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Chapter 1

Colouring of graphs

We recall that a (simple and undirected) graph is an ordered pair G = (V,E)

comprising a set V = V (G) of vertices together with a set E = E(G) of edges,

which are 2-element subsets of V . For an edge {x, y}, we shall use the somewhat

shorter notation xy. The order of a graph is |V | (the number of vertices). A

graph’s size is |E|, the number of edges. The degree of a vertex v, denoted by

d(v), is the number of edges that connect to it.

1.1 The chromatic number

Definition 1.1.1. Let G be a graph. The map c : V (G) → Z
+ is called a (proper)

colouring of G if c(x) 6= c(y) for all xy ∈ E(G). The positive integer

χ(G)
def
= min {k | G has a colouring with colours 1, 2, . . . , k}

is called the chromatic number of G.

A planar graph is a graph that can be drawn in such a way that no edges cross

each other. The origin of graph colouring was the following conjecture (now a

theorem):

Conjecture 1.1.1. Every planar graph G is 4-colourable, i.e., χ(G) ≤ 4.

This statement is equivalent to the Four Colour Map Theorem.

Definition 1.1.2. A graph G is called k-critical if χ(G) = k but χ(G − {e}) =
k − 1 for all e ∈ E(G).

1



2 Chapter 1. Colouring of graphs

A path in a graph is a sequence of edges which connect a sequence of vertices.

A path may be infinite, but a finite path always has a first vertex, called its start

vertex, and a last vertex, called its end vertex. A cycle is a path such that the

start vertex and end vertex are the same. The choice of the start vertex in a cycle

is arbitrary.

Theorem 1.1.2. The graph G is 2-colourable (bipartite) if and only if it does

not contain any odd cycle.

Proof. ⇒ Suppose that G is 2-colourable with colouring c : V (G) → {1, 2}. Let
C def

= v0v1v2 . . . vkv0 be a cycle in the graph. Without loss of generality, we may

assume that c(v0) = 1. Since c is a colouring, we must have c(v1) = 2. In general,

we must have c(v2i) = 1 and c(v2i+1) = 2 (i = 0, 1, 2, . . . ,
⌊
k−1
2

⌋
). Hence, k must

be odd and C is an even cycle.

⇐ Without loss of generality, we may assume that G is connected. Suppose

that G contains no odd cycles. Denote by d(x, y) the length of the shortest path

between two vertices x and y (the length of a path is the number of edges which

are traversed). Let v0 be an arbitrary vertex of G. Define

V1
def
= {u ∈ V (G) | d(u, v0) is even} ,

V2
def
= {u ∈ V (G) | d(u, v0) is odd} .

Define c : V (G) → {1, 2} as

c(u)
def
=

{
1, if u ∈ V1;

2, if u ∈ V2.

We show that c is a colouring of G. Suppose to the contrary that xy ∈ E(G) and

c(x) = c(y). Let P be the shortest path from x to v0 and Q be the shortest path

from y to v0. Let w be the first common vertex of P and Q. Clearly, P and Q

defines two paths from w to v0. Since P and Q were shortest paths, these two

paths from w to v0 are shortest paths from w to v0. In particular, they are of the

same length. Consider now the following parts of P and Q: the path P1 from x to

w and the path Q1 from y to w (see Figure 1.1).

Since c(x) = c(y), the paths P and Q are of the same length. Thus, P1 and Q1

must have the same length (since the remaining parts from w to v0 had the same

length). Then C def
= (P1 − {w})Q−1

1 x is an odd cycle, which is a contradiction.
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Figure 1.1

Corollary 1.1.3. The 3-critical graphs are the odd cycles.

Proof. First we show that odd cycles are 3-critical. Clearly, odd cycles have

chromatic number three. Removing any edge from a cycle results in a tree (which

is 2-colourable). Therefore, odd cycles are 3-critical. By the previous theorem,

a graph with no odd cycles is 2-colourable, therefore any graph with chromatic

number three contains an odd cycle. In general, however, we know that a k-

critical graph G cannot contain another k-critical graph G′ as a proper subgraph.

(Otherwise, by removing an edge from G which is not in G′, the remaining graph

would still have chromatic number k, since it contains G′. Hence, G could not be

k-critical.) Thus, only odd cycles are 3-critical.

Theorem 1.1.4. Let ∆(G) be the maximum degree in G. Then χ(G) ≤ ∆(G)+1.

Proof. By greedy algorithm. We consider the vertices of the graph in sequence

and assigns each vertex its first available colour. In the worst case all the ≤ ∆(G)

neighbours of a vertex v are coloured with different colours.

This upper bound is sharp, as the following examples show.

Example 1.1.1. The complete graph Kn can be trivially coloured by n colours,

giving each vertex a different colour. By the pigeonhole principle, any colouring

of Kn with fewer colours would have two vertices with the same colour. But, in

Kn, any two vertices are joined by an edge; in particular those vertices of the same

colour would be joined by an edge. Thus, the chromatic number of Kn is n. Since

∆(Kn) = n− 1, we have χ(Kn) = ∆(Kn) + 1.

Example 1.1.2. For an odd cycle C we have χ(C) = 3. Clearly, any vertex of a

cycle has degree 2. Thus ∆(C) = 2, and χ(C) = ∆(C) + 1.
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Theorem 1.1.5 (Brooks). For a connected, simple graph G, we have χ(G) ≤
∆(G); unless G is isomorphic to a complete graph or an odd cycle.

Remark. If G′ is a subgraph of G then χ(G′) ≤ χ(G).

1.2 Triangle-free graphs with large chromatic num-

bers

We shall give constructions for sequence of graphs G3, G4, G5, . . . such that each

Gk is triangle-free and χ(Gk) = k.

(i) Zykov’s construction. Let G3 be the 5-cycle, which has chromatic number

3 and is triangle-free. Suppose that we already have G3, G4, . . . , Gk (k ≥ 3) such

that χ(Gi) = i and Gi contains no triangles (i = 1, 2, . . . , k). We define Gk+1 using

Gk. Let nk be the order of Gk.

Figure 1.2. Zykov’s construction of Gk+1.

Consider k copies of Gk. From each copy, we choose a vertex and connect

them with a new vertex. Thus, this newly added vertex has k adjacent vertices,

one from each copy of Gk. Since there are nk
k possible choices for the vertices, we

have that many newly added vertices (denote by S the set they form). This is the

graph Gk+1 (see Figure 1.2). Hence, Gk+1 has k · nk + nk
k vertices.

First, we claim that Gk+1 contains no triangles. By the induction hypothesis

none of the Gk’s contains triangles. The copies of the Gk’s are connected via the

vertices from S. Hence, if Gk+1 contains a triangle, then at least one of its vertices

should come from S. But there are no edges between the vertices of S, nor between

the copies of the Gk’s, so there is no way to have a triangle.
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Second, we show that χ(Gk+1) = k+1. Each copy of the Gk’s can be coloured

by χ(Gk) = k colours. Since there are no edges between the vertices of S, we can

introduce a new colour for them. Thus, we have a colouring with k + 1 colours:

χ(Gk+1) ≤ k + 1. Now, from each copy of Gk, choose a vertex such that all the k

vertices have different colours (it is possible, since we have k different colours in

each copy of Gk). The vertex from S that corresponds to those k vertices must

have a new colour. Therefore, χ(Gk+1) = k + 1.

The order nk of the graphs Gk grows quite rapidly as k → +∞.1 The first few

values are given in Table 1.1. ♣

k |V (Gk)| = nk

3 5

4 3 · 5 + 53 = 140

5 4 · 140 + 1404 = 384160560

6 5 · 384160560 + 3841605605 ≈ 8.366886525 · 1042

Table 1.1. The order of the Zykov graphs Gk grows extremely fast.

(ii) Mycielski’s construction. Let G3 be the 5-cycle, which has chromatic

number 3 and is triangle-free. Suppose that we already haveG3, G4, . . . , Gk (k ≥ 3)

such that χ(Gi) = i and Gi contains no triangles (i = 1, 2, . . . , k). We define Gk+1

using Gk.

Let v1, v2, . . . , vnk
be the vertices of Gk. We add the new vertices u1, u2, . . . , unk

and w. We connect each vertex ui by an edge to w. In addition, for each edge vivj
of Gk, we add two new edges, uivj and viuj. This is the graph Gk+1 (see Figure

1.3). Hence, Gk+1 has 2nk + 1 vertices.

First, we claim that Gk+1 contains no triangles. By the induction hypothesis,

none of the Gk’s contains triangles. Hence, if Gk+1 contains a triangle, then at

least one of its vertices should come from the newly added vertices. Since there

are no edges between the ui’s, nor between w and the vi’s, such a triangle must

contain a vertex ui and two vertices from the vj’s. The vertex ui is adjacent to the

1Actually, I proved that nk ∼ α
(k−1)! as k → +∞, where α =

√
5
∏

∞

m=3

(
1 +mn

1−m
m

)1/m!
=

2.27870461723763 . . . .
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vertices that the vi are adjacent to, but this would imply that Gk has a triangle,

where the vertices that ui forms a triangle with, are vertices of this triangle along

with vi. This would contradict that Gk is triangle-free.

Figure 1.3. Mycielski’s construction of Gk+1.

