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Abstract
The pro�le vector of a family F of subsets of an n-element set is

(f0, f1, . . . , fn) where fi denotes the number of the i-element members
of F . In this paper we determine the extreme points of the set of
pro�le vectors for some classes of families, including complement-free
k-Sperner families and self-complementary k-Sperner families. Using
these results we determine the maximum cardinality of intersecting
k-Sperner families.

1 Introduction and preliminaries
Let us start with basic notation.

Let [n] = {1, . . . , n} be the underlying set. If F ⊆ [n] then F denotes
the complement of F . Let F be a family of subsets of [n] (F ⊆ 2[n]). Then
co(F) = {X ⊆ [n] : X ∈ F} and Fi denotes the subfamily of the i-element
subsets in F : Fi = {F : F ∈ F , |F | = i}. Its size |Fi| is denoted by fi.
The vector p(F) = (f0, f1, . . . , fn) in the (n+1)-dimensional Euclidian space
Rn+1 is called the pro�le of F . The vector p0(F) = (f1, f2, . . . , fn−1) is called
the reduced pro�le of F .

A chain is a family C = {C1, . . . , Ci} with some integer i such that C1 ⊂
C2 ⊂ . . . ⊂ Ci. A full chain is a chain of length n + 1, i.e. a family C =
{C0, C1, . . . , Cn} such that C0 ⊂ C1 ⊂ . . . ⊂ Cn. A family F is intersecting
if there exist no F1, F2 ∈ F such that F1 ∩ F2 = ∅. F is co-intersecting if
there exist no F1, F2 ∈ F such that F1 ∪ F2 = [n], i.e. F1 ∩ F2 = ∅. A family
is Sperner (or antichain) if it does not contain any chain of length 2, and
k-Sperner, if it does not contain any chain of length k + 1, or equivalently if
the intersection of the family and a chain contains at most k members.

If Λ is a �nite set in Rd, its convex hull conv(Λ) is the set of all convex
combinations of the elements of Λ. A point of Λ is an extreme point if it
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is not a convex combination of other points of Λ. It is easy to see that the
convex hull of a set is equal to the convex hull of the extreme points of the
set.

Let A be a class of families of subsets of [n]. We denote by Λ(A) the set
of pro�les of the families belonging to A:

Λ(A) = {p(F) : F ∈ A},
and similarly we denote by Λ0(A) the set of reduced pro�les. Γ(A) denotes
the set of the extreme points of Λ(A). We simply call them the extreme
points of A. Similarly Γ0(A) denotes the set of the extreme points of Λ0(A).
The pro�le polytope of A is conv(Λ(A)).

We call an extreme point v of a set Λ essential if there is no other point
u ∈ Λ with v ≤ u (it denotes vi ≤ ui for every i). Γ∗(A) and Γ∗0(A) denote
the sets of essential extreme points of the sets of pro�les and reduced pro�les,
respectively. We say that a set of vectors Γ = {v1, . . . ,vm} dominates a set
Λ of vectors if for any v ∈ Λ there are constants λ1, . . . λm ≥ 0,

∑m
i=1 λi ≤ 1

satisfying v ≤ ∑m
i=1 λivi. We say that A is hereditary if F ⊆ F ′ ∈ A implies

F ∈ A. We will use the following proposition ([5]).
Proposition 1.1. If A is hereditary, then

(i) any element of Γ(A) can be obtained by changing some coordinates of
an element of Γ∗(A) to zero.

(ii) If Γ ⊂ Λ(A) dominates Λ(A) then Γ∗(A) ⊂ Γ.
For the reduced pro�les the analogous statement is true.

Let us give some motivations for studying pro�le polytopes. Suppose we
are given a weight function w : {0, . . . , n} → R, and the weight of a family F
is de�ned to be

∑
F∈F w(|F |), which is equal to

∑n
i=0 w(i)fi. Usually we are

interested in the maximum of the weight of the families in a class A. Several
well-known results in extremal set theory can be formulated this way.

We want to maximize the sum, i.e. �nd a family F0 ∈ A and an inequality∑n
i=0 w(i)fi = w(F) ≤ w(F0) = c. This is a linear inequality, and it is

always maximized in an extreme point (if the weight function is positive, it
is maximized in an essential extreme point). We usually want to �nd the
maximum weight, but conversely, it can help us to determine the extreme
points. Basic linear programming gives the following lemma.
Lemma 1.2. Let S be a set of pro�le vectors.

i) Suppose that for every weight the maximum is given by an element of
S. Then S contains all the extreme points.

ii) Suppose that for every positive weight the maximum is given by an
element of S. Then S contains all the essential extreme points.
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The pro�le polytopes were introduced by P.L. Erd®s, P. Frankl and
G.O.H. Katona in [4]. Later they applied the circle method to pro�le poly-
topes in [5]. This method will be an important tool in this paper.

The circle method was introduced by G.O.H. Katona [8]. Let the elements
of the set [n] be placed around a circle such that i + 1 is next to i for all
i = 1, 2, . . . , n− 1 and 1 is next to n in clockwise direction: we will also say
that i+1 is to the right from i. We consider these numbers mod n. Elements
next to each other will be called consecutive. A set of consecutive elements
will be called an interval. Denote the interval of elements between a and b
by [a, b] (endpoints included): this is the set of elements a, a + 1, . . . , b. The
family of all intervals on the circle will be denoted by H.

