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Abstract
The profile vector of a family F of subsets of an n-element set is
(fo, f1,--., fn) where f; denotes the number of the i-element members

of 7. In this paper we determine the extreme points of the set of
profile vectors for some classes of families, including complement-free
k-Sperner families and self-complementary k-Sperner families. Using
these results we determine the maximum cardinality of intersecting
k-Sperner families.

1 Introduction and preliminaries

Let us start with basic notation.

Let [n] = {1,...,n} be the underlying set. If F C [n] then F' denotes
the complement of F. Let F be a family of subsets of [n] (F C 2[). Then
co(F) ={X C[n]: X € F} and F; denotes the subfamily of the i-element
subsets in F: F; = {F : F € F,|F| = i}. Its size |F;| is denoted by f;.
The vector p(F) = (fo, f1,-- -, fn) in the (n+1)-dimensional Euclidian space
R is called the profile of F. The vector po(F) = (f1, fo, .- -, fu_1) is called
the reduced profile of F.

A chain is a family C = {C}, ..., C;} with some integer i such that C; C
Cy C ... C C;. A full chain is a chain of length n + 1, i.e. a family C =
{Cy,C1,...,Cn} such that Co C Cy C ... C C,. A family F is intersecting
if there exist no Fy, Fy € F such that I3 N Fy, = (. F is co-intersecting if
there exist no F}, Fy € F such that Fy U Fy = [n], i.e. F1 N, = 0. A family
is Sperner (or antichain) if it does not contain any chain of length 2, and
k-Sperner, if it does not contain any chain of length k + 1, or equivalently if
the intersection of the family and a chain contains at most & members.

If A is a finite set in R?, its conver hull conv(A) is the set of all convex
combinations of the elements of A. A point of A is an extreme point if it
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is not a convex combination of other points of A. It is easy to see that the
convex hull of a set is equal to the convex hull of the extreme points of the
set.

Let A be a class of families of subsets of [n]. We denote by A(A) the set
of profiles of the families belonging to A:

AA) ={p(F): F € A},

and similarly we denote by Ag(A) the set of reduced profiles. T'(A) denotes
the set of the extreme points of A(A). We simply call them the extreme
points of A. Similarly I'g(A) denotes the set of the extreme points of Ag(A).
The profile polytope of A is conv(A(A)).

We call an extreme point v of a set A essential if there is no other point
u € A with v < u (it denotes v; < u; for every 7). I'(A) and I'{(A) denote
the sets of essential extreme points of the sets of profiles and reduced profiles,
respectively. We say that a set of vectors I' = {vq,...,v,,} dominates a set
A of vectors if for any v € A there are constants A\q,... A\, > 0, Z:’il A <1
satisfying v < D7 \;v;. We say that A is hereditary if F C F' € A implies
F € A. We will use the following proposition (|5]).

Proposition 1.1. If A is hereditary, then
(i) any element of I'(A) can be obtained by changing some coordinates of
an element of IT*(A) to zero.

(i) If ' € A(A) dominates A(A) then IT*(A) C T.
For the reduced profiles the analogous statement is true.

Let us give some motivations for studying profile polytopes. Suppose we
are given a weight function w : {0,...,n} — R, and the weight of a family F
is defined to be 3 .. - w(|F|), which is equal to Y} ,w(i) f;. Usually we are
interested in the maximum of the weight of the families in a class A. Several
well-known results in extremal set theory can be formulated this way.

We want to maximize the sum, i.e. find a family Fy € A and an inequality
Yorow(@)fi = w(F) < w(Fy) = c. This is a linear inequality, and it is
always maximized in an extreme point (if the weight function is positive, it
is maximized in an essential extreme point). We usually want to find the
maximum weight, but conversely, it can help us to determine the extreme
points. Basic linear programming gives the following lemma.

Lemma 1.2. Let S be a set of profile vectors.

i) Suppose that for every weight the mazimum is given by an element of
S. Then S contains all the extreme points.

ii) Suppose that for every positive weight the mazimum is given by an
element of S. Then S contains all the essential extreme points.



The profile polytopes were introduced by P.L. Erdés, P. Frankl and
G.O.H. Katona in [4]. Later they applied the circle method to profile poly-
topes in [5]. This method will be an important tool in this paper.

The circle method was introduced by G.O.H. Katona [8]. Let the elements
of the set [n] be placed around a circle such that 7 + 1 is next to 7 for all
1=1,2,...,n—1and 1 is next to n in clockwise direction: we will also say
that 141 is to the right from i. We consider these numbers mod n. Elements
next to each other will be called consecutive. A set of consecutive elements
will be called an interval. Denote the interval of elements between a and b
by [a,b] (endpoints included): this is the set of elements a,a + 1,...,b. The
family of all intervals on the circle will be denoted by H.