Second, we show that χ(Gk+1) = k + 1. Suppose, to the contrary, that

χ(Gk+1) ≤ k, and consider a colouring c of Gk+1 with k colours. Without loss

of generality, we may assume that c(w) = k. This forces the ui’s not to have the

colour k. If for some 1 ≤ i ≤ nk, c(vi) = k, then we can recolour that vi to the

colour of the corresponding ui. Hence, we get a proper colouring of Gk with k− 1

colours. Indeed, if for some j, vivj ∈ E(Gk), and vj would have the same colour

as vi; then its adjacent vertex ui (by construction uivj ∈ E(Gk+1)) would have

the same colour. This would be a contradiction, since we started with a proper

colouring. Therefore, χ(Gk) ≤ k − 1, which is a contradiction.

k |V (Gk)| = nk k |V (Gk)| = nk

3 5 8 2 · 95 + 1 = 191

4 2 · 5 + 1 = 11 9 2 · 191 + 1 = 383

5 2 · 11 + 1 = 23 10 2 · 383 + 1 = 767

6 2 · 23 + 1 = 47 11 2 · 767 + 1 = 1535

7 2 · 47 + 1 = 95 12 2 · 1535 + 1 = 3071

Table 1.2. The order of the Mycielski graphs Gk.

The order nk of the graphs Gk grows much slower than in the previous con-
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struction. Indeed, it is easy to show that

nk = 3 · 2k−2 − 1 for k ≥ 3.

The first few values are given in Table 1.2. ♣

Exercise 1.2.1. Show that the graph Gk in Mycielski’s construction is k-critical.

(Hint: use the lemma below.)

Lemma 1.2.1. If G is k-critical, then for all x ∈ V (G), G has a k-colouring such

that x is the only one vertex of colour k.

Exercise 1.2.2. Let G1 be a single vertex, G2 be two vertices connected by an edge.

Modify Zykov’s construction in such a way that instead of considering k copies of

Gk, take one copy of each Gi (1 ≤ i ≤ k). The rest of the construction is the same

as in the original one. Prove that Gk+1 is k + 1-critical.

Theorem 1.2.2. Suppose that G is triangle free, with order at most 10. Then

χ(G) ≤ 3.

The graph G4 in Mycielski’s construction shows that this bound is sharp.

Theorem 1.2.3. Suppose that G is triangle free, with order at most 22. Then

χ(G) ≤ 4.

The graph G5 in Mycielski’s construction shows that this bound is sharp.

(iii) The Erdős–Hajnal Shift-graph. Here we construct a graph G which is

triangle-free and χ(G) = k+1. Unlike the previous constructions, this construction

does not use recursion.

1 2 3 4 5 · · · 2k + 1

Figure 1.4

The vertices of the graph are (non-degenerate) closed intervals with integer

endpoints (cf. Figure 1.4):

V (G) =
{
[i, j] | 1 ≤ i < j ≤ 2k + 1

}
.
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Now, we define the edges. Let [i, j] and [ℓ,m] be adjacent if either j = ℓ or m = i.

A typical situation is shown in Figure 1.5.

i j

Figure 1.5. The vertex [i, j] with two adjacent vertices.

From the definition, it is clear that G does not contain triangles.

Now, we show that χ(G) = k + 1. We divide the interval
[
1, 2k + 1

]
into two

parts:
[
1, 2k−1

]
and

[
2k−1 + 1, 2k + 1

]
. They contain 2k−1 and 2k−1 + 1 integer

points, respectively. By an induction argument, those intervals (vertices) that

belong strictly to one of the two halves, can be coloured by k colours. Consider

now those intervals that start at the first and end at the second half. By the

definition of the edges, these kind of intervals (vertices) are not adjacent. Hence,

we can use the colour k + 1 for them. Thus, we have showed that χ(G) ≤ k + 1.

Suppose, to the contrary, that χ(G) = k. Denote by f(i) the set of colours of

those intervals that begin with i. We claim that f(i) 6= f(j) if i 6= j. Indeed,

without loss of generality, we may assume that i < j and consider the colour s

of [i, j]. By definition, s ∈ f(i). But s /∈ f(j), otherwise there would exist an

interval [j, ℓ] with colour s. This is impossible, since by definition, [i, j] and [j, ℓ]

are adjacent. Therefore, f(1), f(2), . . . , f(2k +1) represent 2k +1 different subsets

of the k-element set of colours. This is a contradiction, since a set with k elements

has only 2k different subsets. ♣

1.3 Cycle-free graphs with large chromatic num-

bers

Let us denote by Ck the cycle consisting of k vertices.

Theorem 1.3.1 (Tutte). For any k ≥ 3, there exists a graph Gk such that χ(Gk) =

k and Gk does not contain C3, C4 or C5 as proper subgraphs.

Intuitively, in such a graph, the radius 2 neighbourhood of any vertex looks

like a tree.
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Proof. Let G3 be the 7-cycle, which has chromatic number 3 and does not contain

C3, C4 or C5. Suppose that we already have G3, G4, . . . , Gk (k ≥ 3) such that

χ(Gi) = i and Gi does not contain C3, C4 or C5 (i = 1, 2, . . . , k). We define Gk+1

using Gk. Let nk be the order of Gk.

First, we take m
def
= (nk − 1)k + 1 vertices. Call the set of these vertices as

S. For each nk-tuple from S we add a copy of Gk, and match the vertices of the

nk-tuple with the nk vertices of the corresponding Gk. (Each vertex from the tuple

should have exactly one pair from the vertices of Gk.) This is the graph Gk+1,

which has m+ nk

(
m
nk

)
vertices (see Figure 1.6).

Figure 1.6. The construction of the graph Gk+1.

First, we prove that χ(Gk+1) ≥ k + 1. Suppose, to the contrary, that c is a

colouring of Gk+1 with k colours. By the choice of m = |S|, there exist nk vertices

in S with the same colour, for example with colour k. Take that copy of Gk which

corresponds to these nk vertices. Since c is a proper colouring, we see that the

vertices of this copy of Gk avoid the colour k. Hence, we have a colouring of Gk

with k − 1 colours. This is a contradiction, since by the induction hypothesis,

χ(Gk) = k.

Second, we prove that χ(Gk+1) ≤ k + 1. Using the induction hypothesis and

the fact that there are no edges between the copies of the Gk’s, we can colour each

Gk with k colours. Since there are no edges between the vertices in S, we can

colour them with colour k + 1. In this way, we have got a colouring of Gk+1 with

k + 1 colours.

Finally, we show that there is no C3, C4 or C5 in Gk+1. By the induction

hypothesis, Gk does not contain C3, C4 or C5. Moreover, there are no edges between

the copies of the Gk’s, nor between the vertices in S. This shows immediately that



10 Chapter 1. Colouring of graphs

Gk+1 cannot have a triangle (C3). If Gk+1 would contain a C4 (or C5), then exactly

two vertices from the cycle would come from S (this is the only possible way).

Since a vertex from S is connected to a copy of Gk by only one edge, the other 2

(resp. 3) vertices of the cycle should come from two copies of the Gk’s (see Figure

1.7). (It is clear that they can not come from more than two copies, because of

the short length of the cycle.)

Figure 1.7. A possible C5 in Gk+1.

Clearly, one of the Gk’s must contain only one vertex from C4 (or C5). But

then, this vertex is connected to two different vertices from S, which is impossible.

Therefore, there is no C4 or C5 in Gk+1.

Definition 1.3.1. An independent set is a set of vertices in a graph, no two of

which are adjacent. A maximum independent set is a largest independent set

for a given graph G and its size is denoted α(G).

Theorem 1.3.2 (Erdős). For every g ≥ 3 and k ≥ 3, there is a graph Gg,k such

that χ(Gg,k) ≥ k and girth(Gg,k) ≥ g. Here girth(Gg,k) denotes the length of the

shortest cycle in the graph Gg,k.

Proof. By probabilistic methods. Let n ≥ 5 be an integer large enough so that

2g
√
n ≤ n

2
and n1/2g

6 logn+2
≥ k and set p = n−1+1/2g. Form a random graph on n

vertices by choosing each possible edge to occur independently with probability p.

Let G be the resulting graph, and let X be the number of cycles of G with length

less than g. The number of cycles of length i in the complete graph on n vertices
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is (i−1)!
2

(
n
i

)
= n!

2i(n−i)!
and each of them is present in G with probability pi. Hence,

E (X) =

g−1∑

i=3

n!

2i (n− i)!
pi =

g−1∑

i=3

n (n− 1) · · · (n− i+ 1)

2i
pi ≤

g−1∑

i=3

ni

2i
pi ≤

g−1∑

i=3

nipi

=

g−1∑

i=3

(
n1/2g

)i ≤
g−1∑

i=3

(
n1/2g

)g ≤ g
√
n.

So, by Markov’s inequality, we have

P

(
X ≥ n

2

) 2g
√
n≤n/2

≤ P
(
X ≥ 2g

√
n
) Markov’s

inequality

≤ 1

2g
√
n
E (X) ≤ 1

2
.

Thus, X ≤ n
2
with probability ≥ 1

2
. By Taylor’s formula, we have

e−p = 1− p+
e−ξ

2
p2 > 1− p,

for some 0 < p < ξ < 1. Set s =
⌈
3
p
log n

⌉
. Then we find

P (α (G) ≥ s) ≤
(
n

s

)
(1− p)(

s
2) =

n (n− 1) · · · (n− s+ 1)

s!
(1− p)

s(s−1)
2

≤ ns

s!
(1− p)

s(s−1)
2 ≤ ns (1− p)

s(s−1)
2 ≤ nse−p

s(s−1)
2 =

(
ne−p(s−1)/2

)s

=
(
elogn−p(s−1)/2

)s ≤
(
elogn−3/2 logn

)s
= n−s/2 ≤ n−1/2 <

1

2
.