Let α be a cyclic permutation. If F ⊂ [n], then α(F ) = {α(i) : i ∈ F}.
For a family F let Fα denote the family of the intervals in F , i.e. Fα =
α(F) ∩ H, where α(F) = {α(F ) : F ∈ F}. Similarly, for a class of families
A let Aα = {Fα : F ∈ A}.

If v = (v0, v1, . . . , vn) then let

T (v) =

(
v0, v1

(
n

1

)
/n, v2

(
n

2

)
/n, . . . , vn−1

(
n

n− 1

)
/n, vn

)
.

Theorem 1.3 ([5]). If v1, . . . ,vm are the extreme points of Λ(Aα) for every
given cyclic permutation α then

Λ(A) ⊆ conv{T (v1), . . . , T (vm)}.

This theorem is really useful if T (v1), . . . , T (vm) ∈ Λ(A) holds. (This
can be easily checked.) Then T (v1), . . . , T (vm) are the extreme points of A.

De�nition 1.4. Let L = {L0, L1, . . . , Ln} be a chain, i.e. L0 ⊂ L1 ⊂ · · · ⊂
Ln, where |Li| = i. Then K = L ∪ co(L) is a complement chain-pair, or
brie�y chain-pair.

De�nition 1.5. F is a k-antichainpair family if |F ∩ K| ≤ k for every
complement chain-pair K.

One can easily see that an l-Sperner family is 2l-antichainpair. The notion
of k-antichainpairs does not seem to be very interesting on its own, but we will
able to use it to approach some other, more natural problems. In Section 2
we will study k-antichainpair families and determine their extreme points. In
Section 3 the extreme points of some other classes of families are determined,
using the k-antichainpair families. As a corollary, we will get the following
statement.
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Theorem 1.6. Let F be an intersecting k-Sperner family of maximum car-
dinality. Then

|F| =





n+1
2

+k−1∑

i=n+1
2

(
n

i

)
if n is odd

(
n−1

n/2−1

)
+

n/2+k−1∑

i=n/2+1

(
n

i

)
+

(
n− 1

n/2 + k

)
if n is even.

Note that the case k = 1 was proved by Milner [9].

2 The k-antichainpair families
For sake of completeness, we repeat some well-known de�nitions.

Let F be a family of k-element sets. Then the shadow of F is ∆F =
{A ⊆ [n]: |A| = k − 1, there exists F ∈ F such that A ⊆ F}. The shade of
F is ∇F = {A ⊆ [n]: |A| = k + 1, there exists F ∈ F such that F ⊆ A}. If
F is a family of intervals, then these notions can be analogously de�ned but
considering only intervals. More precisely let ∇intF := {A ∈ H: |A| = k + 1,
there exists F ∈ F such that F ⊆ A} and ∆intF = {A ∈ H: |A| = k − 1,
there exists F ∈ F such that A ⊆ F}. We note here an important property
of ∇int: |∇intF| ≥ |F|, and equality holds if and only if F is empty or the
full level.

Let us introduce our most important notations. Suppose A,B ⊆ {0, . . . , n}
are disjoint sets. Then

(xA,B)i =





(
n
i

)
if i ∈ A(

n−1
i−1

)
if i ≤ n/2 and i ∈ B(

n−1
i

)
if i > n/2 and i ∈ B

0 otherwise.
Here

(
n−1
−1

)
:=

(
n−1

n

)
:= 1. We also de�ne

(uA,B)i =





1 if i = 0, n and i ∈ A ∪B
n if i 6= 0, n and i ∈ A
i if i 6= 0, i ≤ n/2 and i ∈ B
n− i if i 6= n, i > n/2 and i ∈ B
0 otherwise.

The main example for the family with pro�le vector xA,B is the following:
FA,B = FA ∪ F ′

B where FA = {F ⊂ [n] : |F | = i for some i ∈ A} and
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F ′
B = {F ⊂ [n] : 1 ∈ F and |F | = j for a j ∈ B, j ≤ n/2} ∪ {F ⊂ [n] : 1 6∈

F and |F | = j for a j ∈ B, j > n/2}. Let GA,B = FA,B ∩ H, where H is the
family of intervals, de�ned in Section 1. The pro�le vector of GA,B is uA,B.

Note that i ∈ A means FA,B contains the full level i. On the other hand
i ∈ B means FA,B contains a part of level i. One could call it �half level�,
as its size is at most half of the size of the full level, but it can actually be
much smaller. However, as we will see, in some sense it acts as a half level.
One can easily see that FA,B is a 2|A|+ |B|-antichainpair family.

It is easy to see, that the 1-antichainpair families are the intersecting and
co-intersecting Sperner families. The pro�le polytope of the class of these
families has been determined by Konrad Engel and Péter Erd®s([3]).
Theorem 2.1. ([3]) The extreme points of the pro�le-polytope of intersecting
and co-intersecting families are the vectors xA,B where A = ∅, |B| ≤ 1 and
0, n 6∈ B.

Theorem 2.2 is a generalization of this result, and it will help us to de-
termine the extreme points of the pro�le polytope of some other classes of
families.
Theorem 2.2. The essential extreme points of the k-antichainpair families
are the vectors xA,B where 2|A|+ |B| = k and 0, n 6∈ A, |B \ {0, n}| ≤ 1.