Let « be a cyclic permutation. If F' C [n], then a(F) = {a(i) : i € F'}.
For a family F let F, denote the family of the intervals in F, i.e. F, =
a(F)NH, where a(F) = {a(F) : F € F}. Similarly, for a class of families
Alet A, ={F,: Fe A}l

If v.=(vg,v1,...,0v,) then let

T(v) = <vo, Ul (’f) /n, v (Z) Iy Unn (n " 1) /n, Un> .

Theorem 1.3 ([5]). If vi,..., V., are the extreme points of A(A,) for every
given cyclic permutation o then

A(A) Cconv{T(v1),...,T(vin)}-

This theorem is really useful if T'(vy),...,T(v,,) € A(A) holds. (This
can be easily checked.) Then T'(vy),...,T(v,,) are the extreme points of A.

Definition 1.4. Let £ = {Lo, L1,...,L,} be a chain, i.e. Lo C Ly C--- C
L, where |L;| =i. Then K = LUco(L) is a complement chain-pair, or
briefly chain-pair.

Definition 1.5. F is a k-antichainpair family if |F N K| < k for every
complement chain-pair K.

One can easily see that an [-Sperner family is 2/-antichainpair. The notion
of k-antichainpairs does not seem to be very interesting on its own, but we will
able to use it to approach some other, more natural problems. In Section 2
we will study k-antichainpair families and determine their extreme points. In
Section 3 the extreme points of some other classes of families are determined,
using the k-antichainpair families. As a corollary, we will get the following
statement.



Theorem 1.6. Let F be an intersecting k-Sperner family of mazimum car-
dinality. Then

(bl
Z (n) if n is odd
1
Fl=q =%
n/2+k—1 n "1
n—1 - . .
(nj2ts) + | Z <z) + (n/2+ k;) if n is even.
\ i=n/2+1

Note that the case k = 1 was proved by Milner [9].

2 The k-antichainpair families

For sake of completeness, we repeat some well-known definitions.

Let F be a family of k-element sets. Then the shadow of F is AF =
{A C [n]: |A| = k — 1, there exists F' € F such that A C F'}. The shade of
Fis VF ={A C [n]: |A| =k + 1, there exists F' € F such that ' C A}. If
F is a family of intervals, then these notions can be analogously defined but
considering only intervals. More precisely let Vi F := {A € H: |A| =k+1,
there exists F' € F such that F' C A} and A F = {A € H: |A| =k —1,
there exists F' € F such that A C F'}. We note here an important property
of Vint: |VineF| > |F|, and equality holds if and only if F is empty or the
full level.

Let us introduce our most important notations. Suppose A, B C {0,...,n}
are disjoint sets. Then

(") ifieA

("7)) ifi<n/2andi€ B
(") ifi>n/2andi€ B
0 otherwise.

Here (”__1) = (”_1) := 1. We also define

1 n

1 ifi=0,nandie AUB
n ifi#0,nandie A

(uap)i=14q 1t ifi#0,i<n/2andi€ B
n—i ifi#n,i>n/2andie B
0 otherwise.

The main example for the family with profile vector x4 p is the following:
Fap = FaUFy where Fy = {F C [n] : |F| = i for some i € A} and
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r={F Cn]:1€Fand |F|=jforajeB,j<n/2lU{FCn]:1¢

Fand |F|=jforaje B,j>n/2}. Let Gap = FapNH, where H is the
family of intervals, defined in Section 1. The profile vector of G4 5 is ua p.

Note that ¢ € A means F4 p contains the full level 7. On the other hand
© € B means F4 p contains a part of level 7. One could call it “half level”,
as its size is at most half of the size of the full level, but it can actually be
much smaller. However, as we will see, in some sense it acts as a half level.
One can easily see that F4 g is a 2|A| 4+ | B|-antichainpair family.

It is easy to see, that the 1-antichainpair families are the intersecting and
co-intersecting Sperner families. The profile polytope of the class of these
families has been determined by Konrad Engel and Péter Erdds([3]).

Theorem 2.1. (/3]) The extreme points of the profile-polytope of intersecting
and co-intersecting families are the vectors xap where A =1, |B] < 1 and
0,n¢ B.

Theorem 2.2 is a generalization of this result, and it will help us to de-
termine the extreme points of the profile polytope of some other classes of
families.

Theorem 2.2. The essential extreme points of the k-antichainpair families
are the vectors x4 p where 2|A| + |B| =k and 0,n ¢ A, |B\{0,n}| < 1.

Note that it helps understand the statement if we consider the elements
of B as half levels. In that case a less precise form of the statement would
be the following. The extremal families are those which consist of k/2 levels,
where () counts as a half level (and not a full level) on its own, similarly [n],
and there is at most one half level besides them.

Let us introduce the following notations. I'y = {uap : 2|4| + |B| =
kE,0,ng A |B\{0,n}| <1} Ay ={uag: |A| <k} and A}, = {uap: |[A] =

We will need the following lemma (our main lemma):

Lemma 2.3. The set of essential extreme points of the profile-polytope of
k-antichainpair families on the circle is T'y.

