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Abstract

Let us write DF (G) = {F ∈ F : F ∩ G = ∅} for a set G and a family
F . Then a family F of sets is said to be (≤ l)-almost intersecting (l-almost
intersecting) if for any F ∈ F we have |DF (F )| ≤ l (|DF (F )| = l). In this
paper we investigate the problem of finding the maximum size of an (≤ l)-
almost intersecting (l-almost intersecting) family F .
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1 Introduction

We will use standard notation: [n] denotes the set of the first n positive integers
{1, 2, ..., n} and for any set X we write

(

X
k

)

for the family of all k element subsets of

X and 2X for the power set of X. For a family F ⊆ 2X we write F = {F : F ∈ F}.
We will say that a family F is intersecting if F,G ∈ F implies F ∩G 6= ∅. Moreover,
F is trivially intersecting if

⋂

F∈F F 6= ∅ and a family F is called Sperner if there
exist no F,G ∈ F with F ( G.

One of the basic results about extremal set families is due to Erdős, Ko and Rado
[7] and states that if 2k ≤ n and F ⊆

(

[n]
k

)

is intersecting, then the size of F is at
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most
(

n−1
k−1

)

, furthermore if 2k < n, then equality holds if and only if F is a trivially
intersecting family. The non-uniform version (i.e. when sets in F need not to have
equal size) of the above theorem is also due to Erdős, Ko and Rado. However, it is
rather an easy exercise to prove that any intersecting family G ⊆ 2[n] can be extended
to an intersecting family G ′ of size 2n−1 and there exists no intersecting family of
larger size.

These theorems attracted the attention of many researchers. Several generaliza-
tions have been proved, the intersecting condition has been relaxed or strengthened
in many ways. One relaxation is to allow some fixed number of disjoint pairs formed
by members of the family F [1, 5, 8]. In this paper we consider families F where for
any F ∈ F there are at most a fixed number of sets disjoint from F . More precisely,
for any set G and family F let DF(G) = {F ∈ F : F ∩ G = ∅} be the subfamily
of the sets disjoint from G. We say that a family F is (≤ l)-almost intersecting if
for every set F ∈ F we have |DF(F )| ≤ l, and we say that a family F is l-almost
intersecting if for every set F ∈ F we have |DF(F )| = l. We will address the problem
of finding the largest size of an (≤ l)-almost intersecting (l-almost intersecting) family
F ⊂ 2[n] both in the uniform and in the non-uniform case. Clearly, l = 0 gives back
the original problem of Erdős, Ko and Rado.

The rest of the paper is organized as follows: in Section 2 we consider k-uniform
l-almost intersecting families. Among others we prove the following conjecture for
k = 2.

Conjecture 1.1. For any k there exists l0 = l0(k) such that if l ≥ l0 and F is a
k-uniform l-almost intersecting family, then |F| ≤ (l + 1)

(

2k−2
k−1

)

.

The following construction shows that if true, Conjecture 1.1 is sharp: {F ∪ {i} :
F ∈

(

[2k−2]
k−1

)

, i ∈ {2k − 1, 2k, ..., 2k + l − 1}}.
In Section 3 we consider non-uniform l-almost intersecting families and solve the

problem completely if l is 1 or 2.
In Section 4 we prove that for any fixed k and l if n ≥ n0(k, l), then the largest k-

uniform (≤ l)-almost intersecting family is a trivially intersecting family. Determining
the smallest possible n0 remains open except for the case l = 1 for which we prove
the minimum of n0(k, 1) is 2k + 2.

Section 5 deals with non-uniform (≤ l)-almost intersecting families. We settle the
problem for l = 1, 2. For larger l we conjecture the following.

Conjecture 1.2. For any positive integer l ≥ 2 there exists n0 = n0(l) such that if
n ≥ n0 and F ⊂ 2[n] is an (≤ l)-almost intersecting family, then

|F| ≤
{

∑n
i=n/2

(

n
i

)

if n is even
(

n−1
⌊n/2⌋

)

+
∑n

i=⌈n/2⌉

(

n
i

)

if n is odd,
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and equality holds if and only if F is the family of sets of size at least n/2 and (if n
is odd) the sets of size ⌊n/2⌋ not containing a fixed element of [n].

2 Restrictive case - Uniform families

In this section we investigate k-uniform l-almost intersecting families. The following
notion and Theorem 2.1 will play a very important role in our proofs. The collection
of pairs of sets (Ai, Bi)

m
i=1 are said to form a cross-intersecting family if for any

1 ≤ i, j ≤ m we have Ai ∩ Bj = ∅ if and only if i = j.
The main theorem about cross-intersecting families of pairs is the following result.

Theorem 2.1 (Bollobás [3]). If the pairs (Ai, Bi)
m
i=1 form a cross-intersecting family,

then the following inequality holds:

m
∑

i=1

1
(

|Ai|+|Bi|
|Ai|

) ≤ 1,

in particular if |Ai| ≤ k and |Bi| ≤ l for all 1 ≤ i ≤ m, then m ≤
(

k+l
k

)

and equality
holds if and only if the pairs are all possible partitions into sets of size k and l of
some (k + l)-set X.

The following easy corollary settles Conjecture 1.1 when l = 1.

Corollary 2.2. If F is a k-uniform 1-almost intersecting family, then |F| ≤
(

2k
k

)

and equality holds if and only if F =
(

X
k

)

with |X| = 2k.

Proof. For any k-uniform 1-almost intersecting family F = {F1, F2, ..., Fm}, let Ai =
Fi and let Bi denote the only set in F which is disjoint from Fi. Then the pairs
(Ai, Bi)

m
i=1 form a cross-intersecting family and we are done by Theorem 2.1.