Since P(X ≤ n
2
) ≥ 1

2
and P (α (G) < s) > 1

2
, there is a specific G with n vertices

for which X ≤ n
2
and α (G) < s. Form the graph H from this G by removing from

G a vertex from each cycle of length less than g. Then H has no cycles of length

less than g, |V (H)| ≥ n
2
, and α(H) ≤ α(G) ≤ s, so we have

χ (H) ≥ |V (H)|
α (H)

≥ n

2s
≥ n

(6/p) log n+ 2
≥ n

6n1−1/2g log n+ 2

=
n1/2g

6 log n+ 2n1/2g−1
≥ n1/2g

6 log n+ 2
≥ k.

Hence, Gg,k
def
= H satisfies the theorem.
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1.4 The Art Gallery Theorem

The floor plan of an art gallery modeled as an n-gon (a simple polygon with n

vertices). How many watchmen needed to see the whole room? Each watchman is

stationed at a fixed point, has 360◦ vision, and cannot see through the walls. More

precisely, let us denote by P the interior of the n-gon. A point p ∈ P is visible

from the point q ∈ P , if and only if the line segment pq is completely contained in

P (see Figure 1.8).

Figure 1.8. The p is visible from q and r. But q and r are not visible to each

other.

Denote by w(P ) the minimum number of points in P such that any point of P

is visible from at least one of those points.

Theorem 1.4.1 (The Art Gallery Theorem). We have w(P ) ≤
⌊
n
3

⌋
, i.e.,

⌊
n
3

⌋

watchmen are sufficient to control the interior of an n-gon. Moreover, this bound

is sharp as it is shown in Figure 1.9.

Figure 1.9. A necessity construction.
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Proof. It is known that every n-gon can be triangulated with pairwise non-

intersecting diagonals, and every such triangulation has exactly n − 2 triangles.

The triangulation of our n-gon leads to a (planar) graph G (see Figure 1.10).

Figure 1.10. Triangulation of a 7-gon.

We claim that χ(G) = 3. Since G contains triangles, χ(G) ≥ 3. Suppose

that n ≥ 4. (If n = 3, this is obvious.) First, we show that there exist at least

two non-adjacent vertices with degree 2. We prove this by induction on n. For a

triangulated 4-gon, the statement is naturally true. Suppose that the statement

is true for every k-gon with k < n. Now, consider an n-gon and choose a diagonal

from its triangulation with endpoints x and y. This diagonal divides the n-gon

into two smaller polygons, both of which have the diagonal xy as a boundary edge.

Since in these smaller polygons, x and y are adjacent, by the induction hypothesis,

there is an other vertex in each of them which has degree 2.2 Now, we prove that

χ(G) = 3. Suppose that the statement is true for every triangulation graph of a

k-gon with k < n. Consider a triangulation graph G of an n-gon. Choose a vertex

x with degree 2, and delete it. The remaining graph, by the induction hypothesis,

is 3-colourable. Let us colour it by 3 colours. We now put back the vertex x and

colour it with the colour that is not used by its two adjacent vertices. Hence,

χ(G) = 3.

To finish the proof, observe that the least frequent colour appears at most
⌊
n
3

⌋
-

times. Place the watchmen at these colour positions. A triangle has all 3 colours,

so it is seen by at least one watchman.

2Note that those two vertices cannot be adjacent.
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1.5 Perfect graphs

Definition 1.5.1. A subgraph G′ of a graph G is said to be induced if, for any

pair of vertices x and y of G′, xy is an edge of G′ if and only if xy is an edge of

G. In other words, G′ is an induced subgraph of G if it has exactly the edges that

appear in G over the same vertex set. Specially, G is an induced subgraph of itself.

Definition 1.5.2. A clique in a graph is a set of pairwise adjacent vertices. The

clique number ω(G) of a graph G is the size of a largest clique in G.

Clearly, for any graph G, we have χ(G) ≥ ω(G).

Definition 1.5.3. A graph G is called perfect, if χ(G′) = ω(G′) for all induced

subgraph G′ of G.

Example 1.5.1. A path (as a graph) is always perfect. All the even cycles and

the trees (graphs that do not contain any cycle) are perfect too. The odd cycles

with more than 3 vertices are not perfect graphs. The full graphs and the bipartite

graphs are perfect.

Definition 1.5.4. Consider finitely many closed intervals on the real line. Define

a graph G as follows: let V (G) be the set of those intervals. We draw an edge

between two vertices (intervals) if they are not disjoint. The resulting graph is

called an interval graph.

Exercise 1.5.1. Show that the interval graphs are perfect.

Definition 1.5.5. A partial order is a binary relation “<” over a set S which

is irreflexive and transitive, i.e., for all a, b and c in S, we have that

(i) a 6< a (irreflexivity);

(ii) if a < b and b < c then a < c (transitivity).

A set with a partial order is called a partially ordered set (or simply a

poset). For a, b elements of a partially ordered set P = (S,<), if a < b or b < a,

then a and b are comparable. Otherwise they are incomparable. A subset of

a poset in which every two distinct elements are comparable is called a chain. A

subset of a poset in which no two distinct elements are comparable is called an

antichain.



1.5. Perfect graphs 15

Definition 1.5.6. Consider a poset P = (S,<). Define a graph G as follows: let

V (G) be the set S. We draw an edge between two vertices (elements of S) if they

are comparable. The resulting graph is called a comparability graph.

Exercise 1.5.2. Show that the comparability graphs are perfect. (Hint: the length

of the longest chain in a poset is the clique number of the corresponding compara-

bility graph.)

Definition 1.5.7. Consider a poset P = (S,<). Define a graph G as follows: let

V (G) be the set S. We draw an edge between two vertices (elements of S) if they

are not comparable. The resulting graph is called a co-comparability graph.

Theorem 1.5.1 (Dilworth’s Theorem). Every co-comparability graph is perfect,

i.e., the maximum number of elements in any antichain equals the minimum num-

ber of chains whose union is the set.

Proof. max ≤ min Take an antichain that consists of r elements. These r

elements correspond to r different chains.

max ≥ min We prove by induction on |S|. For |S| = 1, the statement is obvious.

Let k be the the maximum number of elements in any antichain, and let C be a

maximal chain in P . If C = P , then k = 1 and we are done. So assume that

C 6= P . Because C can contain at most one element of any maximal antichain,

the width of a maximal antichain in P \ C can be either k or k − 1, and both

possibilities can occur.

If it is k − 1, then by the induction hypothesis, P \ C is the union of k − 1

chains, whence P is a union of k chains (i.e., the k−1 chains whose union is P \C
and C itself).

Suppose that the width of a maximal antichain in P \ C is still k. Let A =

{a1, a2, . . . , ak} be a maximal antichain in P \C. As |A| = k, it is also a maximal

antichain in P . Set

L = {x ∈ P | x ≤ ai for some i} ,

U = {x ∈ P | aj ≤ x for some j} .

Every element of P should be comparable with some element of A, otherwise we

could increase the length of the maximal antichain. Therefore P = L∪U . Clearly,

A ⊆ L ∩ U . If x /∈ A, then x /∈ L ∩ U , otherwise some elements of A would be

comparable to each other. Therefore A = L ∩ U (see Figure 1.11).
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Figure 1.11

Moreover, the maximality of C insures that the largest element of C does not

belong to L (remember A ⊆ P \ C), so |L| < |S|. Similarly, the smallest element

of C does not belong to U , whence |U | < |S| also. Therefore, by the induction

hypothesis, L is a union of k chains: L = D1 ∪ D2 ∪ · · · ∪ Dk, and similarly

U = E1∪E2∪ · · ·∪Ek as a union of chains. By renumbering, if necessary, we may

assume that ai ∈ Di ∩ Ei for 1 ≤ i ≤ k, so that Ci = Di ∪ Ei is a chain. Thus

P = L ∪ U = C1 ∪ C2 ∪ · · · ∪ Ck is a union of k chains.

Definition 1.5.8. The complement of a graph G is a graph G on the same

vertices such that two vertices of G are adjacent if and only if they are not adjacent

in G.

Note that an independent set in a graph is a clique in the complement graph

and vice versa. In particular, α(G) = ω(G).

Conjecture 1.5.2 (Berge’s Weak Perfect Graph Conjecture). The graph G is

perfect if and only if G is perfect.

This conjecture was proved by Lovász in 1972. It is a consequence of the

following theorem. We remark that this is not the original way in which he proved

the conjecture.

Theorem 1.5.3 (Lovász). The graph G is perfect if and only if α(G0)ω(G0) ≥
n0

def
= |V (G0)| for every induced subgraph G0 of G.
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Proof. ⇒ It is true for every graph G0 that α(G0)χ(G0) ≥ n0. If G is perfect

then χ(G0) = ω(G0) for every induced subgraph G0 of G.

⇐ Suppose, to the contrary, that there exists a non-perfect graph G satisfying

the condition, and choose such a graph with |V (G)| minimal. So χ(G) > ω(G),

while χ(G0) = ω(G0) for each induced subgraph G0 6= G of G.

Claim. Let U ∈ V (G) be an independent set (here G is our counterexample).

Delete from G the vertices contained by U and all the edges between them, and

denote the resulting graph by G− U . Then we have ω(G− U) = ω(G).

Proof. It can be seen that either ω(G−U) = ω(G) or ω(G−U) = ω(G)−1 must

hold. Suppose, to the contrary, that the latter one holds. Since G−U is a proper

induced subgraph of G, it is perfect. We can colour it with ω(G) − 1 colours.