Note that it helps understand the statement if we consider the elements
of B as half levels. In that case a less precise form of the statement would
be the following. The extremal families are those which consist of k/2 levels,
where ∅ counts as a half level (and not a full level) on its own, similarly [n],
and there is at most one half level besides them.

Let us introduce the following notations. Γk = {uA,B : 2|A| + |B| =
k, 0, n 6∈ A, |B \ {0, n}| ≤ 1}. Λk = {uA,∅ : |A| ≤ k} and Λ′k = {uA,∅ : |A| =
k}.

We will need the following lemma (our main lemma):
Lemma 2.3. The set of essential extreme points of the pro�le-polytope of
k-antichainpair families on the circle is Γk.

Before the proof some other lemmas are needed:
Lemma 2.4. Let G be k-antichainpair family on the circle. Then |G| ≤ k/2.

Proof. Let Ai = {[x, i] : x ∈ [n], x 6= i + 1} be the family of intervals,
which 'end' in i, and Bi = {[i, y] : y ∈ [n], y 6= i − 1}. Then Ai ∪ Bi+1 is a
subfamily of a chain-pair for every i. Thus |G ∩ (Ai∪Bi+1)| ≤ k. If we count
the elements of G in all Ais and Bjs, we consider every interval two times.
On the other hand we get at most kn. ¥
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Lemma 2.5. Let G be 2l + 1-antichainpair without whole levels such that
the cardinalities of the intervals are at least dn−l

2
e and at most dn+l

2
e. Then

|G| ≤ bn/2c+ l(n− 1) + bl/2c.
Proof. There are at most l + 1 nonempty levels. Hence a forbidden

con�guration (what would violate the 2l +1-antichainpair property) consists
of a chain of length l + 1, and all the complements. Thus if G,G 6∈ G and
dn−l

2
e ≤ |G| ≤ dn+l

2
e, we can add G to the family G without violating the

2l + 1-antichainpair property. It also means that if G ∈ G and G 6∈ G, then
G \ {G} ∪ {G} is also 2l + 1-antichainpair.

Replace all intervals of size less than n/2 by their complements, if the
complement is not in G. After that, if n + l is odd, replace all intervals of
size dn+l

2
e by their complements (note that those could not in G as their size

is smaller than dn−l
2
e in this case). Now we are given a 2l + 1-antichainpair

G ′ with |G ′| = |G|. There are dl/2e nonempty levels above n/2 in G ′. If any
of those levels are not whole levels, we can add the missing intervals to the
family G, because their complements are not in G ′. Note that there are no
whole levels below n/2 in G ′ (because there are no whole levels at all in G).

Let A be the family of intervals of size bn/2c, such that there is a chain
of length l + 1 in G ′ containing this interval. Suppose A,A′ ∈ A and A ∩
A′ = ∅. There are chains B1 ⊂ . . . Bx ⊂ A and C1 ⊂ . . . Cx ⊂ A′ in G ′
which contain members of every possible size (x is either bl/2c or dl/2e,
depending on the parity of n and l). Then B1, . . . Bx, A, A′, Cx . . . Cy and
C1, . . . Cx, A

′, A,Bx . . . By constitute a forbidden con�guration, where y = 1
if n + l is even and y = 2 otherwise. Note that if n is even then A = A′.

This leads to a contradiction, hence A is intersecting, so |A| ≤ bn/2c.
Clearly G ′ \ A is an l-Sperner family, hence it is the union of l Sperner

families. It is an easy exercise to see that a Sperner family contains at most
n intervals and it contains exactly n intervals only if there is a j such that
the family contains all j element intervals. G ′ \ A can contain all j element
intervals only if j > n/2, hence at most bl/2c times. Hence |G ′ \ A| ≤
l(n− 1) + bl/2c, so |G| = |G ′| ≤ bn/2c+ l(n− 1) + bl/2c. ¤

Lemma 2.6. Let G ⊆ H be a family on the circle, such that ∅, [n] 6∈ G and
|G| ≤ in (1 ≤ i ≤ n− 1). Then p(G) ∈ conv(Λi).

Proof. Clearly this class of families is hereditary, and if we change some
coordinates of an uA,∅ ∈ Λ′i to 0, the vector remains in Λi. So it is enough to
prove that the essential extreme points are in Λ′i (in that case all the extreme
points are in Λi, and p(G) is their convex combination).

We use the following approach: A positive weight function is always max-
imized in at least one of the essential extreme points. Moreover, for every
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essential extreme point there is a non-negative weight function such that it
is the unique maximum. Hence it is enough to prove that for every non-
negative weight function w the maximum is given by a pro�le vector uA,∅,
such that |A| = i, i. e. there is a set A ⊂ {0, . . . , n} and a family G ′ such
that |A| = i, p(G ′) = uA,∅ and w(G) ≤ w(G ′).