The next lemma shows that for any positive integers k and l there exists an upper
bound on the size of a k-uniform l-almost intersecting family which is independent of
the size of the ground set.

Lemma 2.3. For any k, l ∈ N where l > 0, if F is a k-uniform l-almost intersecting
family, then we have |F| ≤ l

(

2kl
kl

)

.

Proof. Let F = {F1, F2, ..., Fm} and let Ij = {i ∈ [m] : DF(Fj) = DF(Fi)}. Note that
for any j ≤ m we have |Ij| ≤ l as otherwise any G ∈ DF(Fj) would be disjoint from at
least l + 1 sets of F , a contradiction. Let J ⊆ [m] be a set of indices so that Ij 6= Ij′

for any j, j′ ∈ J and |J | ≥ m
l
. For every j ∈ J we define the sets Aj := ∪i∈Ij

Fi,
Bj := ∪G∈DF (Fj)G. Clearly they form a cross-intersecting family and |Aj|, |Bj| ≤ kl,
hence we are done by Theorem 2.1.
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We finish this section by settling the case k = 2 of Conjecture 1.1. Instead of
talking about 2-uniform families we state our result in the language of graphs.

Theorem 2.4. If G is an l-almost intersecting graph with no isolated vertices, then G
has at most 2l+2 edges and the unique extremal graph is K2,l+1 provided l 6= 1, 3, 5, 6.
For l = 1, 3, 6 the unique extremal graphs are K4, K5, K6 respectively, and for l = 5
there are two extremal graphs: K2,6 and the complement of a matching on 6 vertices.

Proof. If G is not connected, then there is a cut C1, C2 of V (G) with e(C1, C2) = 0,
e(C1), e(C2) > 0. But then by the l-almost intersecting property of G we obtain
e(C1), e(C2) ≤ l and thus e(G) ≤ 2l. Hence we can suppose G is connected. Let e
be the number of edges and n the number of vertices. If there are exactly l edges
disjoint from any fixed edge, then for any edge (u, v) we have d(u) + d(v)− 1 = e− l.
Thus for any vertex all its neighbors have fixed degree. We distinguish two cases.

Case 1. G is d-regular for an integer d.

Then clearly e = 2d + l − 1 and dn = 2e = 2(2d + l − 1), hence (n− 4)d = 2l − 2.
Since d is the degree of all vertices in G, it is at most n−1. Hence 2l−2 = (n−4)d ≥
(d−3)d = (d− 3

2
)2− 9

4
and thus d− 3

2
≤
√

2l + 1
4
. Then e = 2d+l−1 ≤ l+2

√

2l + 1
4
+2,

which is strictly less than 2l + 2 if l > 8.
If d = n − 1, then G = Kn and every edge is disjoint from

(

n−2
2

)

other edges. As

by the above, we must have
(

n−2
2

)

= l ≤ 8, thus we obtain n ≤ 7 and K4, K5 and K6

do contain more edges than K2,2, K2,4 and K2,7 respectively. Otherwise d ≤ n−2 can
be supposed, and by repeating the previous calculation we get e ≤ l + 2

√
2l − 1 + 1,

which is strictly less than 2l + 2 if l > 5. For l = 5 there is equality here, this gives
the two extremal graphs.

2l − 2 = d(d − 2) is impossible for l < 5, hence we can suppose d ≤ n − 3. The

simple calculation used in the previous paragraphs gives e ≤ l + 2
√

2l − 7
4

in this

case, which is always strictly less than 2l + 2.

Case 2. G is not regular and thus the degrees give a 2-coloring of G.

Let us denote the two color classes by A and B, their cardinality by a and b, and
the degrees by dA and dB. Then e = adA = bdB = 1

2
(adA + bdB) = l + dA + dB − 1.

Clearly dA ≤ b and dB ≤ a, hence we get ab − a − b ≤ l − 1 and e ≤ ab.
Let a ≤ b (in fact a = b happens only if G is regular, hence we can assume a < b).

Then a = 1 means all the edges intersect and a = 2 gives at most 2(l +1) edges, with
equality only in the case of K2,l+1. Hence we can suppose a ≥ 3. By a + b = n we
obtain ab ≥ 3(n − 3), thus 2n − 9 ≤ ab − a − b ≤ l − 1 and n ≤ l

2
+ 5. If l > 4 then

it implies e ≤ ab < 2l + 2. If l ≤ 4 then the inequalities a + b ≤ 7 and b > a ≥ 3 give
a = 3 and b = 4, but then dA = 4 and dB = 3 is necessary by the biregularity of G.
Thus we must have G = K3,4, hence l = 6, a contradiction.
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3 Restrictive case - Non-uniform families

In this section we consider l-almost intersecting families that are not necessarily uni-
form. We start our investigations with a useful definition and a proposition valid for
arbitrary l. For any family F of sets, the comparability graph G(F) is the graph with
vertex set V (G) = F and edge set E(G) = {(F1, F2) : (F1 ( F2) ∨ (F2 ( F1)}.

Proposition 3.1. If F is an l-almost intersecting family, then all connected compo-
nents of G(F) have size at most l.

Proof. For any pair F1, F2 ∈ F of sets with F1 ⊂ F2, we have DF(F1) = DF(F2)
as all sets disjoint from F2 are disjoint from F1 as well and |DF(F )| = l for any
F ∈ F . We obtain that if F, F ′ lie in the same component of G(F), then we have
DF(F ) = DF(F ′). Therefore if a component C of G(F) consisted of more than l
vertices, then |DF(H)| > l would hold for any set H ∈ DF(F ) with F ∈ C.

