

]

qp+2
+

1

qp+2

) [
n− 1

k − 1

]∗(d)

<

[
n− 1

k − 1

]∗(d)

.

Thus we can suppose that for all z ∈ Ap+1, there is some A ∈ F such A∩〈x1, y1, ..., yp, z〉 =
{0}. Take yp+1 ∈ Ap+1, and let Ap+2 be such that A ∩ 〈x1, y1, ..., yp, yp+1〉 = {0}.

We obtained, that either the statement of the theorem holds, or there are lin-
early independent vectors x1, y1, ..., yk−1 and Ai ∈ F i = 1, ...k − 1 such that yi ∈ Ai

and 〈x1, y1, ...yi−1〉 ∩ Ai = {0}. Furthermore we can suppose that yi maximizes
|Fx1,y1,...,yi−1,z| for z ∈ Ai.

If q ≥ 3, this means that either |F| ≤ [
n−1
k−1

]∗(d) or |Fx| ≤ |Fx1| ≤
[
k
1

]k−1 and then
we are done by Lemma B.

If q = 2, we have to sharpen our estimates on |Fx1|. We know that for j independent
vectors x1, y1, ..., yj−1 with U ∩ 〈x1, y1, ..., yj−1〉 = {0} there exists a subspace Aj ∈ F
such that Aj∩〈x1, y1..., xj−1〉 = {0}. Then we would have |Fx1,y1,...,yj−1

| ≤ [
k
1

][
n−j−1
k−j−1

]∗(d).
(Note that U ∩〈x1, y1, ..., yj−1〉 = {0} must hold, as otherwise any subspace containing
x1, y1, ..., yj−1 would intersect U nontrivially, therefore Fx1,y1,...,yj−1

would be empty, and
thus, by the maximality assumption on the choice of yi−1, F would be empty.) Suppose
further that for some positive l we have j+k+d = n+l. Then dim(〈x1, y1..., yj−1, Aj〉∩
U) ≥ l and so (denoting 〈x1, y1..., yj−1, Aj〉∩U by Uj) dim(〈x1, y1..., yj−1, Uj〉∩Aj) ≥ l
as well, therefore when choosing among the vectors of Aj a subspace of dimension at
least l is forbidden. Therefore we have the following better estimate on the number of
subspaces in F containing x1, y1, ..., yj−1:

([
k

1

]
−

[
l

1

])[
n− j − 1

k − j − 1

]∗(d)

.
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Hence we have that either the statement of the theorem holds or the degree of any
vector x is bounded by the expression given in the conditions of Lemma B. So Lemma
B establishes our theorem in this case, too. ¤

Corollary. For the pro�le vector f of any family F of intersecting subspaces of an
n-dimensional vector space V , and for any k < n/2 and n/2 < d ≤ n−k, the following
holds

ck,dfk + fd ≤
[
n

d

]
,

where ck,d = qd [n−k
d ]

[n−d−1
k−1 ]

, and equality holds in case of fk = 0, fd =
[
n
d

]
or fk =

[
n−1
k−1

]
, fd =

[
n−1
d−1

]
.

Proof: Let us doublecount the disjoint pairs formed by the elements of Fk = {U ∈
F : dim U = k} and F ′

d =
[
V
d

] \ Fd = {U 6 V, U /∈ F : dim U = d}. On the one
hand, for each U ∈ Fk there are exactly qdk

[
n−k

d

]
such pairs (this uses the �rst fact

about q-nomial coe�cients), while on the other hand by Theorem 3 we know, that for
any W ∈ F ′

d there are at most
[
n−1
k−1

]∗(d)
= qd(k−1)

[
n−d−1

k−1

]
such pairs. This proves the

required inequality and it is easy to see that equality holds in the cases stated in the
Corollary. ¤

Having established these inequalities, we are able to prove our main theorem.
Proof of Theorem 1: First of all, for any x ∈ V , for the families Gi = {U : x ∈

U, i ≤ dim U ≤ n− i} ∪ {U : dim U > n− i} (1 ≤ i ≤ n/2) f(Gi) = vi holds, and if n
is odd then the pro�le of the family G+ = {U : dim U > n/2} is v+, and clearly none
of these vectors can be dominated by any convex combination of the others.

We want to dominate the pro�le vector f of any �xed intersecting family F with
a convex combination of the vectors vj (and possibly v+ if n is odd). We de�ne the
coe�cients of the vjs recursively. Let i denote the index of the smallest non-zero
coordinate of f . For all j < i let αj = 0. Now if for all j′ < j αj′ has already been
de�ned, let

αj = max

{
fj[

n−1
j−1

] −
j−1∑

j′=i

αj′ , 0

}
.