Doing so, we can colour U with the ω(G)th colour and we see that χ(G) ≤ ω(G).

This is a contradiction, since χ(G) > ω(G).

Let α
def
= α(G) and ω

def
= ω(G). Take an independent set A0 = {u1, u2, . . . , uα}

of size α in G. According to the claim, we have

ω(G− A0) = ω.

Also, since {ui} (i = 1, 2, . . . , α) is an independent set, we have ω(G − ui) = ω.

Since G− ui is a proper induced subgraph of G, it is perfect. Hence, it has an ω

colouring. Let

{Ai1 , Ai2 , . . . , Aiω}

be the set of different colour classes of the vertices of G − ui. Since Aij (j =

1, 2, . . . , ω) is a colour class, it is independent. Hence, by the claim, we have

ω(G− Aij) = ω.

From the two statements in boxes, we conclude that G−A0 contains a clique K0

of size ω, and G− Aij contains a clique Kij of size ω.

Claim. For all i = 1, 2, . . . , α and j = 1, 2, . . . , ω, we have

(i) |V (K0) ∩ Aij | = 1;

(ii) |V (Kij) ∩ A0| = 1;
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(iii) |V (Kij) ∩ Ars| = 1 for (i, j) 6= (r, s);

(iv) |V (Kij) ∩ Aij | = 0.

Proof. (i) Since K0 is a clique in G − A0 ≤ G − ui and Aij is an independent

set in G − ui, we infer that |V (K0) ∩ Aij | ≤ 1 for any j = 1, 2, . . . , ω. Since the

ω different sets Ai1 , Ai2 , . . . , Aiω form a partition of the vertices of G− ui, and the

size of K0 is ω, we must have |V (K0) ∩ Aij | = 1 for all j = 1, 2, . . . , ω.

(ii) Since Kij is a clique in G− Aij ≤ G and A0 is an independent set in G, we

infer that |V (Kij) ∩ A0| ≤ 1. Similarly, |V (Kij) ∩ Ais | ≤ 1 for all s = 1, 2, . . . , ω.

Using this, and (iv), we find

∣∣V
(
Kij
)
∩ (V (G)− ui)

∣∣ =
∣∣∣∣∣V
(
Kij
)
∩

•⋃

1≤s≤ω

Ais

∣∣∣∣∣ =
∣∣∣∣∣

•⋃

1≤s≤ω

V
(
Kij
)
∩ Ais

∣∣∣∣∣

=
•⋃

1≤s≤ω

∣∣V
(
Kij
)
∩ Ais

∣∣ ≤ ω − 1.

Since |V (Kij) ∩ V (G)| = |V (Kij)| = ω, we obtain that ui ∈ V (Kij), whence

|V (Kij) ∩ A0| = 1. Moreover, |V (Kij) ∩ Ais | = 1 for all s = 1, 2, . . . , ω, s 6= j.

(iii) In the previous part of the proof, we showed that |V (Kij) ∩Ais | = 1 for all

s = 1, 2, . . . , ω, s 6= j. Therefore, it is enough to prove that |V (Kij) ∩ Ars| = 1

for r 6= i. Since Kij is a clique in G − Aij ≤ G and Ars is an independent set

in G, we infer that |V (Kij) ∩ Ars| ≤ 1. From the previous part of the proof,

V (Kij)∩A0 = {ui}, whence |V (Kij) ∩ (V (G)− ur)| = |V (Kij) ∩ V (G)| = ω for

r 6= i. Since

∣∣V
(
Kij
)
∩ (V (G)− ur)

∣∣ =
∣∣∣∣∣V
(
Kij
)
∩

•⋃

1≤s≤ω

Ars

∣∣∣∣∣ =
∣∣∣∣∣

•⋃

1≤s≤ω

V
(
Kij
)
∩ Ars

∣∣∣∣∣

=
•⋃

1≤s≤ω

∣∣V
(
Kij
)
∩ Ars

∣∣ ≤ ω,

we must have equality, i.e., |V (Kij) ∩ Ars| = 1 for r 6= i.

(iv) Since Kij is a clique in G − Aij and Aij is the set of vertices in G that are

not in G− Aij , it follows that |V (Kij) ∩ Aij | = 0.
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Let v1, v2, . . . , vn be the vertices of G. Take the characteristic vectors of the

sets A0, A11 , A12 , . . . , Aαω . The characteristic vector of a set of vertices is an n-

dimensional vector whose kth coordinate is 1 if the set contains vk and 0 otherwise.

Form a matrix A whose ℓth row is the characteristic vector of Aℓ as a row vector

(ℓ = 0, 11, 12, . . . , αω). Hence, A is an αω + 1 × n matrix. Similarly, take the

characteristic vectors of the sets V (K0), V (K11), V (K12), . . . , V (Kαω), and form

a matrix B whose ℓth column is the characteristic vector of V (Kℓ) as a column

vector (ℓ = 0, 11, 12, . . . , αω). Thus, B is an n× αω + 1 matrix.

It is easy to see that the product matrix AB counts the elements in the intersec-

tions of the sets A0, A11 , A12 , . . . , Aαω with the sets V (K0), V (K11), V (K12), . . . ,

V (Kαω). More precisely, the (s, t)th element of AB is |V (Kt) ∩ As| for s, t =

0, 11, 12, . . . , αω. Therefore, by the second claim, AB is an αω+1×αω+1 matrix

with zeros in the diagonal and 1 elsewhere. We have rank(AB) = αω + 1 (the

columns are linearly independent), and rank(A) ≤ n (the number of columns is

always an upper bound). Therefore,

αω + 1 = rank(AB) ≤ rank(A) ≤ n,

whence, αω < n. This is a contradiction, since G satisfies the assumption of the

theorem.

Proof of the Weak Perfect Graph Conjecture. Let G be a graph. First,

we show that the complement operation is a bijection between the induced sub-

graphs of G and the induced subgraphs of G. Since the complement operation is

idempotent (i.e., G0 = G0), it is enough to show that for any induced subgraph

G0 of G, the G0 is an induced subgraph of G.

Suppose that G0 is induced by S ⊆ V (G). Clearly, V (G0) = V (G0) = S and

uv ∈ E
(
G0

) by the definition
of the complement⇐⇒ uv /∈ E (G0)

by the definition
of the induced subgraph⇐⇒ uv /∈ E (G)

by the definition
of the complement⇐⇒ uv ∈ E

(
G
)
,

whence G0 is an induced subgraph of G.

Now, by Lovász’s Theorem, a graph G is perfect if and only if

α (G0)ω (G0) ≥ |V (G0)| ⇔ ω
(
G0

)
α
(
G0

)
≥ |V (G0)| ⇔ ω

(
G0

)
α
(
G0

)
≥
∣∣V
(
G0

)∣∣ ,

for every induced subgraph G0 of G. By the previous argument, as G0 runs

through the induced subgraphs of G, the G0 runs through the induced subgraphs
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of G. Hence, the above is equivalent to the fact that G is perfect.

Definition 1.5.9. A complete bipartite graph, G = (V1+V2, E), is a bipartite

graph such that for any two vertices, v1 ∈ V1 and v2 ∈ V2, we have v1v2 ∈ E.

The following theorem is an other example of a combinatorial statement that

can be proved by linear algebraic methods.

Theorem 1.5.4 (Graham–Pollak). Let G1, G2, . . . , Gm be subgraphs of the com-

plete graph Kn. Suppose that

(i) each Gi is a complete bipartite graph (1 ≤ i ≤ m);

(ii) ∪m
i=1E(Gi) = E(Kn);

(iii) E(Gi) ∩ E(Gj) = ∅ whenever i 6= j.

Then m ≥ n− 1.

Proof. Suppose that E(Kn) = E(G1)∪̇E(G2)∪̇ · · · ∪̇E(Gm). Let us denote by

x1, x2, . . . , xn the vertices of Kn. Consider the complete bipartite graph Gi and

denote by Ai and Bi the the two independent sets of its vertices. If Ai contains pre-

cisely the vertices xi1 , xi2 , . . . , xiℓ then assign the polynomial PAi
(xi1 , xi2 , . . . , xiℓ) =

xi1 + xi2 + · · · + xiℓ to Ai. Similarly, we can assign a polynomial QBi
to Bi. If

we expand the product PAi
QBi

, we get a formal sum of the edges of Gi (since Gi

is a complete bipartite graph), e.g., the term xrxs corresponds to the edge xrxs.

Hence, by the assumptions (ii) and (iii), it follows that

m∑

i=1

PAi
QBi

=
∑

1≤i<j≤n

xixj =
1

2



(

n∑

i=1

xi

)2

−
n∑

i=1

x2
i


 .

Assume, to the contrary, that m < n − 1. Consider the following system of

m+ 1 < n equations:

PA1 = 0, PA2 = 0, . . . , PAm = 0,
n∑

i=1

xi = 0.
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Since the number of variables (= n) is strictly larger than the number of equations,

the system must have a non-trivial solution α1, α2, . . . , αn, say. It follows that

0 =
m∑

i=1

PAi
(α1, α2, . . . , αn)QBi

(α1, α2, . . . , αn) =
1

2



(

n∑

i=1

αi

)2

−
n∑

i=1

α2
i




= −1

2

n∑

i=1

α2
i < 0,

which is a contradiction.

Remark. It is not hard to show that the bound m ≥ n− 1 is sharp.