As a special case of Proposition 3.1 we obtain that an l-almost intersecting family
does not contain an l-fork (a family of l + 1 sets F0, F1, ..., Fl with F0 ( Fi for all
1 ≤ i ≤ l), hence the following theorem of De Bonis and Katona can be used (a
weaker version was obtained earlier by Thanh [13]).

Theorem 3.2 (De Bonis, Katona [6]). If a family F ⊆ 2[n] does not contain an
r-fork, then |F| ≤ (1 + 2r

n
+ O( 1

n2 ))
(

n
⌊n/2⌋

)

.

Corollary 3.3. If F is an l-almost intersecting family, then |F| ≤ (1+2l
n
+O( 1

n2 ))
(

n
n/2

)

.

As we will see, this bound is asymptotically tight if l = 1. If l = 2 the bound
is off by a factor of 2 as shown by Theorem 3.14 and we conjecture that it is even
further from the truth for larger values of l, but this is the best bound we have at the
moment.

Now let us consider the case l = 1.

Theorem 3.4. If F ⊆ 2[n] is a 1-almost intersecting family, then

|F| ≤
{

(

n
n/2

)

if n is even

2
(

n−1
⌊n/2⌋−1

)

if n is odd,

and equality holds if and only if F =
(

[n]
n/2

)

provided n is even and F = {F ∈
(

[n]
⌊n/2⌋

)

:

x ∈ F} ∪ {F ∈
(

[n]
⌈n/2⌉

)

: x /∈ F} for some fixed x ∈ [n] provided n is odd.
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Proof. Let F be a 1-almost intersecting family of maximum size. By Proposition 3.1
we know that F is Sperner and thus if n is even, we are done by Sperner’s theorem
[12].

Suppose n is odd. Clearly, F consists of disjoint pairs. Let us consider the
subfamily F ′ that consists of the smaller set from each pair and let F ′′ = F \ F ′.
Then F ′ is Sperner, intersecting and 2|F | ≤ n for all F ∈ F ′. We use a theorem of
Bollobás [4] that deals with families of this type. We only state the result for odd n.

Theorem 3.5 (Bollobás [4]). If n is odd and F ⊆ 2[n] is an intersecting Sperner
family with the property that 2|F | ≤ n holds for all F ∈ F , then

|F| ≤
(

n − 1

⌊n/2⌋ − 1

)

,

and equality holds if and only if F = {F ∈
(

[n]
⌊n/2⌋

)

: x ∈ F} for some fixed x ∈ [n].

As |F ′| = |F ′′| it follows that |F| ≤ 2
(

n−1
⌊n/2⌋−1

)

and F ′ = {F ∈
(

[n]
⌊n/2⌋

)

: x ∈ F}
for some fixed x ∈ [n]. If F ′′ = F ′ = {F ′

: F ′ ∈ F ′}, then we are done. Otherwise
there exists F ′′ ∈ F ′′ with |F ′′| ≤ n/2. Then the family F∗ = (F ′ \ {F ′}) ∪ {F ′′}
(where F ′ is the unique set in F ′ which is disjoint from F ′′) satisfies the conditions
of Theorem 3.5 and thus F∗ = {F ∈

(

[n]
⌊n/2⌋

)

: y ∈ F} for some fixed y ∈ [n] but both
x = y and x 6= y is impossible.

Let us continue with the case l = 2 by defining 2-almost intersecting families.

Construction 3.6. If n = 2k+2, then the following 2-almost intersecting family has
size 2

(

2k
k

)

= (1
2

+ o(1))
(

n
n/2

)

: let G1,G2 be a partition of
(

[2k]
k

)

such that G ∈ G1 if and

only if G ∈ G2. Then G = G1∪{G∪{2k +1} : G ∈ G1}∪G2∪{G∪{2k +2} : G ∈ G2}
possesses the required properties.

Similarly, if n = 2k + 1, then the following family is 2-almost intersecting: let
G1 = {G ∈

(

[2k−1]
k−1

)

: x ∈ G},G2 = {G ∈
(

[2k−1]
k

)

: x /∈ G} for some fixed x ∈ [n] and
define G = G1∪{G∪{2k} : G ∈ G1}∪G2∪{G∪{2k +1} : G ∈ G2}. Then G possesses
the required property and has size 4

(

2k−2
k−2

)

= (1
2

+ o(1))
(

n
n/2

)

.

In the remainder of this section we show that these constructions are best possible.
Let F ⊂ 2[n] be a 2-almost intersecting family and let us write F = F1 ∪ FU

2 ∪ FL
2

where FU
2 = {F ∈ F : ∃F ′ ∈ F , F ′ ( F},FL

2 = {F ∈ F : ∃F ′ ∈ F , F ′ ) F} and
F1 = F \ (FU

2 ∪ FL
2 ).

Proposition 3.7. If F ∈ F1, then for any G ⊇ F we have G /∈ F .

6



Proof. If such a G was in F , then the two sets in F disjoint from G would be subsets
of F , thus at least one of them should be a proper subset of F . That would contradict
F ∈ F1.

Proposition 3.8. FL
2 ∩ FU

2 = ∅.

Proof. The component of a set F ∈ FL
2 ∩FU

2 in the comparability graph G(F) would
have size at least 3 contradicting Proposition 3.1.

Proposition 3.9. For any F ∈ FL
2 (F ∈ FU

2 ) there exists exactly 1 set F ′ ∈ FU
2

(F ′ ∈ FL
2 ) with F ( F ′ (F ) F ′).