Before the proof some other lemmas are needed:
Lemma 2.4. Let G be k-antichainpair family on the circle. Then |G| < k/2.

Proof. Let A; = {[z,i] : © € [n],x # i + 1} be the family of intervals,
which ’end’ in 4, and B; = {[i,y] : y € [n],y # i — 1}. Then A; U B, is a
subfamily of a chain-pair for every 7. Thus |G N (A; UB;11)| < k. If we count
the elements of G in all A;s and B;s, we consider every interval two times.
On the other hand we get at most kn.
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Lemma 2.5. Let G be 2l + 1-antichainpair without whole levels such that
the cardinalities of the intervals are at least ["5Y] and at most [“$]. Then

9] < [n/2] +1(n—1) + [1/2].

Proof. There are at most [ + 1 nonempty levels. Hence a forbidden
configuration (what would violate the 2] + 1-antichainpair property) consists
of a chain of length [ + 1, and all the complements. Thus if G,G ¢ G and
1] < |G| < [%H], we can add G to the family G without violating the
20 + 1-antichainpair property. It also means that if G € G and G ¢ G, then
G\ {G} U {G} is also 2l + 1-antichainpair.

Replace all intervals of size less than n/2 by their complements, if the
complement is not in G. After that, if n + [ is odd, replace all intervals of
size [%] by their complements (note that those could not in G as their size
is smaller than [“:] in this case). Now we are given a 2/ 4+ l-antichainpair
G" with |G’'| = |G|. There are [I/2] nonempty levels above n/2 in G'. If any
of those levels are not whole levels, we can add the missing intervals to the
family G, because their complements are not in G’. Note that there are no
whole levels below n/2 in G’ (because there are no whole levels at all in G).

Let A be the family of intervals of size [n/2], such that there is a chain
of length [ + 1 in G’ containing this interval. Suppose A, A" € A and AN
A’ = (). There are chains By C ...B, C Aand C, € ...C, C A in ¢
which contain members of every possible size (z is either [I/2] or [l/2],
depending on the parity of n and ). Then By,...B,, A, A’,C,...C, and
Ci,...Cy, A" A B, .. .Ey constitute a forbidden configuration, where y = 1
if n 4+ [ is even and y = 2 otherwise. Note that if n is even then A = A’

This leads to a contradiction, hence A is intersecting, so |A| < |[n/2].

Clearly G' \ A is an [-Sperner family, hence it is the union of [ Sperner
families. It is an easy exercise to see that a Sperner family contains at most
n intervals and it contains exactly n intervals only if there is a j such that
the family contains all j element intervals. G’ \ A can contain all j element
intervals only if j > n/2, hence at most |[/2]| times. Hence |G' \ A| <
In—1)+[1/2],50 |G| = |G| < [n/2] +1(n—1)+ |I/2]. O

Lemma 2.6. Let G C H be a family on the circle, such that 0, [n] € G and
Gl <in (1<i<n-—1). Then p(G) € conv(A;).

Proof. Clearly this class of families is hereditary, and if we change some
coordinates of an uyg g € A} to 0, the vector remains in A;. So it is enough to
prove that the essential extreme points are in A (in that case all the extreme
points are in A;, and p(G) is their convex combination).

We use the following approach: A positive weight function is always max-
imized in at least one of the essential extreme points. Moreover, for every
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essential extreme point there is a non-negative weight function such that it
is the unique maximum. Hence it is enough to prove that for every non-
negative weight function w the maximum is given by a profile vector uyy,
such that |A| =, i. e. there is a set A C {0,...,n} and a family G’ such
that |A| =14, p(G’') = uay and w(G) < w(G).

Let w(j1) > w(j2) > --+ > w(jn—1) be the order of the numbers 1,...n—1
with respect to w. Then the weight of at most in intervals is maximum if
they are all the j; element intervals, all the jo element intervals, and so on,
while there are no more than in intervals. Clearly, this is the union of ¢
complete levels, denoted by G'. B

Note that using this lemma together with Theorem 1.3 and some simple
observations one could determine the extreme points of the profile polytope
of the -Sperner families, and also of those 2[-antichainpairs which contain
neither () nor [n].

Lemma 2.7. Let G C H be a family on the circle, such that 0,[n] € G. Let
m = min{|G| : G € G} and M = max{|G| : G € G}. Suppose m < n — M
and |G| <in+m. Then p(G) is in the convex hull of the vectors ua p where
|A| <iand0,n¢ AUB, |B| <1.

Proof. We follow the proof of Lemma 2.6, hence we give here only a
sketch. There are only few differences. Again when we are given a non-
negative weight function w, we want to construct a family G’ such that its
profile vector is uy p with |A| =4, |B] = 1 and w(G) < w(F’).

