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1 Introduction

We use standard notation: [n] denotes the set of the first n positive integers, 2S

denotes the power set of the set S and
(
S
k

)
denotes the set of all k-element subsets

of S. The complement of a set F is denoted by F and for a family F we write
F = {F : F ∈ F}.

A family F of sets is called intersecting if any pair of sets in F have a non-empty
intersection and is called an antichain or Sperner family if there is no pair of sets in F
such that one set contains the other. Sperner’s theorem [16] states that an antichain
F ⊆ 2[n] has size at most

(
n
bn/2c

)
and equality holds if and only if F =

(
[n]
bn/2c

)
or

F =
(

[n]
dn/2e

)
. A theorem of Erdős, Ko and Rado [4] states that an intersecting family

F ⊆
(
[n]
k

)
has size at most

(
n−1
k−1

)
provided 2k ≤ n, furthermore, if 2k < n, then

equality holds if and only if F is the set of all k-subsets of [n] containing a fixed
element of [n]. These are the the two basic results in extremal finite set theory both
of which have many generalizations and extensions.

One such generalization of intersecting families was introduced by the present
authors in [8]. For a set G and a family F let us write DF(G) = {F ∈ F : F ∩G = ∅}.
Then we say that a family F of sets is l-almost intersecting ((≤ l)-almost intersecting)
if |DF(F )| = l (|DF(F )| ≤ l) holds for all F ∈ F . An analogous generalization of
Sperner families is the following: for a set G and a family F let us write SF(G) =
{F ∈ F : F ⊆ G or G ⊆ F} and call a family F l-almost Sperner ((≤ l)-almost
Sperner)) if |SF(F )| = l (|SF(F )| ≤ l) holds for all F ∈ F . Note that a 0-almost
intersecting family is intersecting and a 1-almost Sperner family is Sperner.

In [8] we considered the problem of finding the largest possible l-almost intersecting
and (≤ l)-almost intersecting families. In both cases we addressed the problem of
uniform and non-uniform families. Among other things, we proved that if F is a
k-uniform l-almost intersecting family, then |F| ≤ C(k, l), where the constant is
independent of the size of the ground set. We were only able to determine the best
bound in the case if k = 2 or if l = 1. The latter is an immediate consequence of the
following theorem of Bollobás [3].

Theorem 1.1 (Bollobás [3]). If the pairs (Ai, Bi)
m
i=1 satisfy that Ai ∩ Bj = ∅ if and

only if i = j, then the following inequality holds:

m∑
i=1

1(|Ai|+|Bi|
|Ai|

) ≤ 1,

in particular if |Ai| ≤ k and |Bi| ≤ r for all 1 ≤ i ≤ m, then m ≤
(
k+r
k

)
and equality

holds if and only if the pairs are all possible partitions into sets of size k and r of
some (k + r)-set X.
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In [8], we made the following conjecture:

Conjecture 1.2. For any k there exists l0 = l0(k) such that if l ≥ l0 and F is a k-
uniform l-almost intersecting family, then |F| ≤ (l+1)

(
2k−2
k−1

)
. If true, this is sharp as

shown by the family F∗ = {F ′∪{x} : F ′ ∈
(
[2k−2]
k−1

)
, x ∈ {2k−1, 2k−2, ..., 2k+ l−1}}.

In Section 2, we prove the following upper bound which is much closer to what
Conjecture 1.2 states than what we proved in [8].

Theorem 1.3. Let F be an l-almost intersecting family of k-sets. Then |F| ≤ (2l−
1) ·

(
2k
k

)
.

We will prove Theorem 1.3 in a more general form. To do so we will consider the
generalizations of cross-intersecting (see among others [2, 3, 5, 6, 7, 12, 13, 14]) and
cross-Sperner (see [9]) pairs of families. We call the pair (F ,G) of families l-almost
cross-intersecting ((≤ l)-almost cross-intersecting) if |DF(G)| = l (|DF(G)| ≤ l) and
|DG(F )| = l (|DG(F )| ≤ l) holds for all F ∈ F and G ∈ G. Similarly, the pair (F ,G)
is l-almost cross-Sperner ((≤ l)-almost cross-Sperner) if |SF(G)| = l (|SF(G)| ≤ l)
and |SG(F )| = l (|SG(F )| ≤ l) holds for all F ∈ F and G ∈ G.