Proof. This is the l = 2 special case of Proposition 3.1.

Corollary 3.10. If F ∈ FL
2 , then for any G ⊇ F we have G /∈ F .

Proof. Any such G would contain the two sets in F that are disjoint from F ′ with
F ( F ′.

Proposition 3.11. For any 2-almost intersecting family F ⊂ 2[n] there exists another
such family G with |F| = |G| such that

(i) G ∈ GU
2 implies G ∈ GU

2 ,
(ii) for any G1, G2 ∈ G with G1 ( G2 we have |G2 \ G1| = 1.

Proof. If FU
2 ∪ FL

2 = ∅ then G = F satisfies (i) and (ii). Otherwise let F1, F2 ∈ F
with F1 ( F2. Then there exist 2 distinct sets F ′, F ′′ ∈ F which are disjoint from
F2 and therefore from F1 and all other sets in F meet both F1, F2. Thus replacing
F1 with any set G satisfying F1 ⊂ G ⊂ F2, |F2 \ G| = 1 will not violate the 2-almost
intersecting property of the new family (as G is disjoint from F ′ and F ′′ and as a
superset of F1 meets all other sets of the family). By repeating this operation we can
obtain a family satisfying (ii).

Suppose that in the above situation we have F ′, F ′′ 6= F 2. Then either of these
sets can be replaced with F 2 without violating the the 2-almost intersecting property
of the new family. By repeating this operation we can obtain a family satisfying
(i).

We will call a 2-almost intersecting family good if it satisfies (i) and (ii) of the
above proposition. If G is good, then for any G ∈ GU

2 there exist G1, G2 ∈ G such
that G1 ( G,G2 ( G, |G \ G1| = |G \ G2| = 1. Let x be the only element of G \ G1

and y be the only element of G \ G2 and let G∗ = G \ {x} ∪ {y} = G1 ∪ {y}.

Proposition 3.12. Let G ⊆ 2[n] be a good 2-almost intersecting family. Then for any
G ∈ GU

2 the sets G1, G2, G
∗ defined as above satisfy the following:
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(i) G∗ /∈ G,
(ii) G∗ /∈ G,
(iii) the only set in G ∪ G contained in G∗ is G1,
(iv) the only set in G ∪ G containing G∗ is G2,
(v) {G∗ : G ∈ GU

2 } is a Sperner family.

Proof. The statements (i),(ii) follow from Proposition 3.9 used for G1 and G2. A set
G′ ∈ G contradicting (iii) would be a third set in G which is disjoint from G2, while for
a set G′ ∈ G contradicting (iii) its complement G′ would contradict Proposition 3.9
for G2. The statement of (iv) follows similarly using G1 in place of G2.

Finally, (v) follows from the fact that G′∗ ( G∗ would imply that G2 and G′
1 are

disjoint and therefore there would be three sets in G which are disjoint from G2.

Lemma 3.13. Let G ⊆ 2[n] be a good 2-almost intersecting family. Then the following
inequality holds:

∑

G∈G

2
(

n
|G|

) −
∑

G∈G1

2

(n − |G|)
(

n
|G|

) −

∑

G∈GL
2

(

2

(n − |G|)
(

n
|G|

) +
1

(n − |G|)(n − |G| − 1)
(

n
|G|

)

)

−

∑

G∈GU
2

(

1

(n − |G|)
(

n
|G|

) +
1

|G|
(

n
|G|

) − 1

|G|(n − |G|)
(

n
|G|

)

)

≤ 1. (1)

Proof. First note that ∅ /∈ G as there would be only one other set in G, which could
not be disjoint from two sets.

Let us consider the pairs (G, C) with G ∈ G, C is a maximal chain in [n] and G ∈ C.
For any set G there are |G|!(n− |G|)! chains containing G. Thus the number of pairs
is exactly

∑

G∈G |G|!(n − |G|)!. On the other hand by Proposition 3.8 every chain
C may contain at most 2 sets from G, thus the number of such pairs is n! + c2 − c0

where ci is the number of chains containing i sets from G. By Proposition 3.9 we have
c2 =

∑

G∈GL
2

|G|!(n − |G| − 1)!.
We would like to get a lower bound on c0. Let us consider the set SG of chains

that contain the complement G of a fixed set G ∈ G1 ∪ GL
2 . By Proposition 3.7 and

Corollary 3.10, if G ∈ G1 ∪ GL
2 , there can be no G′ ∈ G with G′ ⊇ G. A k-subset of

G is contained in |G|!k!(n − |G| − k)! chains that go through G. Thus, if G ∈ G1,
as the empty set cannot be in G and there are exactly 2 sets in G which are disjoint
from G, we obtain that there are at least (n − |G| − 2) · (n − |G| − 1)!|G|! chains in
SG that do not contain any set from G. If G ∈ GL

2 , then we know that the 2 sets in G
contained in G have size n − |G| − 1 and n − |G| − 2 and thus the number of chains

8



in SG that avoid G is |G|!((n − |G|)! − (n − |G| − 1)! − (n − |G| − 2)!). By definition
there do not exist 2 sets G,G′ in G1 ∪ GL

2 with G ( G′, thus we have SG ∩ SG
′ = ∅

for any distinct G,G′ ∈ G1 ∪ GL
2 .