This time we order only the numbers between m and M with respect to
w, hence the order is w(j;) > w(ja) > -+ > w(jryr—ms1). Then the weight of
at most ¢n + m intervals is maximum if they are all the j; element intervals,
all the jo element intervals, and so on. It means that all the 7, 9,...,7;
intervals are in the family of maximum weight, and m intervals of size j;.1.

Let G’ be the family of all ji,...,j; element intervals and j;,; intervals
of size jii1 if jit1 < n/2, or n — jiyq intervals of size ji1 if jip1 > n/2. We
assumed that m < j;11 < M < n—m, hence there are at least m intervals of
size jiv1in G'. Tt follows that w(G’) is at least the above mentioned maximum
weight, hence it is at least the weight of G. The profile of G’ is listed in the
lemma. W

Lemma 2.8. Let G be a 2l + 1-antichainpair family (0 < 1) on the circle
such that 0, [n] & G. Let us suppose, that for all 0 < i <l the set of essential
extreme points of the profile polytope of the 2l + 1 — 2i-antichainpair families
is 'o_0i11. Suppose moreover that G can be decomposed in the following way:
G=G'UG? (G'NG*=10), where G is 2] + 1 — 2i-antichainpair, |G*| < in



and there are no G1 € G' and Gy € G* such that |G1| = |Gs|. Then the
profile of G is dominated by gy q.

Proof. By the assumptions p(G') is dominated by I'yy1_o;. By Lemma
2.6 p(G?) is dominated by A,.

It means there is at least one convex combination of some elements uc g of
A which dominates p(G?). We choose that one of those convex combinations,
which is in some sense minimal: there are no vectors with coefficient zero
(they could be deleted), and if C" C C and the coefficient of uc is not zero,
then we cannot change ucyg to ucr p without violating the domination. This
convex combination can be achieved by deleting and changing vectors.

In this convex combination each C'is clearly zero in every coordinate
where p(G?) is zero. Similarly we can choose a convex combination of vectors
from T'y41_o; which dominates p(G!) and each of them has zero in every
coordinate where p(G!) is zero.

Hence the following is true: if ucy is a vector with non-zero coefficient
in the convex combination which dominates p(QQ) and uy p is a vector with
non-zero coefficient from the convex combination which dominates p(G'),
then (AUB)NC = 0. Thus uap + ucy = Uauc,p is in Tyyq. It is easy
to see that the sum of p(G') and p(G?) (which is p(G)) is dominated by a
convex combination of the sum of the us ps and ucys, and these sums are
all in 'y, ;. W

Proof of Lemma 2.3. If uyp € I'y, then the family G4 p shows that
uy p is a profile vector.

In order to prove that these are the extreme points, we use induction on
k. As it was mentioned before, the case k = 1 is known (see [3|), the case
k = 0 is trivial. If () and/or [n] are in the family, the other sets form a
(k —2)- or (k — 1)-antichainpair family, so by induction it is enough to prove
the statement for the reduced profiles. Lemma 2.4 and Lemma 2.6 finishes
the proof in case k is even, hence from now on we suppose k = 21 + 1.

Let G be a family, which does not contain () and [n]. If there is a complete
level (all i element intervals), which is a subfamily of G, let G* be this level,
and G! be the family of the other sets in G. By Lemma 2.8 and the induction
hypothesis we are done in this case. Hence we can assume that there is no
complete level in G.

Suppose indirectly that p(G) is not in conv(I'y). Let m = min{|G] :
G € G} and M = max{|G| : G € G}. We can assume that m < n — M
(otherwise we can replace all elements by their complements, then we get a
convex combination and there we can replace every coordinate ¢ by coordinate
n—1). If |G| < nl+m then Lemma 2.7 finishes the proof. Hence we can also
assume that |G| > nl + m.



Ifm > = then Lemma 2.5 implies |G| < nl+m, which is a contradiction.
Indeed, |G| < [n/2] +1(n—1)+ [I/2] =In+ |n/2] — [1/2] <In+ ["2’} <
nl + m.

From now on we suppose m < 2=. We change G to get G’. The skele-
ton of the algorithm is the followmg we replace the intervals of minimum
size by either their complements or their shade. If some new intervals have
already been in the family, we repeat this procedure using them instead of
the intervals of minimum size. This algorithm ends in at most £k steps. After
that the family is still k-antichainpair and the minimum size of intervals has
increased. We might repeat this whole procedure several times.

Let Gy = G, let m; and M; be the size of minimal, resp. the maximal
elements of G;. We get G;,1 by the following steps. At first we have some
initial steps.

Step Oa. If m; > n — M,;, then replace all M;-element sets by their
complements. After that, using again the same letters for the maximum and
the minimum size, m; < n — M,;. If there are no n — m; elements, then let
G} denote the resulting family. Otherwise, we have a Step Ob:

Step Ob. If there is a pair G,G € G; such that |G| = m;, then delete
all the m;-element sets whose complements are not in G;, and add their
complements, we denote the new family by G!. Otherwise replace all n— m;-
element sets by their complements, and let G} be the resulting family.