There are two standard ways to measure the size of a pair of families (F ,G):
either by the product |F| · |G| or by the sum |F|+ |G|. Note that if l is at least 1 and
we are considering l-almost cross-intersecting or l-almost cross-Sperner pairs, then
immediately |F| = |G| holds, thus it makes no difference whether we measure by the
product or by the sum.

There is a very natural way to create pairs of families with the above properties:
if F is, e.g., l-almost intersecting, then the pair (F ,F) is l-almost cross-intersecting.
Clearly, the other three analogous statements hold.

Problem 1.4. Under what conditions is it true that for a maximum size family
F ⊆ 2[n] with one of the above properties, the pair (F ,F) maximizes |F| · |G| or
|F|+ |G| over the pairs (F ,G) with the corresponding “cross-property”?

One can easily answer the above problem in the negative for (≤ l)-almost cross-
Sperner pairs. Indeed, for any l an (≤ l)-almost Sperner family cannot contain an
(l + 1)-fork, i.e. sets F0, F1, ..., Fl+1 with F0 ⊂ Fi for all 1 ≤ i ≤ l + 1. A result of
Katona and Tarján [10] states that such a family can have size at most (1+o(1))

(
n
bn/2c

)
,

while the pair F∗ = {F ⊂ [n] : 1 ∈ F, 2 /∈ F},G∗ = {G ⊂ [n] : 1 /∈ G, 2 ∈ G} shows
that the extremal pair cannot be a duplication of an extremal (≤ l)-almost Sperner
family.

The rest of Section 2 contains some results which answer some instances of Prob-
lem 1.4 for almost cross-intersecting pairs of families. In particular, we will prove the
following more general version of Theorem 1.3.
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Theorem 1.5. Let (F ,G) be a pair of l-almost intersecting families where F is r-
uniform and G is k-uniform. Then |F| = |G| ≤ (2l − 1) ·

(
k+r
k

)
.

In Section 3, we prove the following theorem on 2-almost Sperner and (≤ 2)-
almost Sperner families. The maximum size of such families was first determined by
Katona and Tarján [10] and then reproved by Katona [11] in a different context. We
use Katona’s proof to determine all extremal families.

Theorem 1.6. If F ⊆ 2[n] is 2-almost Sperner or (≤ 2)-almost Sperner, then |F| ≤
2
(

n−1
bn/2c

)
. The only families with this size are isomorphic to F1 =

(
[n−1]
bn/2c

)
∪ {F ∪ {n} :

F ∈
(
[n−1]
bn/2c

)
}, F2 = F1 and, if n is even, F3 =

(
[n]
n/2

)
.

2 Almost intersecting families

We start this section by proving Theorem 1.5.

Proof. Let (F ,G) be as stated in the theorem. We define the graph Γ in the following
way: let V (Γ) = {(F,G) : F ∈ F , G ∈ G, F ∩G = ∅} and E(Γ) = {((F,G)(F ′, G′)) :
F = F ′ or G = G′ but not both }. As the pair (F ,G) is l-almost intersecting, the
maximum degree of Γ is at most 2(l− 1), thus Γ can be properly colored with 2l− 1
colors. For any color class C of any proper coloring, consider the set of pairs (F,G)
the corresponding vertices of which belong to C. Clearly, these pairs satisfy the
conditions of Theorem 1.1, thus their number is at most

(
k+r
k

)
. Now the theorem

follows by summing these bounds for all color classes.

Note that if we let both k and l tend to infinity, then the upper bound of Conjec-
ture 1.2 is of the same order of magintude as the proved upper bound of Theorem 1.1.
More precisely, asypmtotically they differ by a factor of eight.

We continue with non-uniform l-almost cross-intersecting pairs of families. Con-
cerning Problem 1.4 let us make the following two easy observations. If (F ,G) is a
1-almost cross-intersecting pair, then just as in the proof of Theorem 1.5 sets of F
and G can be partitioned into pairs that satisfy the condition of Theorem 1.1 and thus
|F| = |G| ≤

(
n
bn/2c

)
. This bound is tight as shown by the pair F =

(
[n]
bn/2c

)
,G =

(
[n]
dn/2e

)
.