Finally, let us consider sets G ∈ GU
2 . By Proposition 3.12 (and using the definitions

preceding the proposition) we get that any chain that contains G∗ but contains neither
G1 nor G2 avoids G ∪ G. Therefore these chains are different from all chains in
∪G∈G1∪GL

2
SG and contain no sets from G. The number of such chains for one fixed

G ∈ GU
2 is (|G|!−(|G|−1)!)((n−|G|)!−(n−|G|−1)!). Note that by Proposition 3.12

(v) we have SG′∗ ∩ SG′′∗ = ∅ for any G′, G′′ ∈ GU
2 .

Adding the above observations together we obtain
∑

G∈G

|G|!(n − |G|)! ≤ n! +
∑

G∈GL
2

|G|!(n − |G| − 1)!

−
∑

G∈G1

(n − |G| − 2) · |G|!(n − |G| − 1)!

−
∑

G∈GL
2

|G|! ((n − |G|)! − (n − |G| − 1)! − (n − |G| − 2)!)

−
∑

G∈GU
2

(|G|! − (|G| − 1)!)((n − |G|)! − (n − |G| − 1)!). (2)

Rearranging and dividing by n! yield the statement of the lemma.

Clearly, the main term of the LHS of (1) is the first term
∑

G∈G
2

( n
|G|)

and all other

terms are negligible compared to this, thus Construction 3.6 is asymptotically best
possible. We need a little more work to prove the exact bound.

Theorem 3.14. Let F ⊆ 2[n] be a 2-almost intersecting family, then

|F| ≤
{

2
(

n−2
n−2

2

)

if n is even

4
(

n−3
⌊n/2⌋−2

)

if n is odd,

and this bound is best possible as shown by Construction 3.6.

Proof. Without loss of generality we may assume that F is good. Then we know that
sets in FU

2 ∪FL
2 come in pairs with sizes differing by 1. Let us consider the summands

in (1). Let ak denote the sum of all summands from sets in F1 of size k and let bk

denote the sum of all summands from pairs in FU
2 ∪ FL

2 such that the smaller set in
the pair has size k. Clearly, if m = min{ak,

bk

2
: 1 ≤ k ≤ n − 1}, then |F| ≤ 1

m
. For

convenience we rather work with

a′
k = n!ak = 2k!(n − k)! − 2k!(n − k − 1)!
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and

b′k = n!bk = 2k!(n − k)! + 2(k + 1)!(n − k − 1)! − 2k!(n − k − 1)! − k!(n − k − 2)!

− (k + 1)!(n − k − 2)! − k!(n − k − 1)! + k!(n − k − 2)!

First we claim that if n is even, the minimum of a′
k over k is a′

n/2 and if n is odd,
it is a′

⌊n/2⌋ = a′
⌈n/2⌉. Indeed, let

Ak = a′
k+1 − a′

k = 2k!(n − k − 2)![(k + 1)(n − k − 2) − (n − k − 1)2]

and observe that the expression in the brackets is quadratic in k. Furthermore if n is
odd, one of its roots is between n − 3 and n − 2 and the other is ⌊n/2⌋. If n is even,
it has a root between n/2 − 1 and n/2. This proves our claim.

Next we claim that the same holds for each b′k, i.e. if n is even, the minimum of
b′k over k is b′n/2 and if n is odd, it is b′⌊n/2⌋ = b′⌈n/2⌉ . This can be shown by a similar

(but a bit more tedious) calculation involving

Bk = b′k+1 − b′k = k!(n − k − 3)!

× [2(k + 1)(k + 2)(n − k − 2) − 2(n − k)(n − k − 1)(n − k − 2)

− (k + 1)(3n − 2k − 4) + (3n − 2k − 2)(n − k − 2)].

Finally, by substituting, a⌊n/2⌋ > 1
2
b⌊n/2⌋ and the theorem follows as the size of the

families in Construction 3.6 is exactly 2
b⌊n/2⌋

.

The case when l > 2 remains unsolved. We finish this section with a question
which is related to the l = 2 case. What is the maximum size of a family that satisfies
the Sperner property in addition to being 2-almost intersecting (or l-intersecting for
some l ≥ 2)? Is the following construction optimal or asymptotically optimal?

Construction 3.15. Let F be an optimal 1-almost intersecting family on [n− l− 1]
as in Theorem 3.4. Then G = F ×

(

[n−l,n]
1

)

= {F ∪ {x} : F ∈ F , x ∈ [n − l, n]} is a
Sperner and l-almost intersecting family of size ( l+1

2l+1 + o(1))
(

n
⌊n/2⌋

)

.

4 The less restrictive case - Uniform families

In this section we consider k-uniform (≤ l)-almost intersecting families. First, we
prove that if n is large enough, then this relaxation of the intersecting property does
not allow us to obtain a larger family, than what the Erdős-Ko-Rado result states.

Proposition 4.1. For any k, l ∈ N there exists n0 = n0(k, l) such that if n ≥ n0 and
F ⊂

(

[n]
k

)

is an (≤ l)-almost intersecting family, then |F| ≤
(

n−1
k−1

)

with equality if and
only if F is the family of all k-sets containing a fixed element of [n].

10



Proof. If F is intersecting, then we are done by the Erdős-Ko-Rado theorem. If
F1, F2 ∈ F are disjoint, then any F ∈ F \ (DF(F1) ∪ DF(F2)) should meet both
F1 and F2 and thus |F| ≤ k2

(

n−2
k−2

)

+ 2l which is smaller than
(

n−1
k−1

)

if n is large
enough.

The argument of Proposition 4.1 gives n0(k, l) ≤ O(k3 + kl). Using a theorem of
Hilton and Milner [9] that states that a non-trivially intersecting family has size at
most

(

n−1
k−1

)

−
(

n−k−1
k−1

)

+ 1 one can obtain a bound n0(k, l) = O(k2l) which is better
than the previous bound if l = o(k). Finding the smallest possible n0(k, l) seems to
be an interesting problem.