Let w(j1) ≥ w(j2) ≥ · · · ≥ w(jn−1) be the order of the numbers 1, . . . n−1
with respect to w. Then the weight of at most in intervals is maximum if
they are all the j1 element intervals, all the j2 element intervals, and so on,
while there are no more than in intervals. Clearly, this is the union of i
complete levels, denoted by G ′. ¥

Note that using this lemma together with Theorem 1.3 and some simple
observations one could determine the extreme points of the pro�le polytope
of the i-Sperner families, and also of those 2l-antichainpairs which contain
neither ∅ nor [n].

Lemma 2.7. Let G ⊆ H be a family on the circle, such that ∅, [n] 6∈ G. Let
m = min{|G| : G ∈ G} and M = max{|G| : G ∈ G}. Suppose m ≤ n −M
and |G| ≤ in + m. Then p(G) is in the convex hull of the vectors uA,B where
|A| ≤ i and 0, n 6∈ A ∪B, |B| ≤ 1.

Proof. We follow the proof of Lemma 2.6, hence we give here only a
sketch. There are only few di�erences. Again when we are given a non-
negative weight function w, we want to construct a family G ′ such that its
pro�le vector is uA,B with |A| = i, |B| = 1 and w(G) ≤ w(G ′).

This time we order only the numbers between m and M with respect to
w, hence the order is w(j1) ≥ w(j2) ≥ · · · ≥ w(jM−m+1). Then the weight of
at most in + m intervals is maximum if they are all the j1 element intervals,
all the j2 element intervals, and so on. It means that all the j1, j2, . . . , ji

intervals are in the family of maximum weight, and m intervals of size ji+1.
Let G ′ be the family of all j1, . . . , ji element intervals and ji+1 intervals

of size ji+1 if ji+1 ≤ n/2, or n − ji+1 intervals of size ji+1 if ji+1 > n/2. We
assumed that m ≤ ji+1 ≤ M ≤ n−m, hence there are at least m intervals of
size ji+1 in G ′. It follows that w(G ′) is at least the above mentioned maximum
weight, hence it is at least the weight of G. The pro�le of G ′ is listed in the
lemma. ¥

Lemma 2.8. Let G be a 2l + 1-antichainpair family (0 < l) on the circle
such that ∅, [n] 6∈ G. Let us suppose, that for all 0 < i < l the set of essential
extreme points of the pro�le polytope of the 2l + 1− 2i-antichainpair families
is Γ2l−2i+1. Suppose moreover that G can be decomposed in the following way:
G = G1 ∪ G2 (G1 ∩ G2 = ∅), where G1 is 2l + 1− 2i-antichainpair, |G2| ≤ in
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and there are no G1 ∈ G1 and G2 ∈ G2 such that |G1| = |G2|. Then the
pro�le of G is dominated by Γ2l+1.

Proof. By the assumptions p(G1) is dominated by Γ2l+1−2i. By Lemma
2.6 p(G2) is dominated by Λi.

It means there is at least one convex combination of some elements uC,∅ of
Λ′i which dominates p(G2). We choose that one of those convex combinations,
which is in some sense minimal: there are no vectors with coe�cient zero
(they could be deleted), and if C ′ ⊂ C and the coe�cient of uC,∅ is not zero,
then we cannot change uC,∅ to uC′,∅ without violating the domination. This
convex combination can be achieved by deleting and changing vectors.

In this convex combination each C is clearly zero in every coordinate
where p(G2) is zero. Similarly we can choose a convex combination of vectors
from Γ2l+1−2i which dominates p(G1) and each of them has zero in every
coordinate where p(G1) is zero.

Hence the following is true: if uC,∅ is a vector with non-zero coe�cient
in the convex combination which dominates p(G2) and uA,B is a vector with
non-zero coe�cient from the convex combination which dominates p(G1),
then (A ∪ B) ∩ C = ∅. Thus uA,B + uC,∅ = uA∪C,B is in Γ2l+1. It is easy
to see that the sum of p(G1) and p(G2) (which is p(G)) is dominated by a
convex combination of the sum of the uA,Bs and uC,∅s, and these sums are
all in Γ2l+1. ¥

Proof of Lemma 2.3. If uA,B ∈ Γk, then the family GA,B shows that
uA,B is a pro�le vector.

In order to prove that these are the extreme points, we use induction on
k. As it was mentioned before, the case k = 1 is known (see [3]), the case
k = 0 is trivial. If ∅ and/or [n] are in the family, the other sets form a
(k− 2)- or (k− 1)-antichainpair family, so by induction it is enough to prove
the statement for the reduced pro�les. Lemma 2.4 and Lemma 2.6 �nishes
the proof in case k is even, hence from now on we suppose k = 2l + 1.

Let G be a family, which does not contain ∅ and [n]. If there is a complete
level (all i element intervals), which is a subfamily of G, let G2 be this level,
and G1 be the family of the other sets in G. By Lemma 2.8 and the induction
hypothesis we are done in this case. Hence we can assume that there is no
complete level in G.

Suppose indirectly that p(G) is not in conv(Γk). Let m = min{|G| :
G ∈ G} and M = max{|G| : G ∈ G}. We can assume that m ≤ n − M
(otherwise we can replace all elements by their complements, then we get a
convex combination and there we can replace every coordinate i by coordinate
n− i). If |G| ≤ nl +m then Lemma 2.7 �nishes the proof. Hence we can also
assume that |G| > nl + m.
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If m ≥ n−l
2
, then Lemma 2.5 implies |G| ≤ nl+m, which is a contradiction.