On the other hand, in [8] we showed that a 1-almost intersecting family cannot con-
tain more than 2

(
n−1
bn/2c−1

)
sets if n is odd which is strictly smaller than

(
n
bn/2c

)
. Thus

in this case the answer to Problem 1.4 is negative.
In [8], we also proved that the maximum size of a 2-almost intersecting family is

2
(

n−2
(n−2)/2

)
if n is even and 4

(
n−3
bn/2c−2

)
if n is odd. The proof involves several steps and

some calculation each of which remains valid for 2-almost cross-intersecting pairs of
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families. Thus, the answer to Problem 1.4 is positive for l = 2 as opposed to the case
l = 1.

Let us finish this section by listing some easy results about (≤ l)-almost cross-
intersecting pairs of families. As all proofs are either trivial or simple alterations of
proofs from [8], we omit most details. In the case where F and G form an (≤ l)-
almost cross-intersecting pair families where F is r-uniform and G is k-uniform we
will assume that

(
n
r

)
≥
(
n
k

)
. It it is easy to see that if F and G are as above,

then |F| · |G| ≤
(
n−1
k−1

)(
n−1
r−1

)
and |F| + |G| ≤

(
n
r

)
provided n is large enough. If, in

addition, we require both F and G to be non-empty, then one can obtain |F|+ |G| ≤
l + 1 +

(
n
r

)
−
(
n−k
r

)
. All these bounds are sharp as seen by the pairs F1 = {F ∈(

[n]
r

)
: 1 ∈ F},G1 = {G ∈

(
[n]
k

)
: 1 ∈ G}; F2 =

(
[n]
r

)
,G2 = ∅ and G3 = {G},

F3 = {F ∈
(
[n]
r

)
: F ∩ G 6= ∅} ∪ {H1, H2, ..., Hl} where G is any k-subset of [n] and

all Hi are disjoint from G.
Let us consider Problem 1.4 for pairs (F ,G) of non-uniform families. In [8], we

determined the maximum size of an (≤ l)-almost intersecting family for l = 1, 2. In
that case when n is even the proofs from [8] can be used to show that |F| · |G| ≤M2

and |F| + |G| ≤ 2M where M is the maximum size of an (≤ l)-almost intersecting
family i.e. M =

∑n
k=n/2

(
n
k

)
. If n is odd, then Problem 1.4 for l = 1 can be settled in

the negative as |F0|+ |G0| > 2|F1| where F0 = {F ⊆ [n] : |F | > n/2},G0 = F0∪
( [n]

n−1
2

)
and F1 = F0 ∪ {F ∈

( [n]
n−1
2

)
: 1 ∈ F}. Note that F1 was shown to be largest (≤ 1)-

almost intersecting family in [8] and altering that proof a little, one can see that
|F0|+ |G0| maximizes the sum over all pairs. If l = 2, then the answer to Problem 1.4
is positive. As before the proof is almost identical to the one in [8].

3 Almost Sperner families

We start this section by proving Theorem 1.6. As we mentioned in Section 1, the
bound stated in the theorem was first proved by Katona and Tarján [10] and recently
reproved by Katona [11]. We will sketch Katona’s proof (but omit some tedious
calculations) as our argument will use it heavily to determine the extremal families.
Before starting the proof let us describe the context of both previous papers and
introduce some terminology. The comparability graph G(P ) of a poset P is a directed
graph with vertex set P and (p, q) is an arc if and only if p ≺P q. The components
of a family F ⊆ 2[n] are the subfamilies of which the corresponding vertices form
an undirected component of G(PF), where PF is the subposet of the Boolean poset
induced by F . We say that the poset P contains another poset Q if G(Q) is a (not
necessarily induced) subgraph of G(P ) in the directed sense. For any set P of posets
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La(n,P) denotes the maximum size that a family F ⊆ 2[n] can have such that PF
does not contain any P ∈ P .

Let
∨

denote the 3-element poset with a smallest element and two other non-
comparable element and let

∧
denote the 3-element poset obtained from

∨
by re-

versing the orientation of all arcs in G(
∨

). Clearly, a family F ⊆ 2[n] is (≤ 2)-almost
Sperner if and only if the subposet of the Boolean poset Bn induced by F contains
neither

∨
nor

∧
. Now we are ready to prove Theorem 1.6.