Obviously, if l ≥
(

m
k

)

, then
(

[k+m]
k

)

is (≤ l)-almost intersecting, furthermore if

l ≥
(

n−k−1
k−1

)

, then the trivially intersecting family {F ∈
(

[n]
k

)

: 1 ∈ F} is not maximal.
The following theorem states that 2k +2 is a good choice for n0(k, 1) provided k ≥ 3.
Note that the case k = 2 is trivial as if there exist F1, F2 ∈ F with F1 ∩ F2 = ∅, then
all other sets in F must intersect both F1 and F2 and thus be subsets of F1 ∪ F2 and
therefore |F| ≤ 6. Comparing this to the size of the trivially intersecting family gives
n0(2, 1) = 7.

Theorem 4.2. If k ≥ 3 and n ≥ 2k+2 and F ⊂
(

[n]
k

)

is an (≤ 1)-almost intersecting

family, then |F| ≤
(

n−1
k−1

)

with equality if and only if F is the family of all k-sets
containing a fixed element of [n].

Proof. We will use Katona’s cycle method [10]. We call a subset S of [n] an interval
in a cyclic permutation π of [n] if S = {π(i), π(i+1), ..., π(i+ |S|−1)} for some i and
addition is modulo n. We say that two sets S, T are separated in a cyclic permutation
π if there are disjoint intervals S ′, T ′ in π with S ⊆ S ′, T ⊆ T ′ and S ′ ∪ T ′ = [n]. Let
F0 = {F ∈ F : DF(F ) = 0},F1 = {F ∈ F : DF(F ) = 1}. We define two types of
objects and give them weights:

1. for (F, π) with F ∈ F0 and F an interval in π, give the weight 1
k
;

2. for ({F, F ′}, π) with F, F ′ ∈ F1 and F, F ′ separated in π, give the weight 2
n
.

Lemma 4.3. If 2k ≤ n and F ⊆
(

[n]
k

)

is a (≤ 1)-almost intersecting family, then
for any cyclic permutation π of [n] the sum of the weights of all objects having π as
second coordinate is at most 1.

Proof. For simplicity we identify objects with their first coordinates. We say that
for any cyclic permutation π there is a milestone between any consecutive elements
π(i), π(i + 1). For any object with second coordinate π we define two separating
milestones : if the object is of type 1, then the milestones lying between the interval
and its complement are the separating milestones. If the object is of type 2, then

11



there exist intervals S ′, T ′ showing this fact and we take the milestones between S ′

and T ′.
We claim that any milestone can belong to at most one object. Otherwise if

both objects are of type 1, then to be different they must lie on the two sides of the
milestone and as 2k ≤ n they do not intersect. If one of the objects F is of type 1
and the other {S, T} is of type 2, then F ⊆ S ′ or F ⊆ T ′ and thus either F ∩ T = ∅
or F ∩ S = ∅. Finally, if both objects {S1, T1}, {S2, T2} are of type 2, then S1 ⊆ S ′

2

or S2 ⊆ S ′
1 and thus S1 ∩ T2 = ∅ or S2 ∩ T1 = ∅.

As each object has 2 separating milestones, the lemma immediately follows if all
objects are of type 2. Let us assume that there is at least one object F of type 1
and we say that F crosses the milestones between any two of its elements. Then for
any other object O, the interval F crosses at least one of the separating milestones
of O. This is clear if O is of type 1 while if O = {S, T}, then not crossing any of the
milestones would mean F ⊆ S ′ or F ⊆ T ′ and thus F ∩ T = ∅ or F ∩ S = ∅. But
clearly an interval of size k may cross at most k − 1 intervals, thus we obtain that
in this case there are at most k objects with second coordinate π and as 1

k
≥ 2

n
the

lemma follows.

Let α denote the number of cyclic permutation in which the disjoint k-sets S and
T are separated. Clearly, α does not depend on the actual choice of S and T . With
this notation and Lemma 4.3 we obtain the following inequality

|F0|k!(n − k)!
1

k
+ |F1|α

1

n
≤ (n − 1)!

Thus we will be done if we can prove that

k!(n − k)!
1

k
< α

1

n
. (3)

We calculate α in the following way: consider the family G =
(

[2k]
k

)

and count the
objects ({G1, G2}, π) with G1, G2 ∈ G and separated in π. On the one hand, this
is 1

2

(

2k
k

)

α. On the other hand, this is k(n − 1)! as any cyclic permutation π of [n]
contains exactly k separated pairs from G. Thus we obtain

α =
2k(n − 1)!
(

2k
k

) .

After substituting this into (3) we need only to verify

k!(n − k)!
1

k
<

2k(n − 1)!

n
(

2k
k

)

12



which is equivalent to
(2k)!

k!k2
<

2(n − 1)!

(n − k)!n
.

This holds if 2k + 2 ≤ n provided k ≥ 5. For k < 5 the above inequality holds if
2k+3 ≤ n. The cases k = 3, n = 8 and k = 4, n = 10 can be verified by changing the
weight of all objects ({F, F ′}, π) to 1/k when at least one of F and F ′ is an interval in
π. One can easily check that Lemma 4.3 holds with the modified weights. We leave
the details to the reader.

Note that since the family
(

[2k]
k

)

is 1-almost intersecting and has size
(

2k
k

)

>
(

2k+1−1
k−1

)

, n0(k, 1) = 2k + 2 is best possible. We finish this section with an easy
double counting proof that settles the case of n = 2k + 1.