Indeed, |G| ≤ bn/2c+ l(n− 1) + bl/2c = ln + bn/2c − dl/2e ≤ ln + dn−l
2
e ≤

nl + m.
From now on we suppose m < n−l

2
. We change G to get G ′. The skele-

ton of the algorithm is the following: we replace the intervals of minimum
size by either their complements or their shade. If some new intervals have
already been in the family, we repeat this procedure using them instead of
the intervals of minimum size. This algorithm ends in at most k steps. After
that the family is still k-antichainpair and the minimum size of intervals has
increased. We might repeat this whole procedure several times.

Let G0 = G, let mi and Mi be the size of minimal, resp. the maximal
elements of Gi. We get Gi+1 by the following steps. At �rst we have some
initial steps.

Step 0a. If mi > n − Mi, then replace all Mi-element sets by their
complements. After that, using again the same letters for the maximum and
the minimum size, mi ≤ n −Mi. If there are no n −mi elements, then let
G1

i denote the resulting family. Otherwise, we have a Step 0b:
Step 0b. If there is a pair G, G ∈ Gi such that |G| = mi, then delete

all the mi-element sets whose complements are not in Gi, and add their
complements, we denote the new family by G1

i . Otherwise replace all n−mi-
element sets by their complements, and let G1

i be the resulting family.
Let D1

i be the family of mi-element sets in G1
i . Note that after these steps

the family G1
i is k-antichainpair and mi ≤ n−Mi.

Step 1. Let G2
i = (G1

i ∪ ∇intD1
i ) \ D1

i , and D2
i = G1

i ∩ ∇intD1
i . What

happens is that D1
i is replaced by its shade. Some of the new members are

already in G1
i , we count them twice: once in G2

i and once in D2
i .

We say the algorithm meets the level m + 1 in this step, since the size of
the new members is m + 1. Note that since D1

i is not empty and not the full
level, we know |∇intD1

i | ≥ |D1
i |, which implies |G2

i |+ |D2
i | > |G1

i |.
Step 2j. Let G2j+1

i = G2j
i ∪ co(D2j

i ) and D2j+1
i = co(G2j

i ) ∩ D2j
i . We say

the algorithm meets the level n−m− j in this step, since the size of the new
members is n−m− j.

Step 2j+1 (j>0). Let G2j+2
i = G2j+1

i ∪ ∇intD2j+1
i and D2j+2

i = G2j+1
i ∩

∇intD2j+1
i . We say the algorithm meets the level m+ j +1 in this step, since

the size of the new members is m + j + 1.

Note that if a set D is in Dj
i , then a subset or the complement of it

is in Dj−1
i . Moreover, we can easily �nd a chain-pair containing D and

intersecting every Dt
i with t < j. This implies that if Gi is k-antichainpair,

then Dk
i = ∅. Let us �nish the process immediately when Dj

i = ∅ for some j
and let G∗i = Gj

i . If Gi is 2l′ + 1-antichainpair, then there are at most 2l′ + 1
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steps, so the cardinality of a new interval is either at most mi + l′ or at least
n−(mi+l′−1). An important observation: there are no mi-element intervals
in G∗i .

Last step. For every j, if there are n j-element intervals in G∗i , delete all
of them (delete the whole levels). This way we get Gi+1.

Let qi be the number of deleted levels before we get Gi. We iterate this
algorithm while mi < n−l−2qi

2
.

Claim 1. If Gi is (2l′+1)-antichainpair and mi < n−l′
2

, then G∗i is (2l′+1)-
antichainpair, too.

Proof of Claim 1. The rather technical proof is based on the following
simple observations. Suppose there is a forbidden con�guration in G∗i . It
contains a set G ∈ G∗i \ Gi, then that is a member of Dj

i for some j, and then
there is a chain-pair K containing D and intersecting every Dt

i with t < j.
As we will see, we can replace G and a part of the forbidden con�guration
with those intersections of the Dj

i s and K such that we get another forbidden
con�guration with less new elements.

Suppose indirectly, that there are A1 ⊂ · · · ⊂ Ax and B1 ⊂ · · · ⊂ By

chains in G∗i , such that x + y = 2l′+ and there is a chain C = {C0, . . . , Cn},
such that every Aj and every Bj is an element of C. For example Az is not
in Gi. Let the size of Az be mi + l∗, and |Bw−1| < n−mi − l∗ ≤ |Bw|.

Our algorithm gives Az. Let us suppose it is in the Step 2j+1, then
there are intervals Dmi

⊂ Dmi+1 ⊂, . . . ,⊂ Dmi+l∗−1 in Gi, such that their
complements are in Gi too, |Dt| = t for every t and Dmi+l∗−1 ⊂ Az. (In
this case l∗ = j.) Clearly, Dmi

, . . . , Dmi+l∗−1, Cmi+l∗ , . . . , Cn form a part of a
chain C ′. Therefore

Gi ∩ (C ′ ∪ co(C ′)) ⊇ {Dmi
, . . . , Dmi+l∗−1, Az+1, . . . , Ax,

B1, . . . , Bw−1, Dmi+l∗−1, . . . Dmi+1}.
These are at least 2l′+ intervals. The cardinalities of A1, . . . Az are

at least mi + 1 and at most mi + l∗, and we replace these intervals by
Dmi

, . . . , Dmi+l∗−1, so we get l∗ intervals in place of at most l∗ intervals.
Similarly, the cardinalities of Bw, . . . , By are at least n−mi− l∗ and at most
n −m or n −m − 1, depending on Step 0b. We replace these intervals by
Dmi+l∗−1, . . . Dmi+1 and maybe Dmi

, depending on Step 0b. We get l∗+1 or
l∗ intervals in place of at most l∗ + 1 or l∗ intervals.