Proof. The 2-almost Sperner ((≤ 2)-almost Sperner) property implies that the con-
nected components of F are either isolated points or pairs of sets. Let α1 and α2

denote their respective numbers. Then |F| = α1+2α2. Let c(P (1, a)) (c(P (2, a1, a2)))
denote the number of full chains going through a one element component (two ele-
ment component) where the size of the set in the component is a (a1, a2). Katona
[11] showed that

c(P (1, a)) ≥
⌊n

2

⌋
!
⌈n

2

⌉
! c(P (2, a1, a2)) ≥ n

⌊n− 1

2

⌋
!
⌈n− 1

2

⌉
!, (1)

where equality holds if and only if a = bn
2
c or a = dn

2
e and a1 = a2 − 1 = bn−1

2
c or

a1 = a2−1 = dn−1
2
e. Let us count the pairs (C, C) where C is a connected component

of F and C is a full chain in [n]. As any full chain can meet at most one component,
by (1) we obtain

α1

⌊n
2

⌋
!
⌈n

2

⌉
! + 2α2

n

2

⌊n− 1

2

⌋
!
⌈n− 1

2

⌉
! ≤ n!. (2)

As n
2
bn−1

2
c!dn−1

2
e! ≤ bn

2
c!dn

2
e! with equality if and only if n is even, we obtain

(α1 + 2α2)
n

2

⌊n− 1

2

⌋
!
⌈n− 1

2

⌉
! ≤ n!. (3)

Rearranging gives the bound on |F| = α1 + 2α2.
Note that to prove that a particular 2-almost Sperner (or (≤ 2)-almost Sperner)

family is not maximal it is enough to show that there is at least one full chain that does
not meet F and thus strict inequality holds in (3). Also, by the above computations,
we know that if F is of maximum size, then the connected components of F must be
of the following types:

• if n is even, isolated points with corresponding sets of size n
2
, pairs of sets with

sizes n
2
− 1 and n

2
or n

2
and n

2
+ 1,

• if n is odd, pairs of sets with sizes bn
2
c and dn

2
e.
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We start with two claims that reduce the problem in the case when n is even to
the situation when F contains only one type of components.

Claim 3.1. If n is even and F contains both isolated sets and pairs of sets as con-
nected components, then F is not of maximum size.

Proof. Let F be an isolated set of F and H1 ( H2 be a pair of sets in F such that
d(F,H1) + d(F,H2) is minimal (where d denotes the Hamming distance of F and
Hi). We know that |F | = n

2
and, by changing to F if necessary, we may assume that

|H1| = |H2| − 1 = n
2
. First let us assume that d(F,H1) + d(F,H2) = 5, which is the

minimum possible. Let C = F ∩H1, {x} = F \H2 and {z} = H2 \H1 and consider
any full chain C containing A = C ∪ {z} and B = C ∪ {x, z}. By the assumption on
the sizes of sets in F , we know that F ∩ C ⊆ {A,B}, but A is a proper subset of H2

different from H1, thus A /∈ F and B is a proper superset of F , thus B /∈ F . We
proved that F ∩ C = ∅ which shows that (3) cannot hold with equality and thus F
cannot be of maximum size.

Let us now assume that d(F,H1) + d(F,H2) > 5. We consider two cases: if
H2 \H1 6⊆ F , then fix an arbitrary f ∈ F \H1 and write h = H2 \H1. Consider a full
chain containing G1 = (F \ {f})∪ {h} and G2 = F ∪ {h}. Again, by the assumption
on the sizes of sets in F , we know that F ∩C ⊆ {G1, G2}, but G2 is a proper superset
of F , thus G2 /∈ F , while G1 is closer to the pair (H1, H2) than F and also if G1 was
contained in a pair component of F , then its “distance” from F would be 5, thus
G1 /∈ F . We showed the existence of a chain C so that F ∩ C = ∅, thus (3) cannot
hold with equality and thus F cannot be of maximum size.

Claim 3.2. If n is even and F contains pairs of sets as connected components with
different set sizes, then F is not of maximum size.