Let D} be the family of m;-element sets in G}. Note that after these steps
the family G} is k-antichainpair and m; < n — M;.

Step 1. Let G2 = (G! U VD)) \ D}, and D? = G} N VD). What
happens is that D} is replaced by its shade. Some of the new members are
already in G}, we count them twice: once in G? and once in D7.

We say the algorithm meets the level m + 1 in this step, since the size of
the new members is m + 1. Note that since D} is not empty and not the full
level, we know |ViD}| > |D}|, which implies |G| + |D?| > |G}|.

Step 2j. Let G = G¥ Uco(D¥) and D7 = co(G7) N DY. We say
the algorithm meets the level n —m — j in this step, since the size of the new
members is n —m — J.

Step 2j+1 (j>0). Let QZ”Q = QZJH U VlntD2]+1 and 1)2]+2 = QQJH
VintD; 271 We say the algorithm meets the level m+ j+ 1 in this step, since
the size of the new members is m + j + 1.

Note that if a set D is in Dg, then a subset or the complement of it
is in Df_l. Moreover, we can easily find a chain-pair containing D and
intersecting every D! with ¢ < j. This implies that if G; is k-antichainpair,
then DF = (). Let us finish the process immediately when D! = (§ for some j
and let G = gg If G; is 2I' 4+ 1-antichainpair, then there are at most 20’ + 1



steps, so the cardinality of a new interval is either at most m; + " or at least
n—(m;+0'—1). An important observation: there are no m;-element intervals
in G;.

Last step. For every j, if there are n j-element intervals in G}, delete all
of them (delete the whole levels). This way we get G; .

Let g; be the number of deleted levels before we get G;. We iterate this
algorithm while m; < %.

Claim 1. If G; is (20'+1)-antichainpair and m; < %l/, then G/ is (20'41)-
antichainpair, too.

Proof of Claim 1. The rather technical proof is based on the following
simple observations. Suppose there is a forbidden configuration in G;. It
contains a set G € G \ G;, then that is a member of D! for some j, and then
there is a chain-pair K containing D and intersecting every D! with ¢ < j.
As we will see, we can replace G' and a part of the forbidden configuration
with those intersections of the D’s and K such that we get another forbidden
configuration with less new elements.

Suppose indirectly, that there are Ay C --- C A, and B; C --- C B,
chains in G, such that = +y = 2/'+ and there is a chain C = {Cy,...,C,},
such that every A; and every Fj is an element of C. For example A, is not
in G;. Let the size of A, be m; +{*, and |B,_1| < n —m; —1* < |By|.

Our algorithm gives A,. Let us suppose it is in the Step 2j+1, then
there are intervals D,,, C Dy, 11 C,...,C Dy, 4»—1 in G;, such that their
complements are in G; too, |D;| = t for every t and Dy, 1;+—1 C A,. (In
this case [* = j.) Clearly, Dy, ..., Dpm,si—1, Conypi, - - ., Cp, form a part of a
chain C’. Therefore

gi N (CI U CO(C,)) 2 {sz, ey Dmi+l*—17 AZ+17 e ;Aara

By,...,By-1,Dmsr-—1,- - D11}

These are at least 2I'+ intervals. The cardinalities of A;,... A, are
at least m; + 1 and at most m; + [*, and we replace these intervals by
Dy Dpyqi+—1, so we get [* intervals in place of at most [* intervals.
Similarly, the cardinalities of B,,, ..., B, are at least n —m; —[* and at most
n —m or n —m — 1, depending on Step Ob. We replace these intervals by
Dyito—1 - - - Din.y1 and maybe D, , depending on Step Ob. We get [* + 1 or
[* intervals in place of at most [* + 1 or [* intervals.

Hence it is a forbidden configuration (in G; U G}), and less new elements
are in it. We repeat this procedure until there are no new elements, which is
a contradiction.

If after some repeats all the remaining intervals from G \ G; were given
in the Step 2j, the procedure is similar.
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Sketch: We can replace A,,..., A, and By, ..., B,_; by a part of a chain-
pair, which is given by our algorithm. Then we get a forbidden configuration
with less new elements. [J

Let us continue with some simple observations.

Observation 1. min{|G|: G € G} =m; + 1.

Observation 2. min{|G|: G € G411} > m;.

Observation 3. M;,, < M,.

Note that m; < "_12_2‘1" is used here. Also note that M; can decrease only
in Step Oa.

Claim 2. Let j > 0. Then |G7?| + |132]+2| > |g21+1| + | Dyjpa].