Hence it is a forbidden con�guration (in Gi ∪ G∗i ), and less new elements
are in it. We repeat this procedure until there are no new elements, which is
a contradiction.

If after some repeats all the remaining intervals from G∗i \ Gi were given
in the Step 2j, the procedure is similar.
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Sketch: We can replace Az, . . . , Ay and B1, . . . , Bw−1 by a part of a chain-
pair, which is given by our algorithm. Then we get a forbidden con�guration
with less new elements. ¤

Let us continue with some simple observations.
Observation 1. min{|G| : G ∈ G∗i } = mi + 1.
Observation 2. min{|G| : G ∈ Gi+1} > mi.
Observation 3. Mi+1 ≤ Mi.
Note that mi < n−l−2qi

2
is used here. Also note that Mi can decrease only

in Step 0a.
Claim 2. Let j > 0. Then |G2j+2

i |+ |D2j+2| > |G2j+1
i |+ |D2j+1|.

Proof of Claim 2. By de�nition G2j+2
i = G2j+1

i ∪∇intD2j+1
i \ D2j+1

i and
D2j+2

i = G2j+1
i ∩∇intD2+1

i . Hence |G2j+2
i |+|D2j+2

i | = |G2j+1
i |+|∇intD2j+1

i |. We
have to show that |∇intD2j+1

i | > |D2j+1
i |. As it was mentioned, the operator

∇int increases the size of a non-empty family except the case that the family
is a whole level. Suppose indirectly that is the case, D2j+1

i is a whole level.
By de�nition D2j+1

i = co(G2j
i ) ∩ D2j

i , hence in this case D2j
i is a whole level

too and G2j−1
i contains its complement level.

A pair of complement levels p, n − p with p < n − p can be involved at
most twice in the algorithm. At �rst the level p is met by the algorithm in
an odd step, and the complement level in the next step. Then the level n−p
can be met again, this time in an odd step and then the level p in the next
step.

In our case it means that D2j
i is the level n− p, and the level p becomes

full when it is �rst met (in an odd step). Moreover, the level n− p becomes
full in the next step. But it would mean that the level p cannot remain full,
which is a contradiction. ¤

Observation 4. |G∗i | > |Gi|.
Claim 3. |Gi| ≥ |G|+ mi −m− qin.
Proof of Claim 3. We use induction on i. The case i = 0 is trivial. It

is enough to prove, that |Gi| ≥ |Gj|+ mi −mj − (qi − qj)n for a j < i.
If there is a number j < i and an interval G ∈ Gi \ Gj, then let j be the

biggest such number. G is an interval of size at least mi, or a complement of
an interval of size at least mi, hence there are at least 2(mi−mj) steps in the
j +1st iteration. There are at least mi−mj odd steps, and Claim 2 shows in
these steps the size is increased by at least 1. All the decreasing is (qin−qjn)
so the change of the size between Gj and Gi is at least mi−mj − (qin− qjn),
and the proof is done.

If Gi 6⊆ G, then there is a G ∈ Gi which is not in G = G0, hence j = 0
�nishes the proof.

If Gi ⊆ G, then all the new intervals have been deleted, some of them as a
member of a whole level, others as intervals with minimum size. G1 := Gi and
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G2 := G \ Gi. Clearly |G1| ≥ G − qin, since the size can decrease only when
whole levels are deleted, and the entire decreasing is qin. Thus |G2| ≤ qin.
If there are no G1 ∈ G1 and G2 ∈ G2 such that |G1| = |G2|, we can apply
Lemma 2.8, and we proved Lemma 3, which is a contradiction (we supposed
indirectly, that the lemma is not true). If there are G1 ∈ G1 and G2 ∈ G2

such that |G1| = |G2| = a, then a ≥ mi. Then G2 could not be deleted as
an interval on minimum size, only as a member of a full level. Hence all the
a-element intervals were deleted at least once during the algorithm, i.e. they
are members of G∗j−1 \Gj for a j < i. Then G1 ∈ Gi \Gj, and this �nishes the
proof. ¤

It is important to see, that this claim is not true in general, it follows
from the indirect assumption.