Proof. Suppose not and let us pick two components F1 ( F2 and G1 ( G2 of F
such that the sizes of the sets are different (and thus, by the optimality of F , n

2
=

|F1|+ 1 = |F2| = |G1| = |G2| − 1) and d(F2, G1) is minimal. Let us first assume that
d(F2, G1) = 2 and let x be the single element of F2\F1 and let u be the single element
of F2 \G1. As d(F2, G1) = 2 and F1 6⊆ G1 we obtain x 6= u and x ∈ G1. Consider any
full chain C going through G1 \ {x} and (G1 \ {x}) ∪ {u}. C cannot contain any set
from F as its members with size at most n

2
− 1 are proper subsets of G1 and those

with size at least n
2

are proper supersets of F1 different from F2, therefore these chains
show that (3) cannot hold with equality, which contradicts F being of maximum size.

Now suppose d(F2, G2) > 2 and let us fix x ∈ F1 \G2 and y ∈ G1 \ F2. Consider
any full chain C going through A = F2 \ {x}, B = A ∪ {y}, C = B ∪ {x} = F2 ∪ {y}.
By the maximality of F we have C ∩F ⊆ {A,B,C}, but A is a subset of F2 different
from F1, C is a superset of F2 and thus A and C cannot be in F . While B ∈ F would
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contradict the minimality of d(F2, G2). Again the existence of such C shows that (3)
cannot hold with equality, which contradicts F being of maximum size.

Claim 3.3. If all components of F are pairs of the same type but for two pairs
F1 ( F2 and H1 ( H2 of sets in F we have F2 \ F1 6= H2 \ H1, then F is not of
maximum size.

Proof. Again, pick the two pairs such that the sum d(H1, F1)+d(H1, F2)+d(H2, F1)+
d(H2, F2) is minimal. This sum is at least 12 by the assumption F2 \ F1 6= H2 \H1.
Let us first assume that this sum is 12. Then let h be the only element of H2 \H1,
f be the only element of F1 \ H1 and let C = F1 ∩ H1. Consider any full chain C
containing A = C ∪ {h} and B = C ∪ {h, f}. By the assumption on the sizes of sets
in F , we know that F ∩ C ⊆ {A,B}, but A is a proper subset of H2 different from
H1, thus A /∈ F and B is a proper superset of F1 different from F2, thus B /∈ F . We
proved that F ∩ C = ∅ which shows that (3) cannot hold with equality and thus F
cannot be of maximum size.

Let us now assume that the sum mentioned above is strictly larger than 12. Let
h be an element of H1 \ F1 and if the only element x of F2 \ F1 is contained in H1,
then let h = x. Furthermore, let f be an element of F1 \H2. Consider a full chain C
containing G1 = H2\{h} and G2 = (H2\{h})∪{f}. Again, by the assumption on the
sizes of sets in F , we have F ∩ C ⊆ {G1, G2}. We have H1 6= G1 ( H2, thus G1 /∈ F .
Finally, observe that G′ /∈ F as the component (G′, G2) containing G2 would be closer
to the pair F1, F2 and as x /∈ G2 we would still have that F2 \ F1 6= G2 \G′.

Claim 3.3 completes the proof of Theorem 1.6.

Now we turn our attention to Problem 1.4 in the case of almost cross-Sperner
pairs of families.

Theorem 3.4. If (F ,G) is a 1-almost cross-Sperner pair of families with F ,G ⊆ 2[n],
then we have

|F| = |G| ≤
(

n

bn/2c

)
and equality holds if and only if F = G =

(
[n]
bn/2c

)
or F = G =

(
[n]
dn/2e

)
.

Proof. Let (F ,G) be a 1-almost cross-Sperner pair of families and define Fd = {F ∈
F : ∃F ′ ∈ F such that F ( F ′},Fu = {F ∈ F : ∃F ′ ∈ F such that F ) F ′},F sp =
F \ (Fd ∪ Fu). First note that Fu ∩ Fd = ∅. Indeed, otherwise there would exist
three sets F1 ( F2 ( F3 in F and the set G ∈ G in containment with F2 would have
two such sets from F contradicting the 1-almost cross-Sperner property of (F ,G).
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Let us define G ′ = {G ∈ G : ∃F ∈ Fd with F ⊆ G or G ⊆ F}. By the 1-
almost cross-Sperner property of (F ,G) we know that |Fd| = |G ′| and thus writing
F ′ = Fu ∪ F sp ∪ G ′ we have |F| = |F ′|.