Proof of Claim 2. By definition G; 2012 — =G; ARNY thDQ” \ijﬂ and
D¥? = G NV, D¥. Hence ygfﬂ”mpfﬂ“y = \gff“yﬂvmtpfﬂ'“\. We
have to show that |V, D7 ™| > DX, As it was mentioned, the operator
Vint increases the size of a non-empty family except the case that the family
is a whole level. Suppose 1nd1rectly that is the case, D; 211 is a whole level.
By deﬁmtlon DX = co(G¥) N DY, hence in this case D is a whole level
too and G/~ ! contains its complement level.

A pair of complement levels p,n — p with p < n — p can be involved at
most twice in the algorithm. At first the level p is met by the algorithm in
an odd step, and the complement level in the next step. Then the level n —p
can be met again, this time in an odd step and then the level p in the next
step.

In our case it means that D?j is the level n — p, and the level p becomes
full when it is first met (in an odd step). Moreover, the level n — p becomes
full in the next step. But it would mean that the level p cannot remain full,
which is a contradiction. [J

Observation 4. |G| > |G,]|.

Claim 3. |G;| > |G| +m; — m — ¢;n.

Proof of Claim 3. We use induction on i. The case ¢ = 0 is trivial. It
is enough to prove, that |G;| > |G;| +m; —m; — (¢; — g;)n for a j < i.

If there is a number j < ¢ and an interval G € G; \ G;, then let j be the
biggest such number. G is an interval of size at least m;, or a complement of
an interval of size at least m;, hence there are at least 2(m; —m;) steps in the
J +1st iteration. There are at least m; —m; odd steps, and Claim 2 shows in
these steps the size is increased by at least 1. All the decreasing is (g;n —g;n)
so the change of the size between G; and G; is at least m; —m; — (¢in — ¢;n),
and the proof is done.

If G; € G, then there is a G € G; which is not in G = Gy, hence j = 0
finishes the proof.

If G; C G, then all the new intervals have been deleted, some of them as a
member of a whole level, others as intervals with minimum size. G! := G; and

11



G* .= G\ G;. Clearly |G'| > G — ¢;n, since the size can decrease only when
whole levels are deleted, and the entire decreasing is ¢;n. Thus |G?| < gn.
If there are no G; € G' and G5 € G? such that |G| = |Gs|, we can apply
Lemma 2.8, and we proved Lemma 3, which is a contradiction (we supposed
indirectly, that the lemma is not true). If there are G; € G' and G, € G?
such that |G1| = |G3| = a, then @ > m;. Then G5 could not be deleted as
an interval on minimum size, only as a member of a full level. Hence all the
a-element intervals were deleted at least once during the algorithm, i.e. they
are members of G | \ G; for a j < i. Then G € G;\ Gj, and this finishes the
proof. [J

It is important to see, that this claim is not true in general, it follows
from the indirect assumption.

As it was mentioned, we iterate this algorithm while m,; < # By
Observations 2 and 3 it cannot go forever, finally we get a family violating this
property, i.e. a 2{'+1-antichainpair, such that the cardinalities of the intervals
are at least (”%l,} and at most [%ﬂ We denote this family by G’. There are
no whole levels in G’. By Lemma 2.5 we know |G'| < [n/2|+0'(n—1)+[1'/2].

Obviously G = G; for some i. Thus |G'| > |G| + m; — m — ¢n. Clearly
g =1—1 and m; = [”%1/1 Hence

2

n —

l/
+m4+nl—I'n
2 -‘

Gl <1G'1-T l/1+m+nl—l’n < [n/2l+ (n=1)+(1'/2) - [

n—1
2

<m-+nl+|n/2] =U+I'/2] -] 1 <m+nl,

which is a contradiction.

Proof of Theorem 2.2. One can easily see, that it is enough to prove
the theorem for reduced profiles. If x4 p is one of the listed vectors, F4 p is
k-antichainpair, hence these vectors are profile vectors. Now we can apply
Lemma 2.3 and Theorem 1.3, and we are done.ll

3 Corollaries

In this section we determine the extreme points for some other classes of
families.

Theorem 3.1. The essential extreme points of the complement-free k-antichainpair
families are x4 p where 2|A| 4+ |B| =k, 0,n/2,n ¢ A, |B\ {0,n/2,n}| <1,
and i € AU B impliesn —i ¢ AU B except for i =n/2.

Proof. It is easy to see, that these are essential extreme points. Let w
be a positive weight function and F be an optimal family for this weight. By
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Lemma 1.2 it is enough to show a complement-free k-antichainpair family
with the same weight such that its profile is listed in the theorem.

For any A, only one of A or A can belong to F. It is the one which
has greater weight, as replacing A by A would increase the weight otherwise,
without violating the property. If w(i) < w(n — i) then clearly F does not
contain ¢ element sets, if w(i) = w(n —1i), then we choose one of them, ¢, and
replace all n — ¢ element sets of F to its complement. It does not change the
weight, and F remains complement-free k-antichainpair.