1.6 Chordal graphs

Definition 1.6.1. A graph G is chordal if and only if Ck 6≤ G as an induced

subgraph for any k ≥ 4. In other words a graph G is chordal if each of its cycles

of four or more vertices has a chord, which is an edge joining two vertices that

are not adjacent in the cycle.

Theorem 1.6.1. The interval graphs are chordal.

Proof. Suppose that we have a cycle v1v2v3 . . . vℓv1 with ℓ > 3. Denote by

Ii = [ai, bi] the interval that corresponds to the vertex vi in our interval graph G

(1 ≤ i ≤ n). After a possible renumbering, we can assume that b1 ≤ bi for all

2 ≤ i ≤ n. Take the leftmost right endpoint: b1. Consider the neighbours v2, vℓ
of v1. By the assumption, b1 ≤ b2 and b1 ≤ bℓ. This, together with the facts

I1 ∩ I2 6= ∅ and I1 ∩ Iℓ 6= ∅ implies b1 ∈ I2, Iℓ. Thus, I2 ∩ Iℓ 6= ∅ which means that

v2vℓ is a chord of our cycle.

Definition 1.6.2. Consider two graphs G1 and G2. Suppose that we have a clique

of size t in both of them consisting of the set of vertices V1 ⊆ V (G1) and V2 ⊆
V (G2). Form a new graph G whose vertex set is V (G) = V (G1) ∪ V (G2)/∼, where

∼ means that we identify each vertex from V1 with a vertex from V2 (this can be

done in t! ways). The set of edges of G is E(G) = E(G1) ∪ E(G2)/≈, where ≈
means that we identify each edge v1u1 ∈ E(G1) with v2u2 ∈ E(G2) if and only if
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we identified v1 with v2 and u1 with u2 by ∼. This G is the pasting of G1 and G2

along a clique of size t (see Figure 1.12).

Figure 1.12. Pasting along a clique.

Theorem 1.6.2. A graph is chordal if and only if it can be obtained by means of

a sequence of pastings along cliques starting with complete graphs.

Proof. ⇐ By induction on the number of complete graphs we pasted. If no

pasting required, i.e., the graph is a single complete graphs, than it is obviously

chordal. Now, suppose that we have a graph G1 which was obtained by means of

a sequence of pastings along cliques starting with k complete graphs (k ≥ 1). We

paste a complete graph G2 and G1 together along a clique S. We need to prove

that the resulting graph G is chordal. Suppose that Cℓ ∈ G for ℓ ≥ 4.

If Cℓ lies entirely in G1 or G2, than it has a chord. Indeed, by the induction

hypothesis, G1 is chordal and by assumption, G2 is complete.

Assume that Cℓ contains vertices v1 ∈ V (G1) and v2 ∈ V (G2) that are not in

S. Clearly, v1v2 /∈ E(G). Therefore, Cℓ must have two vertices in S, x and y, say

(see Figure 1.13). Since S is a clique, xy ∈ E(G), which is a chord of Cℓ.

Figure 1.13

⇒ Suppose that G is chordal. We need to prove that it can be obtained by

means of a sequence of pastings along cliques starting with complete graphs. We
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proceed by induction on |V (G)|. We can assume that G is connected. Indeed, if

G1, G2, . . . , Gk are the connected components of G, then we can obtain G from

them by a sequence of pastings along empty cliques. Hence, it is enough to show

that each Gi has the required property (1 ≤ i ≤ k). If |V (G)| = 1 or 2, the

statement is obvious.

Suppose that the statement is true for chordal graphs with vertices less than

n. Assume that |V (G)| = n. If G = Kn, the full graph on n vertices, we are

done. Otherwise, there exist x, y ∈ V (G) such that xy /∈ V (G). Take a minimal

S ∈ V (G) that separates x and y, i.e., x and y are in distinct components of G−S.

Not that S can not be empty, since G is connected.

Let V1 denote the set of vertices of the component of x in G − S. Similarly,

denote by V2 the set of vertices of the component of y in G− S. Of course, G− S

may have other components beside these.

Claim. The set S forms a clique.

Proof. If |S| = 1, we are done. Suppose that |S| > 1. Let u and v be two

different vertices in S. We need to show that uv ∈ E(G). There exists x1 ∈ V1

such that x1u ∈ E(G). Otherwise, S − u would be a set that separates x and y,

and |S−u| < |S| which is a contradiction since S was minimal. Similarly, x2 ∈ V1

and y1, y2 ∈ V2 such that x2v ∈ E(G), y1u ∈ E(G) and y2v ∈ E(G). Since in V1

(resp. V2) are connected in G − S, there exists a path between x1 and x2, and

there exists a path between y1 and y2. In this way we obtain a path from u to v in

V1 and another path from u to v in V2. Choose x1, x2 and the path between them

so that the resulting path from u to v in V1 is the shortest possible. Similarly for

y1, y2 an the path in V2 (see Figure 1.14).

Figure 1.14

So we have obtained a cycle C in G that contains u and v. Since this cycle also

has to contain at least one point in V1 and one point V2, its length is at least 4.
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Since G is chordal, C must have a chord. If the chord is uv, we are done. Otherwise

there are three different cases.

(i) The chord connects a vertex from V1 to a vertex from V2. This is not possible,

since V1 and V2 are the set of vertices of disjoint components in G− S.

(ii) The chord connects two vertices in V1 (resp. V2). This is not possible, since

in this way we would have a shorter path in V1 (resp. V2) from u to v.

(iii) The chord connects u (resp. v) with a vertex in V1. This is not possible,

because then, we would have been able to choose a shorter path in V1 from

u to v. Similarly, we can not have a chord that connects u (resp. v) with a

vertex in V2.

Therefore, the chord must be uv, so uv ∈ E(G).

Thus, we have seen that S is a clique. Now, let V ′
2 = V2, the set of vertices

of the component of y in G − S. Let V ′
1 = V (G − S) − V ′

2 , the set of vertices of

all the other components in G− S. Finally, let G1 and G2 be the graphs induced

by V ′
1 ∪ S and V ′

2 ∪ S, respectively. Then G is the pasting of G1 and G2 along

the clique S. Since x /∈ V ′
2 ∪ S = V (G2) and y /∈ V ′

1 ∪ S = V (G1), we have

|V (G1)| ≤ |V (G)| − 1 = n− 1 and |V (G2)| ≤ |V (G)| − 1 = n− 1. Since both G1

and G2 are induced subgraphs of the chordal graph G, they are chordal. By the

induction hypothesis, G1 and G2 were obtained by means of a sequence of pastings

along cliques starting with complete graphs. Since G is the pasting of G1 and G2

along the clique S, we deduce that G is obtained by a sequence of pastings along

cliques starting with complete graphs.

Corollary 1.6.3. Chordal graphs are perfect.

Proof. Since the full graphs are perfect, it is enough to show that pasting preserves

perfectness. For this, it is enough that χ(Gi) = ω(Gi) for i = 1, 2, and G is

obtained by pasting G1 and G2 along a clique, implies χ(G) = ω(G). This is

enough, because

(i) an induced subgraph of a graph G obtained by pasting G1 and G2 along

a clique S, is the pasting of an induced subgraph of G1 with an induced

subgraph of G2 along a clique S ′ ⊆ S;

(ii) an induced subgraph of a full graph is a full graph.
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Therefore, suppose that G obtained by pasting G1 and G2 along a clique S. Let

χi
def
= χ(Gi) and ωi

def
= ω(Gi) for i = 1, 2.

Claim. We have

(i) χ(G) = max {χ1, χ2};

(ii) ω(G) = max {ω1, ω2}.

Proof. (i) Colour G1 with colours 1, 2, . . . , χ1. Call this colouring c1. Sim-

ilarly, colour G2 with colours 1, 2, . . . , χ2, and call this colouring c2. Taking a

permutation of {1, 2, . . . , χ2} if necessary, we may assume that the vertices in S

have the same colour in both these colourings. Then c
def
= c1 ∪ c2 : V (G) →

{1, 2, . . . ,max {χ1, χ2}} is a proper colouring. Thus, χ(G) ≤ max {χ1, χ2}.
On the other hand, χ(G) ≥ χi for i = 1, 2, since G1 is isomorphic to a subgraph

of G induced by V (G)− V (G2) and G2 is isomorphic to a subgraph of G induced

by V (G)− V (G1). Hence, χ(G) ≥ max {χ1, χ2}.
(ii) By taking a maximal clique in G, and noting that there are no edges between

V (G1) − S and V (G2) − S, we see that this clique must be entirely in V (G1) or

V (G2). Hence, its size is at most max {ω1, ω2}, i.e., ω(G) ≤ max {ω1, ω2}.
On the other hand, ω(G) ≥ ωi for i = 1, 2, since G1 is isomorphic to a subgraph

of G induced by V (G)− V (G2) and G2 is isomorphic to a subgraph of G induced

by V (G)− V (G1).

Thus, if we also assume that χi = ωi for i = 1, 2, we have, by the claim, that

χ(G) = max {χ1, χ2} = max {ω1, ω2} = ω(G).

Definition 1.6.3. Suppose that T is a tree, and Ti ≤ T is a subtree (i = 1, 2, . . . , n).

We construct a graph G in the following way. The vertices of G are the trees

T1, T2, . . . , Tn. We connect to vertices by an edge if they share a common vertex

as subtrees. The resulting G is called the intersection graph of the subtrees

T1, T2, . . . , Tn of the tree T .