Claim 3.5. The family F ′ is an antichain.

Proof. By definition and the observation that Fu ∩ Fd = ∅, there is no pair of
sets in Fu ∪ F sp containing one another. Furthermore, as all sets in G ′ have their
containment pairs in Fd, there is no pair of sets (F,G) containing one another with
F ∈ Fu ∪ F sp, G ∈ G ′.

Suppose there exist G1 ( G2 with G1, G2 ∈ G ′ and consider their containment
pairs F1, F2 ∈ Fd. Note that Fi ⊂ Gi as otherwise Gi would have two containment
pairs in F . But then F1, F2 ⊂ G2 which contradicts the 1-almost cross-Sperner
property of (F ,G). This contradiction proves the claim.

Claim 3.5 and Sperner’s theorem proves the bound on the size of F and G. To see
the uniqueness of the extremal families note that by the uniqueness part of Sperner’s
theorem we have F ′ =

(
[n]
bn/2c

)
or F ′ =

(
[n]
dn/2e

)
. Clearly, Claim 3.5 remains true if we

replace F ′ by F ′′ := F sp∪Fd∪G ′′ where G ′′ = {G ∈ G : ∃F ∈ Fu with F ⊆ G or G ⊆
F}. Thus we are done if n is even or if F sp 6= ∅.

The only remaining possibility that the statement of the theorem does not hold
is if n is odd and F ′ = Fu ∪ G ′ =

(
[n]
dn/2e

)
and F ′′ = Fd ∪ G ′′ =

(
[n]
bn/2c

)
. Consider

the regular bipartite graph B with partite sets
(

[n]
bn/2c

)
and

(
[n]
dn/2e

)
where two sets are

connected if one of them contains the other. A situation as above would partition the
graph B into two induced matchings B(Fd,G ′) and B(G ′′,Fu). This is impossible as
that would mean that if the vertex corresponding to a set F belongs to one of the
matchings, then all sets F ′ with d(F, F ′) = 2 (where d denotes the Hamming distance
of sets or equivalently the graph distance in B) belong to the other matching, and if
n ≥ 3, then we cannot place the following 3 sets in a way that possesses the above
property: F, F \ {x} ∪ {y}, F \ {z} ∪ {y} with x, z ∈ F, y /∈ F .

An alternate proof to Theorem 3.4 is to count the number of pairs (H, C), where
H is a set from F ∪G (here we consider F ∪G as a multifamily, i.e. sets may appear
twice if they belong to both F and G) and C is a full chain. Any full chain contains
at most 2 sets from F ∪ G as two sets from F and one from G (or the other way
round) would contradict the 1-almost cross-Sperner property, while 3 sets from F (or
from G) is impossible by the argument above for Fu ∩ Fd = ∅. Thus we obtain the
following LYM-type inequality:∑

F∈F

1(
n
|F |

) +
∑
G∈G

1(
n
|G|

) ≤ 2, (4)
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which immediately proves the bound on |F| = |G| and the uniqueness of the extremal
pair if n is even. If n is odd, then by (4) all sets in F ∪ G have size dn/2e or
bn/2c. There is nothing to prove if all sets belong to both F and G. Let F ∈ F \ G
with |F | = dn/2e. Then all subsets of F of size bn/2c belong to exactly one of
F or G. Indeed, all such sets H are in F ∪ G as otherwise a chain going through
H and F would contain only one set from F ∪ G and thus (4) would hold with
strict inequality. Also, if H belonged to both F and G, that would contradict the
1-almost cross-Sperner property of the pair (F ,G). Applying the same argument to
the supersets of the subsets of F and to subsets of those and so forth we obtain that
F ∪ G =

(
[n]
bn/2c

)
∪
(

[n]
dn/2e

)
and all sets appear in exactly one of the families. Now the

uniqueness follows just as in the previous proof.

Let us finish this section with a short remark concerning Problem 1.4 for (≤ l)-
almost cross-Sperner pairs of families (F ,G). Using the argument from [9] one can
prove that if both F and G are non-empty, then |F|+ |G| ≤ 3 + l+ 2n−2bn/2c−2dn/2e

provided n is large enough.
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