Let w'(i) = 0, if w(i) < w(n—1) or if w(i) = w(n—1i) and i < n—1i. Oth-
erwise let w'(i) = w(i). Then the optimal complement-free k-antichainpair
family for this weight will be also optimal for w, hence from now on we will
deal only with w’. Let Ky be an optimal k-antichainpair for the weight w’,
and delete all the sets with weight 0. Then we get a family Xy, which is also
optimal for this weight, and almost complement-free: if A and A both are in
K1, then |A| = n/2.

If n is odd, we are done: K; is maximal for w’, and one can easily see,
that it is maximal for w, and its profile is listed in the theorem.

If n is even, we can assume, that all the n/2-element sets of F contain 1.

Case 1. Ky does not contain all the n/2 element sets. Then it contains at
most (;};_11) members of size n/2. Its profile vector is x4 5. We can assume
by Theorem 2.2 that this is the family F4 p from Section 2 which was the
main example for families with this profile vector. Then it is complement-
free, and we are done.

Case 2. The optimal (for w') k+1-antichainpair, /Cy contains n/2 element
sets. Then let A = {A C [n] : |A| = n/2, 1 € A}. We can assume by
Theorem 2.2 that Ky contains A. Let I3 = ICy \ A, then it is a complement-
free k-antichainpair and its profile vector is listed in the theorem. Let F' =
FUA. Then w'(F) = w'(F) — (nT/LQ)w’(n/Q) < w'(Kq) — (n72)w’(n/2) =
w'(ICy \ A), hence Ky \ A is (also) an optimal family, which has profile listed
in the theorem.

Case 3. The optimal for w’ k-antichainpair Iy contains all n/2 element
sets, and the optimal k+ 1-antichainpair Ky does not contain any n/2 element
sets. Let the profile vector of Ky (resp. K2) be x4 5 (zcp).

Case 3.1. |C| > |A|. We know that n/2 € A\ C, hence there is a
j € C\ A, where j # 0,n/2,n. If (n7;2)w’(n/2) < (’;)w’(j), then we can
replace the n/2 element sets in Ky by the j element sets, we found a family
which is optimal for w’ and does not contain all the n/2-element sets, and
then we can apply Case 1. If (n%)w’(n/Z) > (?)w’(j), then we can replace
the j element sets in Ky by the n/2 element sets, and we can apply Case 2.

Case 3.2. |C] < |A]. |A| < |k/2], hence |C| < |k/2] — 1. On the other
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hand 2|C|+ |D| =k + 1 and |D| < 3. Tt is possible only if |A| = |k/2] and
|C| = |k/2] — 1. Moreover 2|A| + |B| = k, hence |D| — |B| = 3. It means
|D| = 3 and |B| = 0. Then @ and [n] are in Ky and not in ;. The family
of n/2-element sets is not in ICy, hence the weight w’ of all the n/2-element
sets is not more than the weight of () and [n] (otherwise we could exchange
them). Then we can replace the n/2 element sets in Ky by () and [n], and we
can apply Case 1. B

Definition 3.2. A family F C 2" is called r-complement-chain-pair-
]iee if there is no chain Ay C Ao C --- C A, in 2l such that all sets A; and
A; belong to F.

The maximum size of families satisfying this property is known ([1]).

Theorem 3.3. The essential extreme points of the profile-polytope of the
class of r-complement-chain-pair-free families are x4 g, where 2|A| + |B| =
n+r, i & A impliesn —i € A, except for i = n/2. In addition 0,n ¢ B,
B\ {n/2}| < 1.

Proof. We determine the reduced essential extreme points, the rest of
the proof is trivial. We will use Lemma 1.2. Let w be a positive weight
function and F be an optimal r-complement-chain-pair-free family. We can
assume that F is maximal, i.e. if F U {F'} is r-complement-chain-pair-free,
then F' € F. Tt follows easily, that if A ¢ F, then A € F. Moreover,
replacing A by A does not violate the property. So F contains at least one
element of every pair of complements, of course the one which has greater
weight. If w(i) = w(n —1), then choose one, for example i, and from all pairs
A, Aif |[A| =iand A ¢ F, then replace A by A in F.

Let Fy be a subfamily of F which contains exactly one of A and A for
every complement pair. It can be chosen such a way that there are only
whole levels in Fy, except for the level n/2.

Let F; = F \ Fo, it is a complement-free r-antichainpair. Let w'(i) = 0
if all the ¢ element sets are in Fy, and w'(i) = w(i) otherwise. Clearly the
weight of F; does not change. Theorem 3.1 says, what vectors x4 p are
maximal for w’; clearly we can suppose that if w/(i) = 0 then i ¢ AU B. It
is easy to see, that p(Fy) + x4 p is listed in the theorem.H

The extreme points of the profile-polytope of the k-Sperner and the
complement-free Sperner families are known (|5| and [3]). Moreover, the ex-
treme points of the complement-free k-Sperner families are also determined
(|6]) in the case n is odd.
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Theorem 3.4. The essential extreme points of the profile-polytope of the
complement-free k-Sperner families are x4 g, where 2|A| + |B| = 2k, 0,n ¢
B, i € AUB impliesn —i ¢ AU B except for i = n/2, n/2 & A and
[B\ {n/2}| < 1.