Exercise 1.6.1 (Gavril’s Theorem). A graph G is chordal if and only if G can be

obtained as an in intersection graph of subtrees T1, T2, . . . , Tn of a tree T . (Hint:

use the lemma below.)
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Lemma 1.6.4 (Subtrees of a tree have the one-dimensional Helly-property).

Suppose that T is a tree, and Ti ≤ T is a subtree (i = 1, 2, . . . , n), such that

V (Ti) ∩ V (Tj) 6= ∅ for all i 6= j. Then ∩n
i=1V (Ti) 6= ∅.

Conjecture 1.6.5 (Berge’s Strong Perfect Graph Conjecture). The graph G is

perfect if and only if G does not contain any C2k+1 or C2k+1 as an induced subgraph

for k ≥ 2.

A proof by Chudnovsky, Robertson, Seymour, and Thomas was announced in

2002 and published by them in 2006.

1.7 Plane and planar graphs

Recall that a planar graph is a graph that can be embedded in the plane, i.e.,

it can be drawn on the plane in such a way that its edges intersect only at their

endpoints. Such a drawing is called a plane graph.

Consider the graphs K5 and K3,3 (the full bipartite graph on 6 vertices, where

each vertex class has 3 vertices). Are these graphs planar? Figure 1.15 suggests

they are not.

Figure 1.15. The graphs K5 and K3,3 are not planar.

To give a rigorous proof, we need the following theorem.

Theorem 1.7.1 (Euler’s formula). Let G be a connected plane graph with n

vertices, e edges and f faces (including the external or unbounded face). Then

e+ 2 = n+ f .

Proof. We proceed by induction on e. Since the graph is connected, e ≥ n− 1. If

e = n−1, then G is a tree. In this case, e = n−1, n = n, f = 1, i.e., e+2 = n+f

holds. Suppose that e ≥ n. In this case we have at least one cycle in G. Delete
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one edge of the cycle. The resulting graph has e − 1 edges, n vertices and f − 1

faces. By the induction hypothesis, (e− 1)+ 2 = n+(f − 1), i.e., e+2 = n+ f .

Theorem 1.7.2. Let G be a connected planar graph with n ≥ 3 vertices and e

edges. Then e ≤ 3n− 6.

Proof. Take a plane representation of G. Let f be the number of faces of the

graph G. Every face is bounded by at least 3 edges (this is true for the unbounded

face as well). Hence, since every edge is a boundary of two faces, we have 2e ≥ 3f .

By Euler’s formula, f = e− n+2, which gives 2e ≥ 3f ≥ 3e− 3n+6. Solving for

e yields e ≤ 3n− 6.

For K5, we have e = 10 and n = 5. Thus, e ≤ 3n − 6 does not hold, i.e., K5

can not be planar. However, for K3,3 the inequality certainly holds.

Theorem 1.7.3. Let G be a connected, triangle-free planar graph with n ≥ 3

vertices and e edges. Then e ≤ 2n− 4.

Proof. Take a plane representation of G. Let f be the number of faces of the

graph G. Since G is triangle-free, every face is bounded by at least 4 edges (this

is true for the unbounded face as well). Hence, since every edge is a boundary

of two faces, we have 2e ≥ 4f . By Euler’s formula, f = e − n + 2, which gives

2e ≥ 4f ≥ 4e− 4n+ 8. Solving for e yields e ≤ 2n− 4.

For the triangle-free graph K3,3, we have e = 9 and n = 6. Thus, e ≤ 2n − 4

does not hold, i.e., K3,3 can not be planar.

Definition 1.7.1. A subdivision of a graph G is a graph resulting from the

subdivision of edges in G. The subdivision of some edge uv yields a graph

containing one new vertex w, and with an edge set replacing uv by two new edges,

uw and wv.

Definition 1.7.2. A graph H is a topological subgraph of the graph G if a

subdivision of H is a isomorphic to a subdivision of a subgraph of G. Equivalently,

H is a topological subgraph of G if H can be obtained from G by deleting edges,

deleting vertices, subdividing edges, and dissolving degree 2 vertices (which means

deleting the vertex and making its two neighbours adjacent).
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Theorem 1.7.4 (Kuratowski). A graph G is planar if and only if it does not

contain K5 or K3,3 as topological subgraphs.

Exercise 1.7.1. Prove, in two different ways, that the so-called Petersen graph

(Figure 1.16) is not planar.

Figure 1.16. The Petersen graph.

Definition 1.7.3. A contraction of a graph G is a graph resulting from the

contraction of edges in G. The edge contraction operation occurs relative to a

particular edge in the graph. The edge e is removed and its two adjacent vertices,

u and v, are merged into a new vertex w, where the edges adjacent to w each

correspond to an edge adjacent to either u or v.

Definition 1.7.4. A graph H is a minor of the graph G if H is a contraction

of a subgraph of G. Equivalently, H is a topological subgraph of G if H can be

obtained from G by deleting edges, deleting vertices, and contracting some edges.

Theorem 1.7.5 (Wagner). A graph G is planar if and only if it does not contain

K5 or K3,3 as minors.

Theorem 1.7.6. Every planar graph G is 5-colourable, i.e., χ(G) ≤ 5.

Proof. Let G be a planar graph and take a plane representation of it. We proceed

by induction on the number of vertices. It is obvious the theorem is true for a

graph with only one vertex.
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First, we show that G has a vertex with degree at most 5. Suppose, to the

contrary, that every vertex of G has degree 6 or more. By Theorem 1.7.2, we have

∑

v∈V (G)

d (v) = 2e ≤ 2 (3n− 6) = 6n− 12.

However, if every vertex has degree greater than 5 as we supposed,
∑

v∈V (G) d (v) ≥
6n, which is a contradiction. Therefore, G has at least one vertex with at most 5

edges, which we will call x. Remove that vertex x from G to create another graph,

G′. This G′ is still a planar graph. Therefore, by the induction hypothesis, G′ is

5-colourable. We colour it with 5 colours.

If all five colours were not connected to x, then we can give x a missing colour

and thus, we obtain an 5-colouring of G.

If all five colours were connected to x, we examine the five vertices x was

adjacent to, and call them y1, y2, y3, y4 and y5 (in order around x). We colour yi
with colour i (1 ≤ i ≤ 5).

We now consider the subgraph G1,3 of G
′ induced by the vertices coloured with

colour 1 and 3. If there is no walk between y1 and y3 in G1,3, then we can simply

switch the colours 1 and 3 in the component of G1,3 containing y1. Thus, x is no

longer adjacent to a vertex of colour 1, so we can colour it with colour 1.

Figure 1.17

Suppose that there is a walk between y1 and y3 in G1,3. Consider the subgraph

G2,4 of G′ induced by the vertices coloured with colour 2 and 4. However, since

G is planar and there is a cycle in G that consists of the walk from y1 to y3, x,

and the edges xy1 and xy3, clearly y2 cannot be connected to y4 within G′ (the

cycle encloses either y2 or both y4 and y5, see Figure 1.17). Thus, we can switch
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the colours 2 and 4 in the component of G2,4 containing y2. Thus, x is no longer

adjacent to a vertex of colour 2, so we can colour it with colour 2.

Definition 1.7.5. Let G be a graph. For every v ∈ V (G), take a finite subset

L(v) of the positive integers. The L(v) is the colour list which corresponds to v.

A map c : V (G) → Z
+, c(v) ∈ L(v), is called a (proper) list colouring of G if

c(x) 6= c(y) for all xy ∈ E(G). The positive integer

χℓ(G)
def
= min {k | G has a list colouring for every set of lists L(v),

v ∈ V (G), |L(v)| = k}

is called the list chromatic number of G.

Clearly, χℓ(G) ≥ χ(G), and by the greedy algorithm χℓ(G) ≤ ∆(G) + 1.

Theorem 1.7.7. For all k ≥ 3, there exists a graph G such that χ(G) = 2 and

χℓ(G) ≥ k.

Proof. Let k = 3 and consider the graph K3,3 with the list colouring shown in

Figure 1.18. It is easy to check that this choice of colour lists forces χℓ to be at

least 3.

Figure 1.18

The proof for higher k’s is left as an exercise.

Exercise 1.7.2. Prove Theorem 1.7.7 for k ≥ 4.

Theorem 1.7.8 (Thomassen). If G is planar then χℓ(G) ≤ 5.

The trick is to find a suitable extension of the theorem. The theorem follows

from the following stronger lemma.
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Lemma 1.7.9. Let G be a planar graph which consists of a cycle C: v1v2 . . . vkv1,
and vertices and edges inside C such that each bounded face is bounded by a triangle.

Suppose that v1 and v2 are coloured with colours 1 and 2, respectively, and that

L(v) is a list of 3 colours if v ∈ V (C) − {v1, v2} and 5 colours if v ∈ V (G − C).
Then the colouring of v1 and v2 can be extended to a list colouring of G.

Proof. By induction on the number of vertices of G. If |V (G)| = 3, then G = C
and there is nothing to prove. We proceed to the induction step.

If C has a chord vivj, where 2 ≤ i ≤ j−2 ≤ p−1 (vp+1 = v1), then we apply the

induction hypothesis to the cycle v1v2 . . . vivjvj+1 . . . v1 and its interior and then

to the cycle vjvivi+1 . . . vj−1vj and its interior.