As it was mentioned, we iterate this algorithm while mi < n−l−2qi

2
. By

Observations 2 and 3 it cannot go forever, �nally we get a family violating this
property, i.e. a 2l′+1-antichainpair, such that the cardinalities of the intervals
are at least dn−l′

2
e and at most dn+l′

2
e. We denote this family by G ′. There are

no whole levels in G ′. By Lemma 2.5 we know |G ′| ≤ bn/2c+l′(n−1)+bl′/2c.
Obviously G ′ = Gi for some i. Thus |G ′| ≥ |G| + mi −m − qin. Clearly

qi = l − l′ and mi = dn−l′
2
e. Hence

|G| ≤ |G ′|−dn− l′

2
e+m+nl−l′n ≤ bn/2c+l′(n−1)+bl′/2c−dn− l′

2
e+m+nl−l′n

≤ m + nl + bn/2c − l′ + bl′/2c − dn− l′

2
e ≤ m + nl,

which is a contradiction. ¥
Proof of Theorem 2.2. One can easily see, that it is enough to prove

the theorem for reduced pro�les. If xA,B is one of the listed vectors, FA,B is
k-antichainpair, hence these vectors are pro�le vectors. Now we can apply
Lemma 2.3 and Theorem 1.3, and we are done.¥

3 Corollaries
In this section we determine the extreme points for some other classes of
families.

Theorem 3.1. The essential extreme points of the complement-free k-antichainpair
families are xA,B where 2|A| + |B| = k, 0, n/2, n 6∈ A, |B \ {0, n/2, n}| ≤ 1,
and i ∈ A ∪B implies n− i 6∈ A ∪B except for i = n/2.

Proof. It is easy to see, that these are essential extreme points. Let w
be a positive weight function and F be an optimal family for this weight. By
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Lemma 1.2 it is enough to show a complement-free k-antichainpair family
with the same weight such that its pro�le is listed in the theorem.

For any A, only one of A or A can belong to F . It is the one which
has greater weight, as replacing A by A would increase the weight otherwise,
without violating the property. If w(i) < w(n − i) then clearly F does not
contain i element sets, if w(i) = w(n− i), then we choose one of them, i, and
replace all n− i element sets of F to its complement. It does not change the
weight, and F remains complement-free k-antichainpair.

Let w′(i) = 0, if w(i) < w(n− i) or if w(i) = w(n− i) and i < n− i. Oth-
erwise let w′(i) = w(i). Then the optimal complement-free k-antichainpair
family for this weight will be also optimal for w, hence from now on we will
deal only with w′. Let K0 be an optimal k-antichainpair for the weight w′,
and delete all the sets with weight 0. Then we get a family K1, which is also
optimal for this weight, and almost complement-free: if A and A both are in
K1, then |A| = n/2.

If n is odd, we are done: K1 is maximal for w′, and one can easily see,
that it is maximal for w, and its pro�le is listed in the theorem.

If n is even, we can assume, that all the n/2-element sets of F contain 1.
Case 1. K1 does not contain all the n/2 element sets. Then it contains at

most
(

n−1
n/2−1

)
members of size n/2. Its pro�le vector is xA,B. We can assume

by Theorem 2.2 that this is the family FA,B from Section 2 which was the
main example for families with this pro�le vector. Then it is complement-
free, and we are done.

Case 2. The optimal (for w′) k+1-antichainpair, K2 contains n/2 element
sets. Then let A = {A ⊂ [n] : |A| = n/2, 1 6∈ A}. We can assume by
Theorem 2.2 that K2 contains A. Let K3 = K2 \A, then it is a complement-
free k-antichainpair and its pro�le vector is listed in the theorem. Let F ′ =
F ∪ A. Then w′(F) = w′(F ′) − (

n
n/2

)
w′(n/2) ≤ w′(K2) −

(
n

n/2

)
w′(n/2) =

w′(K2 \A), hence K2 \A is (also) an optimal family, which has pro�le listed
in the theorem.

Case 3. The optimal for w′ k-antichainpair K1 contains all n/2 element
sets, and the optimal k+1-antichainpair K2 does not contain any n/2 element
sets. Let the pro�le vector of K1 (resp. K2) be xA,B (xC,D).

Case 3.1. |C| ≥ |A|. We know that n/2 ∈ A \ C, hence there is a
j ∈ C \ A, where j 6= 0, n/2, n. If

(
n

n/2

)
w′(n/2) ≤ (

n
j

)
w′(j), then we can

replace the n/2 element sets in K1 by the j element sets, we found a family
which is optimal for w′ and does not contain all the n/2-element sets, and
then we can apply Case 1. If

(
n

n/2

)
w′(n/2) ≥ (

n
j

)
w′(j), then we can replace

the j element sets in K2 by the n/2 element sets, and we can apply Case 2.
Case 3.2. |C| < |A|. |A| ≤ bk/2c, hence |C| ≤ bk/2c − 1. On the other
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hand 2|C|+ |D| = k + 1 and |D| ≤ 3. It is possible only if |A| = bk/2c and
|C| = bk/2c − 1. Moreover 2|A| + |B| = k, hence |D| − |B| = 3. It means
|D| = 3 and |B| = 0. Then ∅ and [n] are in K2 and not in K1. The family
of n/2-element sets is not in K2, hence the weight w′ of all the n/2-element
sets is not more than the weight of ∅ and [n] (otherwise we could exchange
them). Then we can replace the n/2 element sets in K1 by ∅ and [n], and we
can apply Case 1. ¥

De�nition 3.2. A family F ⊆ 2[n] is called r-complement-chain-pair-
free if there is no chain A1 ( A2 ( · · · ( Ar in 2[n] such that all sets Ai and
Ai belong to F .

The maximum size of families satisfying this property is known ([1]).