Proposition 4.4. If F ⊆
(

[2k+1]
k

)

is an (≤ 1)-almost intersecting family, then |F| ≤
(

2k
k

)

and equality holds if and only if F is the family all k-sets not containing a fixed
element of [2k + 1].

Proof. Let us double count the pairs (F,G) with F ∈ F , G /∈ F . On one hand
this is at least k|F| as for any F ∈ F out of the k + 1 many k-sets disjoint from
F at most 1 can be in F . On the other hand the number of such pairs is at most
(
(

2k+1
k

)

− |F|)(k + 1). We obtain (
(

2k+1
k

)

− |F|)(k + 1) ≥ k|F| and by rearranging we
get the stated bound on |F|.

To characterize the case of equality note that all lower and upper bounds in the
previous argument hold with equality if and only if F is a 1-almost intersecting family.
Thus we are done by Corollary 2.2.

5 The less restrictive case - Non-uniform families

In this section we consider the problem of finding the maximum size of an (≤ l)-
almost intersecting family F ⊂ 2[n]. Theorem 5.3 will settle the case of l = 1, we
prove Conjecture 1.2 for the case l = 2.

Remark 5.1. A family where all supersets of any member of the family belong to
the family as well is called an upset. For any (≤ l)-almost intersecting family F
there is another family F ′ of the same size which is an upset. Indeed, if for two
sets F,G we have F ( G, F ∈ F , G /∈ F , then F \ {F} ∪ {G} is (≤ l)-almost
intersecting provided F is as well. Thus it is enough to prove the upper bound in
Conjecture 1.2 for upsets, furthermore uniqueness for upsets implies uniqueness for
arbitrary families. Indeed, consider an (≤ l)-almost intersecting family F of maximum
size. By applying repeatedly the above operation, we obtain a family F ′ such that

13



|F| = |F ′| and F ′ \ {F} ∪ {G} = F ′′, where F ( G,F ∈ F ′, G /∈ F ′ and F ′′ is
the unique family described in Conjecture 1.2. but then DF ′(F ) ≥ ⌊1

2
(n − 1)⌋ which

contradicts the (≤ l)-almost intersecting property of F ′.

We start with a lemma that we will use in proving Theorem 5.3 and Theorem 5.5
and might be useful in verifying Conjecture 1.2.

Lemma 5.2. Let l be a positive integer. If an (≤ l)-almost intersecting family F is
an upset such that the size m of a minimum set in F is at most n−l

2
, then there exists

another (≤ l)-almost intersecting family F ′ with |F| ≤ |F ′| such that the size of a
minimum set in F ′ is m + 1. Furthermore, if m < n−l

2
, then |F| < |F ′|.

Proof. Let us write Fi = {F ∈ F : |F | = i} and define the bipartite graph
G(V1,V2, E) where V1 = Fm, V2 = {G ∈

(

[n]
n−m−1

)

\ Fn−m−1 : ∃F ∈ Fm, F ∩ G = ∅},
E = {(F,G) : F ∩ G = ∅}. Clearly, for any G ∈ V2 we have d(G) ≤ m + 1. Also,
for any F ∈ Fm = V1 we have d(F ) ≥ n − m − l + 1 as there are n − m sets of
size n − m − 1 which are disjoint from F and at most l − 1 of them belong to F
by the (≤ l)-almost intersecting property since F being an upset guarantees that
F ∈ F provided DF(F ) 6= ∅. It follows that |V1| ≤ |V2|, furthermore if m < n−l

2
, then

|V1| < |V2|.
Let us define F ′ = (F \V1)∪V2. By the above, we have |F| ≤ |F ′| and if m < n−l

2
,

then |F| < |F ′|. We still have to show that F ′ is (≤ l)-almost intersecting. Since
all sets in V2 have size n − m − 1 and the minimum sets in F ′ have size m + 1 for
any set G ∈ V2 we have |DF ′(G)| = 1. Also, for any set F ∈ F ∩ F ′ if |F | > m + 1,
then DF ′(F ) ⊆ DF(F ) and thus |DF ′(F )| ≤ |DF(F )| ≤ l. Finally, let us consider
a set F ∈ F ∩ F ′ with |F | = m + 1. If there was no set F ′ ⊂ F in Fm, then
DF(F ) = DF ′(F ), while if there was, then the only set in DF ′(F ) \ DF(F ) is F ,
therefore |DF ′(F )| ≤ |DF(F )| + 1. To finish the proof of the lemma observe that as

F
′ ∈ F we have |DF(F )| < |DF(F ′)| ≤ l.

The next theorem considers the case l = 1.

Theorem 5.3. If n ≥ 2 and F ⊂ 2[n] is an (≤ 1)-almost intersecting family, then

|F| ≤
{

∑n
i=n/2

(

n
i

)

if n is even
(

n−1
⌊n/2⌋

)

+
∑n

i=⌈n/2⌉

(

n
i

)

if n is odd,

and equality holds if and only if F is the family of sets of size at least n/2 and (if n
is odd) the sets of size ⌊n/2⌋ containing a fixed element of [n].