Figure 1.19

Assume that C has no chord. Let v1, u1, u2, . . . , um, vk−1 be the neighbours of

vk in that clockwise order around vk (see Figure 1.19). As the interior of C is trian-

gulated, G contains the path P : v1u1u2 . . . umvk−1. As C is chordless, P ∪ (C − vk)

is a cycle C ′. Let a, b be two distinct colours in L(vk) \ {1} (it is not necessary

to have 1 ∈ L(vk)). Now delete from L(ui) the colours a, b if it contains them,

otherwise delete two arbitrary colours (1 ≤ i ≤ m). The other lists in G remain un-

changed. This yields a new colour list L′. Then we apply the induction hypothesis

to C ′ and its interior and the new list L′. We complete the colouring by assign-

ing a or b to vk such that vk and vk−1 get distinct colours (v1 has colour 1 6= a, b).

Definition 1.7.6. Let G be a graph. The map c : E(G) → Z
+ is called an

(proper) edge colouring of G if c(e) 6= c(f) for all e, f ∈ E(G) that share a

common vertex. The positive integer

χ′(G)
def
= min {k | G has an edge colouring with colours 1, 2, . . . , k}

is called the edge chromatic number (or chromatic index) of G.
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Clearly, ∆(G) ≤ χ′(G). Vizing’s Theorem states that χ′(G) ≤ ∆(G) + 1.

Similarly to χℓ, we can define the list chromatic index χ′
ℓ. Clearly, ∆(G) ≤ χ′

ℓ(G).

Conjecture 1.7.10. For any graph G, we have χ′
ℓ(G) ≤ ∆(G) + 1, moreover,

χ′
ℓ(G) = χ′(G).



Chapter 2

Ramsey theory

2.1 The pigeonhole principle

The pigeonhole principle states that, if n objects (pigeons) are put into m pigeon-

holes, then there exists a pigeonhole that contains at least ⌈n/m⌉ objects, and

similarly, there exists a pigeonhole that contains at most ⌊n/m⌋ objects.

Proposition 2.1.1. Let S ⊆ {1, 2, . . . , 2n} such that |S| = n+1. Then there exist

x and y in S that are coprime.

Proof. We prove that there exist x and y in S which are consecutive. This is

enough, since consecutive numbers are coprime (their difference is 1, so no number

greater than 1 can divide both of them). Let S1 = {1, 2} , S2 = {3, 4} , . . . , Si =

{2i− 1, 2i} , . . . , Sn = {2n− 1, 2n}. These are n different pigeonholes. Since the

set S is of size n+1, by the pigeonhole principle, there must be an Si that contains

two different elements of S (1 ≤ i ≤ n). This implies that there are two elements

x and y in S such that x = 2i− 1, and y = 2i, so x and y are consecutive.

Proposition 2.1.2. Let S ⊆ {1, 2, . . . , 2n} such that |S| = n+1. Then there exist

x and y in S such that x | y.

33
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Proof. Let S1 =
{
2k | k ≥ 0, 2k ≤ 2n

}
. Similarly, let

S2 =
{
3 · 2k | k ≥ 0, 3 · 2k ≤ 2n

}
,

S3 =
{
5 · 2k | k ≥ 0, 5 · 2k ≤ 2n

}
,

S4 =
{
7 · 2k | k ≥ 0, 7 · 2k ≤ 2n

}
,

...

Sn = {2n− 1} .

Clearly, we have {1, 2, . . . , 2n} = ∪̇n
i=1Sn. Since we choose n + 1 elements from

this set, by the pigeonhole principle, there must be two from the same Si for some

1 ≤ i ≤ n. But for any x, y ∈ Si, either x | y or y | x.

Proposition 2.1.3 (Erdős–Szekeres). For n ≥ 0, let x1, x2, . . . , xn2+1 be a finite

sequence of real numbers, such that xi 6= xj for i 6= j. Then either there exist

i1 < i2 < · · · < in+1 such that xi1 < xi2 < · · · < xin+1, or there exist j1 < j2 <

· · · < jn+1 such that xj1 > xj2 > · · · > xjn+1.

Proof. Denote by f(i) the length of the longest monotone increasing subsequence

starting with xi. If f(i) ≥ n+1 for some i, then we are done (we have the first case).

So we may assume that 1 ≤ f(i) ≤ n. Since 1 ≤ i ≤ n2 + 1, by the pigeonhole

principle, there exist j1 < j2 < · · · < jn+1 such that f(j1) = f(j2) = · · · = f(jn+1).

Clearly, if xj1 < xj2 , then f(j1) > f(j2). So we must have xj1 > xj2 . Similarly,

xj2 > xj3 and so on. Hence, we have xj1 > xj2 > · · · > xjn+1 as required.

Exercise 2.1.1. Prove that the Erdős–Szekeres theorem is sharp, i.e., it does not

hold in general for n2 different real numbers.

2.2 Ramsey’s Theorem

Theorem 2.2.1 (Ramsey’s Theorem, Special Case 1). For every k, ℓ ≥ 2 there

exists a positive integer R(k, ℓ), such that if we 2-colour the edges of the complete

graph on n ≥ R(k, ℓ) vertices with colours red and blue, then there exists either a

red Kk or a blue Kℓ.
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Note that here colouring does not mean proper colouring, we just simply assign

colour 1 or colour 2 into each edge of the graph.

Proof. We shall show that

R(k, ℓ) =

(
k + ℓ− 2

k − 1

)
is a good choice.

It does not mean that this is the best possible. We prove by induction on k+ ℓ. If

k, ℓ = 2, by the above choice, R(2, 2) = 2. It is obvious that K2 has the required

property.

Now consider Kn with n ≥
(
k+ℓ−2
k−1

)
. Colour the edges with colours red and

blue. Choose a vertex v from the graph, and partition the remaining vertices into

two sets R and B, such that for every vertex u:

(i) u ∈ R if uv is red;

(ii) u ∈ B if uv is blue.

We claim that either

|R| ≥
(
k + ℓ− 3

k − 2

)
or |B| ≥

(
k + ℓ− 3

k − 1

)
.

Otherwise we would have

n ≥
(
k + ℓ− 2

k − 1

)
=

(
k + ℓ− 3

k − 2

)
+

(
k + ℓ− 3

k − 1

)
≥ |R|+ 1 + |B|+ 1 = n+ 1,

which is a contradiction. Suppose that |R| ≥
(
k+ℓ−3
k−2

)
holds. By the induction

hypothesis, the complete subgraph of Kn, induced by R has a blue Kℓ or a red

Kk−1. In the former case, we are done. In the latter case, the complete subgraph

of Kn, induced by the red Kk−1 and v, is a red Kk by the definition of R. The

case when |B| ≥
(
k+ℓ−3
k−1

)
, is analogous.

Theorem 2.2.2 (Ramsey’s Theorem, Special Case 2). For every k ≥ 2 and

r1, r2, . . . , rk ≥ 2 there exists a positive integer Rk(r1, r2, . . . , rk) such that if we

k-colour the edges of Kn, with n ≥ Rk(r1, r2, . . . , rk), then there exists either a Kr1

in colour 1, or a Kr2 in colour 2,. . ., or a Krk in colour k.
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This number Rk(r1, r2, . . . , rk) is called the Ramsey number for r1, r2, . . . , rk.

Proof. The proof is again by induction, this time on the number of colours k.

The case k = 2 is exactly the previous theorem. Now let k > 2. We shall show

that

Rk (r1, r2, . . . , rk) ≤ Rk−1 (R2 (r1, r2) , . . . , rk) .

Note that the right-hand side contains only Ramsey numbers for k−1 colours and

2 colours, and therefore, by the inductive hypothesis, exists. So proving this will

prove the theorem. Call the number on the right-hand side as t. Consider the

complete graph Kt and colour its edges with k colours. Now “go colour-blind” and

pretend that r1 and r2 are the same colour. Thus the graph is now k− 1-coloured.

By the induction hypothesis, it contains either

(i) a complete graph Kri in colour i for some 3 ≤ i ≤ k, or

(ii) a complete graph KR2(r1,r2) coloured in the “blurred colour”.

In case (i), we are done. In case (ii), we recover our sight again and see from the

definition of R2(r1, r2) we must have either a complete graph Kr1 in colour 1, or a

complete graph Kr2 in colour 2. In either case the proof is complete.

Definition 2.2.1. An r-uniform hypergraph H is an ordered pair (S, E) where
S is a finite set (the set of vertices), and E = E(H ) ⊆

(
S
r

)
(the set of hyper-

edges). Here
(
S
r

)
is the set of all r-element subsets of S, so

∣∣(S
r

)∣∣ =
(|S|

r

)
. The

H is a complete r-uniform hypergraph, denoted by Kr
n, if it is an r-uniform

hypergraph and E(H ) =
(
S
r

)
, n = |S|.

Theorem 2.2.3 (Ramsey’s Theorem). For every r ≥ 2, k ≥ 2 and n1, n2, . . . , nk ≥
r there exists a positive integer Rr

k(n1, n2, . . . , nk) such that if we k-colour the

hyperedges of Kr
n, with n ≥ Rr

k(n1, n2, . . . , nk), then there exists either a Kr
n1

in

colour 1, or a Kr
n2

in colour 2,. . ., or a Kr
nk

in colour k.

Proof. Let k ≥ 2 be fixed. We prove the theorem by double induction:

(i) induction on r;

(ii) induction on n1 + n2 + · · ·+ nk.
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If r = 2 and n1, n2, . . . , nk ≥ 2 are arbitrary, then the conclusion is true; this is

Theorem 2.2.2.

Now, let r > 2, and assume that the conclusion of the theorem is true for r− 1

with any m1,m2, . . . ,mk ≥ r − 1.