Proof. Clearly, 74 p is complement-free k-Sperner with such profile. One
can easily see, that it is enough to prove the theorem for reduced profiles. The
complement-free k-Sperner families are complement-free 2k-antichainpairs,
which by Theorem 3.1 gives the statement. H

One can easily see that Theorem 1.6 is a simple corollary of the previous
theorem. Indeed, an intersecting family is complement-free, thus we can
apply it, and simple calculation gives the result using the weight w = 1.

We call a family F self-complementary if F € F implies ' € F. The
maximal size of self-complementary k-Sperner families is determined in [1],
the extreme points of the self-complementary Sperner families are also known

(131)-

Theorem 3.5. The extreme points of the profile-polytope of the self-complementary
k-Sperner families are x4 g, where 2|A| + |B] < 2k, 0,n/2,n &€ B, i € A
impliesn—i € A, i € B impliesn—1i € B and either |B| =2 and |A| = k—1

or |B| = 0.

Proof. Let I' be the set of the vectors x4 5, where 2|A| + |B| < 2k,
0,n/2,n & B,i€ Aimpliesn—i € A, i € B impliesn —¢ € B and |B| < 2.
Clearly these are the same properties as those in the theorem, except for
the last one. Hence I' contains more vectors, but they are in the convex
hull of the vectors listed in the theorem. We show the following, equivalent
statement: for any weight w the weight of a vector in I' cannot exceed the
weight of every vector listed in the theorem.

Let w be a weight function and define w'(i) = w'(n — i) = M
Clearly the weight of a self-complementary family does not change. The
maximal weight in I' is w(x4 5) = w'(x4,5) = w'(Fa ), and we can suppose
Fa.p does not contain any sets of negative weight w’ (it might contain some
sets F' such that w(F) < 0). If x4p5 is not listed in the theorem, than
|B| = 2 and |A] < k — 1. But than we could add the other sets from the
levels contained in B without violating the property or decreasing the weight.

Thus it is enough to prove that all the profile vectors of self-complementary
k-Sperner families are in the convex hull of T'.

Let F be the maximal for w’ self-complementary k-Sperner family. F
contains pairs F,F. We define a partition of F: for all the pairs F, F if
|F| < |F|or |[F|=|F|and 1 € F then F € F' and F € F2. F' and F? are
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complement-free k-antichainpairs, such that all members of ' (resp. F?) are
of size at most (at least) n/2. Let w”(i) = w'(i) if ¢ < n/2 and 0 otherwise,
and w” (1) = w"(n —i). Clearly w"(F') = w/'(F') and w"(F?) = w'(F?).
Theorem 3.1 gives the maximal for w” complement-free k-antichainpair (here
the weight can be negative, so we have to use (i) of Proposition 1.1). It is easy
to see, that the complement of this family is the maximal for w” complement-
free k-antichainpair. The union of this complement-free k& antichainpair and
its complement family is a self-complementary k-Sperner, and the profile
vector of it is in I". Its weight is at least the weight of F, hence we can apply
Lemma 1.2 to finish the proof. B

References

[1] A. Bernath, D. Gerbner: Chain intersecting families, Graphs and Com-
binatorics, 23 (2007), 353-366.

[2] K. Engel: Sperner Theory, Encyclopedia of Mathematics and its Appli-
cations, 65. Cambridge University Press, Cambridge (1997)

[3] K. Engel, P.L. Erd6s: Sperner families satisfying additional conditions
and their convex hulls, Graphs Combin. 5 (1989), 47-56.

[4] P.L. Erdés, P. Frankl, G.O.H. Katona: Intersecting Sperner families and
their convex hulls, Combinatorica, 4 (1984), 21-34.

[5] P.L. Erdés, P. Frankl, G.O.H. Katona: Extremal hypergraph problems
and convex hulls,Combinatorica, 5 (1985), 11-26.

[6] D. Gerbner, B. Patkos: [-chain profile vectors, SIAM Journal on Dis-
crete Mathematics 22 (2008), 185-193.

[7] P. Frankl, G.O.H. Katona: Polytopes determined by hypergraph classes,
European J. Combin. 6 3 (1985), 233-243.

[8] G.O.H. Katona: A Simple proof of the Erdgs-Chao Ko-Rado theorem,
J. Comb. Theory (B), 13 (1972), 183-184.

[9] E.C. Milner: A combinatorial theorem on systems of sets, J. London
Math. Soc., 43 (1968), 204-206.

16