Proof. Let F be an (≤ 1)-almost intersecting family of maximum size. Remark 5.1
shows that we may assume that F is an upset and by Lemma 5.2 we may assume
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that the size of a minimum set in F is at least ⌈n−1
2
⌉. If n is even, this means

F ⊆ {F ⊆ [n] : |F | ≥ n/2} and we are done.
If n = 2k + 1 is odd, then Lemma 5.2 gives F ⊆ {F ⊆ [2k + 1] : |F | ≥ k}. We

claim that
(

[2k+1]
k+1

)

⊆ F . Indeed, if G ∈
(

[2k+1]
k+1

)

, then DF(G) ≤ 1, thus the only reason

for which G could not be in F is G ∈ F and there exists G′ ∈ F such that G′ ( G.
But then G would belong to F as F is an upset, a contradiction.

As
(

[2k+1]
k+1

)

⊆ F , we know that for every F ∈ Fk we have F ∈ F and thus
Fk = {F ∈ F : |F | = k} must form an intersecting family. Thus we are done by the
Erdős-Ko-Rado Theorem.

Theorem 5.3 can also be derived from a result by Bernáth and Gerbner [2]. We
define a family F to be (p, q)-chain intersecting if A1 ( A2 ( ... ( Ap, B1 ( B2 (

... ( Bq with Ai, Bj ∈ F implies Ap ∩ Bq 6= ∅.

Theorem 5.4 (Bernáth, Gerbner [2]). If F ⊆ 2[n] is (p, q)-chain intersecting, then

|F| ≤
{

∑n
i=(n−p−q+3)/2

(

n
i

)

if n − p − q is odd
(

n−1
⌊(n−p−q+3)/2⌋−1

)

+
∑n

i=⌈(n−p−q+3)/2⌉

(

n
i

)

if n − p − q is even.

Theorem 5.3 follows from Theorem 5.4 by letting p = 1, q = 2 as the (1,2)-chain
intersecting property is equivalent to the condition that DF(F ) is Sperner for all
F ∈ F . Bernáth and Gerbner also deal with the case of equality. We do not state
their complete result for sake of brevity.

The next theorem states that Conjecture 1.2 is true if l = 2.

Theorem 5.5. If n ≥ 2 and F ⊂ 2[n] is an (≤ 2)-almost intersecting family, then

|F| ≤
{

∑n
i=n/2

(

n
i

)

if n is even
(

n−1
⌊n/2⌋

)

+
∑n

i=⌈n/2⌉

(

n
i

)

if n is odd,

and equality holds if and only if F is the family of sets of size at least n/2 and (if n
is odd) the sets of size ⌊n/2⌋ not containing a fixed element of [n].

Proof. Let us consider two cases according to the parity of n. If n = 2k + 1 is odd,
then by Remark 5.1 and Lemma 5.2 we can assume that F is an upset and all sets
in F have size at least k. Therefore all sets F of size at least k + 2 belong to F as
DF(F ) = ∅. We claim that if F is maximal, then

(

[2k+1]
k+1

)

⊆ F . Indeed, if |G| = k +1,

then DF(G) ≤ 1, thus the only reason for which G could not be in F is that G ∈ F
and DF(G) > 2. But then G ∈ F as F is an upset.

Now consider Fk = F ∩
(

[2k+1]
k

)

. Again, for all F ∈ Fk the set F belongs to F ,
thus Fk is (≤ 1)-almost intersecting and then we are done by Proposition 4.4.
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Suppose now that n = 2k is even. Then by Remark 5.1 and Lemma 5.2 we can
assume that F is an upset and all sets in F have size at least k − 1. Furthermore
Lemma 5.2 states that there is an upset F ′ with |F| many members each of size at
least k. This implies the bound in the theorem. Suppose Fk−1 6= ∅, then just as
in the case of odd n, all sets of size at least k + 1 belong to F and the proof of
Lemma 5.2 shows that writing Bk = {B ∈

(

[2k]
k

)

\ Fk} we must have |Fk−1| = |Bk|
(as otherwise (F \ Fk−1) ∪ Bk would be a larger (≤ 2)-almost intersecting family)
and Fk−1 = ∆Bk = {F ∈

(

[2k]
k−1

)

: ∃B ∈ Bk(F ⊂ B)}. The Lovász version [11] of the

Kruskal-Katona shadow theorem states that if Bk = m =
(

x
k

)

for some real number x,

then ∆Bk ≥
(

x
k−1

)

. As
(

x
k

)

<
(

x
k−1

)

if x < 2k−1, we must have |Fk−1| = |Bk| ≥
(

2k−1
k−1

)

.
Finally, note that Fk−1 is intersecting as a pair F, F ′ ∈ Fk−1, F ∩ F ′ = ∅ would give,
by the assumption that F is an upset, |DF(F )| ≥ |{G : F ′ ⊆ G ⊆ F}| = 4. By the
Erdős-Ko-Rado Theorem we obtain that |Fk−1| ≤

(

2k−1
k−2

)

<
(

2k−1
k−1

)

. This contradiction
finishes the proof of the theorem.

Remark 5.6. For general l Lemma 5.2 gives that an (≤ l)-almost intersecting family
F of maximum size is a subset of {F ∈ 2[n] : |F | ≥ ⌊(n − l)/2⌋ + 1}. Theorem 5.4
can be used to give a better upper bound on the size of F . To see this note that an
(≤ l)-almost intersecting family which is an upset satisfies the (1, p)-chain intersecting
property with p = ⌈log2(l + 1)⌉. Indeed, if not then there would exist a set F ∈ F
and a chain G1 ( G2 ( ... ( Gp in F such that Gp ∩ F = ∅, but then all sets G with
G1 ⊆ G ⊆ Gp would belong to F and thus |DF(F )| > l would hold.

References

[1] R. Ahlswede, Simple hypergraphs with maximal number of adjacent pairs of
edges, J. Combinatorial Theory (B) 28 (1980), 164-167.
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