Note, that for all j (i ≤ j ≤ n/2) the jth coordinate of
∑j

j′=i αj′vj′ is at least fj (and
equality holds if when choosing αj, the �rst expression is taken as maximum), so these
vectors already dominates the ��rst part� of f .

When all αjs (i ≤ j ≤ n/2) are de�ned, then let α+ = 1−∑n/2
j′=i αj′ and let α+ be

the coe�cient of v+ if n is odd or add α+ to the coe�cient of vn/2 if n is even. Note

11



also that α+ is non-negative since for all i ≤ j ≤ k ≤ n/2 (vj)k =
[
n−1
k−1

]
and by Hsieh's

theorem 0 ≤ fk ≤
[
n−1
k−1

]
. Therefore this is really a convex combination of the vjs.

The easy observation that this convex combination dominates f in the coordinates
larger then n− i follows from the fact that all vjs (and v+ as well) have

[
n
d

]
in the dth

coordinate, therefore so does the convex combination which is clearly an upper bound
for fd.

All what remains is to prove the domination in the dth coordinates for all n/2 <
d ≤ n− i, that is to prove the inequality

fd ≤
[
n− 1

d− 1

] n−d∑
j=i

αj +

[
n

d

]
(1−

n−d∑
j=i

αj).

Let k ≤ n− d be the largest index with αk > 0. Then we have

fd ≤
[
n

d

]
− ck,dfk =

[
n

d

]
− ck,d

[
n− 1

k − 1

] k∑
j=i

αj = (1−
k∑

j=i

αj)

[
n

d

]
+

[
n− 1

d− 1

] k∑
j=i

αj

= (1−
n−d∑
j=i

αj)

[
n

d

]
+

[
n− 1

d− 1

] n−d∑
j=i

αj

where the inequality is just the Corollary, the �rst equality follows from the fact that
αk > 0, the second equality uses again the Corollary (the statement about when
equality holds) and the last equality uses the de�ning property of k (for all k < j ≤ n−d
αj = 0).

This proves the theorem. ¤

Note that, the (essential) extreme points are 'the same' as in the Boolean case, one
just has to change the binomial coe�cients to the corresponding q-nomial coe�cients
and the structure of the extremal families are really the same.

3 Concluding remarks
The authors of this paper in [8] introduced a generalization of the notion of pro�le vec-
tor, the socalled l-chain pro�le vector, where the coordinates are indexed by j1, j2, ..., jl

(0 ≤ j1 < j2 < ... < jl ≤ rank (P )) and count the number of chains of length l in
the family where the ith element of the chain should have rank ji for all 1 ≤ i ≤ l (so
the l-chain pro�le vector of a family has

(
n+1

l

)
coordinates in the Boolean poset and in

Ln(q) as well).As the set of intersecting family is upward closed (i.e. if F is an inter-
secting family of subspaces of V , then so is U(F) = {W 6 V : ∃U ∈ F (U 6 V )}),
one can obtain the essential extreme points of the l-chain pro�le polytope for any l as
described in [8].
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The pro�le polytope of t-intersecting families has not yet been determined neither
in the Boolean case nor in the poset of subspaces, but in both cases we know how large
can be the ith coordinate of the pro�le for all 0 ≤ i ≤ n.

Theorem 4 (Frankl - Wilson [7]) If U ⊆ [
V
k

]
is a t-intersecting family and n ≥

2k − t, then
|U| ≤ max{

[
n− t

k − t

]
,

[
2k − t

k

]
}.

The corresponding extremal families are
i, U0 = {U ∈ [

V
k

]
: T ⊆ U} where T is a �xed t-dimensional subspace of V ,

ii, U1 =
[
W
k

]
where W is a �xed 2k − t-dimensional subspace of V .

Theorem 5 (Ahlswede - Khachatrian [1]) If 1 ≤ t ≤ k ≤ n and F ⊆ (
[n]
k

)
is a

t-intersecting family, then

|F| ≤ max
0≤r≤n−t

2

|Fr|,

where Fr = {F ∈ (
[n]
k

)
: |F ∩ [1, t + 2r]| ≥ t + i} for 0 ≤ r ≤ n−t

2
.

These two theorems show that in the case of subspaces the extremal family is
always one of two candidates, while in the Boolean case (as n goes to in�nity) there
are arbitrary many candidates (in fact for all r Theorem 5 in its full strength gives
the range of k where Fr is the extremal family). Therefore one may suspect that it
can be much easier to determine the pro�le polytope in the lattice of subspaces, than
determining it in the Boolean case.
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