Theorem 3.3. The essential extreme points of the pro�le-polytope of the
class of r-complement-chain-pair-free families are xA,B, where 2|A| + |B| =
n + r, i 6∈ A implies n − i ∈ A, except for i = n/2. In addition 0, n 6∈ B,
|B \ {n/2}| ≤ 1.

Proof. We determine the reduced essential extreme points, the rest of
the proof is trivial. We will use Lemma 1.2. Let w be a positive weight
function and F be an optimal r-complement-chain-pair-free family. We can
assume that F is maximal, i.e. if F ∪ {F} is r-complement-chain-pair-free,
then F ∈ F . It follows easily, that if A 6∈ F , then A ∈ F . Moreover,
replacing A by A does not violate the property. So F contains at least one
element of every pair of complements, of course the one which has greater
weight. If w(i) = w(n− i), then choose one, for example i, and from all pairs
A,A if |A| = i and A 6∈ F , then replace A by A in F .

Let F0 be a subfamily of F which contains exactly one of A and A for
every complement pair. It can be chosen such a way that there are only
whole levels in F0, except for the level n/2.

Let F1 = F \ F0, it is a complement-free r-antichainpair. Let w′(i) = 0
if all the i element sets are in F0, and w′(i) = w(i) otherwise. Clearly the
weight of F1 does not change. Theorem 3.1 says, what vectors xA,B are
maximal for w′; clearly we can suppose that if w′(i) = 0 then i 6∈ A ∪ B. It
is easy to see, that p(F0) + xA,B is listed in the theorem.¥

The extreme points of the pro�le-polytope of the k-Sperner and the
complement-free Sperner families are known ([5] and [3]). Moreover, the ex-
treme points of the complement-free k-Sperner families are also determined
([6]) in the case n is odd.

14



Theorem 3.4. The essential extreme points of the pro�le-polytope of the
complement-free k-Sperner families are xA,B, where 2|A| + |B| = 2k, 0, n 6∈
B, i ∈ A ∪ B implies n − i 6∈ A ∪ B except for i = n/2, n/2 6∈ A and
|B \ {n/2}| ≤ 1.

Proof. Clearly, FA,B is complement-free k-Sperner with such pro�le. One
can easily see, that it is enough to prove the theorem for reduced pro�les. The
complement-free k-Sperner families are complement-free 2k-antichainpairs,
which by Theorem 3.1 gives the statement. ¥

One can easily see that Theorem 1.6 is a simple corollary of the previous
theorem. Indeed, an intersecting family is complement-free, thus we can
apply it, and simple calculation gives the result using the weight w = 1.

We call a family F self-complementary if F ∈ F implies F ∈ F . The
maximal size of self-complementary k-Sperner families is determined in [1],
the extreme points of the self-complementary Sperner families are also known
([3]).

Theorem 3.5. The extreme points of the pro�le-polytope of the self-complementary
k-Sperner families are xA,B, where 2|A| + |B| ≤ 2k, 0, n/2, n 6∈ B, i ∈ A
implies n− i ∈ A, i ∈ B implies n− i ∈ B and either |B| = 2 and |A| = k−1
or |B| = 0.

Proof. Let Γ be the set of the vectors xA,B, where 2|A| + |B| ≤ 2k,
0, n/2, n 6∈ B, i ∈ A implies n− i ∈ A, i ∈ B implies n− i ∈ B and |B| ≤ 2.
Clearly these are the same properties as those in the theorem, except for
the last one. Hence Γ contains more vectors, but they are in the convex
hull of the vectors listed in the theorem. We show the following, equivalent
statement: for any weight w the weight of a vector in Γ cannot exceed the
weight of every vector listed in the theorem.

Let w be a weight function and de�ne w′(i) = w′(n − i) = w(i)+w(n−i)
2

.
Clearly the weight of a self-complementary family does not change. The
maximal weight in Γ is w(xA,B) = w′(xA,B) = w′(FA,B), and we can suppose
FA,B does not contain any sets of negative weight w′ (it might contain some
sets F such that w(F ) < 0). If xA,B is not listed in the theorem, than
|B| = 2 and |A| < k − 1. But than we could add the other sets from the
levels contained in B without violating the property or decreasing the weight.

Thus it is enough to prove that all the pro�le vectors of self-complementary
k-Sperner families are in the convex hull of Γ.

Let F be the maximal for w′ self-complementary k-Sperner family. F
contains pairs F, F . We de�ne a partition of F : for all the pairs F, F if
|F | < |F | or |F | = |F | and 1 ∈ F then F ∈ F1 and F ∈ F2. F1 and F2 are
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complement-free k-antichainpairs, such that all members of F1 (resp. F2) are
of size at most (at least) n/2. Let w′′(i) = w′(i) if i ≤ n/2 and 0 otherwise,
and w′′′(i) = w′′(n − i). Clearly w′′(F1) = w′(F1) and w′′′(F2) = w′(F2).
Theorem 3.1 gives the maximal for w′′ complement-free k-antichainpair (here
the weight can be negative, so we have to use (i) of Proposition 1.1). It is easy
to see, that the complement of this family is the maximal for w′′′ complement-
free k-antichainpair. The union of this complement-free k antichainpair and
its complement family is a self-complementary k-Sperner, and the pro�le
vector of it is in Γ. Its weight is at least the weight of F , hence we can apply
Lemma 1.2 to �nish the proof. ¥
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