Let n1, n2, . . . , nk ≥ r be arbitrary. If n1 = n2 = · · · = nk = r, then

Rr
k(r, r, . . . , r) = r satisfies the conditions. Indeed, suppose we have Kr

n for r ≤ n,

and we k-colour the hyperedges. Then there is an i ∈ {1, 2, . . . , k} such that there

is a hyperedge E ∈
(
[n]
r

)
of colour i. Then E gives us a Kr

r of colour i. Assume

now that the theorem is true for fixed k, r and any m1,m2, . . . ,mk ≥ r such that

m1 +m2 + · · ·+mk < n1 + n2 + · · ·+ nk. We will show that

Rr
k (n1, n2, . . . , nk) ≤ Rr−1

k (Rr
k (n1 − 1, n2, . . . , nk) , . . . , R

r
k (n1, n2, . . . , nk − 1))︸ ︷︷ ︸

R

+1.

This is enough, because the right-hand side only contains Ramsey numbers for

(r−1)-uniform hypergraphs, and r-uniform hypergraphs withm1+m2+· · ·+mk <

n1 + n2 + · · ·+ nk, so by the induction hypothesis, it exists.

To show that Rr
k (n1, n2, . . . , nk) ≤ R+ 1, take an Kr

n for some n ≥ R+ 1, and

k-colour it. We can assume that the set of vertices of Kr
n is [n]

def
= {1, 2, . . . , n}.

Remove the last vertex v = n from the set of vertices of Kr
n and take the (r − 1)-

uniform hypergraph on the remaining n − 1 vertices (which is the set [n− 1]),

Kr−1
n−1. For a hyperedge E ∈

(
[n−1]
r−1

)
of Kr−1

n−1, let the colour of E be the colour of

the hyperedge E ∪ {v} ∈
(
[n]
r

)
in the original colouring of Kr

n.

Now, because n ≥ R+1, we have n−1 ≥ R, so by the definition of R, with this

colouring of Kr−1
n−1 with k colours, we have for some i ∈ {1, 2, . . . , k}, a complete

(r− 1)-uniform subgraph of Kr−1
n−1 on Rr

k(n1, n2, . . . , ni − 1, . . . , nk) edges, which is

of colour i, i.e., a Kr−1
Rr

k(n1,n2,...,ni−1,...,nk)
of colour i. In other words, we have a subset

A of [n− 1] that is of size Rr
k(n1, n2, . . . , ni − 1, . . . , nk) and all (r− 1)-tuples of A

are of colour i in the new colouring of Kr−1
n−1.

Without loss of generality, we can assume that i = 1, so |A| = Rr
k(n1 −

1, n2, . . . , nk). By the definition of this Ramsey number, if we consider the orig-

inal colouring of Kr
n, then either there is a Kr

nj
of colour j in A for some j ∈

{2, 3, . . . , k}, or there is a Kr
n1−1 of colour 1 in A. In the first case, we have found

a Kr
nj

of colour j in Kr
n, for some j ∈ {2, 3, . . . , k}, so we are done. In the second

case, we have a Kr
n1−1 of colour 1 in A, i.e., we have a set B of vertices from A,

of size n1 − 1, such that the colour of any element of
(
B
r

)
is 1. Consider the set of

vertices B ∪ {v}. The size of this set is n1. Let E ∈
(
B∪{v}

r

)
be a hyperedge, and

determine the colour of E in the original colouring of Kr
n.
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If E ⊆ B, then this colour is 1, as we have just seen. If v ∈ E, then E −{v} ∈(
B

r−1

)
⊆
(

A
r−1

)
. Now recall that in the new colouring of Kr−1

n−1, all (r − 1)-tuples of

A were of colour 1. This means, by the definition of the new colouring of Kr−1
n−1,

that for all (r− 1)-tuples E ′ ⊆ A, the colour of E ′ ∪{v} in Kr
n was 1. Specifically,

for E ′ = E − {v}, the colour of E ′ ∪ {v} = E in Kr
n was 1.

Thus, we have seen that for all E ∈
(
B∪{v}

r

)
, the colour of E in Kr

n is 1, and

so, B ∪ {v} gives us a Kr
n1

of colour 1 in Kr
n.

Theorem 2.2.4 (Infinite Ramsey Theorem). If we 2-colour the edges of the infinite

complete graph KN with colours red and blue, then there exists either an infinite

red complete subgraph or an infinite blue complete subgraph.

Proof. Identify the vertices of KN with the set N. Choose v1 ∈ N. There are

infinitely many edges from v1, so we can find an infinite set B1 ⊂ N − {v1} such

that all edges from v1 to B1 have the same colour, c1.

Now choose v2 ∈ B1. There are infinitely many edges from v2 to vertices in

B1 − {v2}, so we can find an infinite set B2 ⊂ B1 − {v2} such that all edges from

v2 to B2 have the same colour, c2.

By induction, we obtain a sequence v1, v2, v3 . . . of distinct elements of N, and

a sequence c1, c2, c3, . . . of colours such that the edge vivj (i < j) has colour ci.

Since we have two colours, we must have ci1 = ci2 = ci3 = · · · for some infi-

nite subsequence. Then the set of vertices {vi1 , vi2 , vi3 , . . .} induces an infinite

monochromatic complete subgraph.

2.3 Applications

Theorem 2.3.1 (Schur’s Theorem). For every positive integer k, there exists a

positive integer n = n(k), such that for every k-colouring of the integers {1, 2, . . . , n},
one of the colour classes contains (not necessarily different) integers i, j and ℓ such

that i+ j = ℓ.

Proof. Let n = Rk(3, 3, . . . , 3) and k-colour the integers 1, 2, . . . , n. Now consider

the complete graph Kn with vertices labeled with the integers 1, 2, . . . , n. Colour

the edges of Kn as follows: an edge ab is coloured with the colour of the vertex

corresponding to the integer |a− b|.
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Now from the definition of Rk(3, 3, . . . , 3) and Theorem 2.2.2, Kn will definitely

contain a triangle in colour red, say. Let a < b < c be the vertices of the triangle.

Since the edges of the triangle are red, the vertices b− a, c− a and c− b are also

red in the original colouring of the integers. It only remains to take i = c − b,

j = b− a and ℓ = c− a to complete the proof.

Exercise 2.3.1. Prove the theorem when i, j and ℓ are different. (Hint: choose

n = Rk(4, 4, . . . , 4).)

Theorem 2.3.2 (Erdős–Szekeres). For every k ≥ 3 there is an n = n(k) such

that if n points are placed in the plane, with no three on a line, then there exist k

points in convex position, i.e., they constitute a convex k-gon.

To prove the theorem, we need two lemmas.

Lemma 2.3.3 (Klein). Any set of five points in the plane, with no three on a line,

has a subset of four points that form the vertices of a convex quadrilateral.

Proof. If the convex hull of the five points is a quadrilateral or a pentagon, we

are done.

Figure 2.1

If the convex hull is a triangle, the two points left inside the triangle define a

line that splits the triangle so that two of the triangle’s points are on one side of

the line. These two points plus the two interior points form a convex quadrilateral

(see Figure 2.1).

The statement of the lemma is sometimes called as the “Happy End Problem”.

The problem was so-named by Erdős when two investigators who first worked on
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the problem, Eszter Klein and György Szekeres, became engaged and subsequently

married.

Lemma 2.3.4. Suppose that we have k points in the plane, with no three on a

line. If any 4 points form the vertices of a convex quadrilateral, then these k points

constitute a convex k-gon.

Proof. Suppose that the set of k points S satisfies the requirements but they

do not constitute a convex k-gon. Then their convex hull is an ℓ-gon for some

ℓ ≤ k − 1, so at least one of the points s ∈ S is in the interior of this convex hull

(see Figure 2.2).

Figure 2.2

Triangulate the convex hull. Then s is in the interior of one of the triangles,

otherwise there would be three points in a line. Then the vertices of this triangle

are 3 different points from S, and together with s, they form the vertices of a tri-

angle. This contradicts the assumption that any 4 points from S form the vertices

of a convex quadrilateral.

Proof of Theorem 2.3.2. We show that n(k) = R4
2(k, 5) is enough. Suppose

S is a set of n ≥ n(k) points in the plane, with no three on a line. Consider the

complete 4-uniform hypergraph K4
n whose vertices are the points in S. Colour the

hyperedges of K4
n as follows. Let E ∈

(
S
4

)
be a hyperedge.

(i) If the convex hull of E is a quadrilateral, colour E with colour red;

(ii) if the convex hull of E is a triangle, colour E with colour blue.

By Ramsey’s Theorem, and the definition of n(k), either there is

(i) an S ′ ∈
(
S
k

)
such that each 4-tuple in S ′ is of colour red and therefore convex;
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(ii) or there is an S ′′ ∈
(
S
5

)
such that each 4-tuple in S ′′ is of colour blue and

therefore concave.

By Lemma 2.3.3, the case (ii) is impossible. So we must have case (i), i.e., there

exists a set S ′ ⊆ S of k points such that each 4-element subset of S ′ forms the

vertices of a quadrilateral. Lemma 2.3.4 then implies that S ′ constitutes a convex

k-gon.

2.4 Lower bounds for diagonal Ramsey numbers

In the proof of Theorem 2.2.1, we showed that

R(k, ℓ) ≤
(
k + ℓ− 2

k − 1

)
.

For the diagonal Ramsey numbers R2(k)
def
= R(k, k), this gives

R2(k) ≤
(
2k − 2

k − 1

)
< 22k−2.

This 22k−2 is not a rough estimate for the binomial coefficient, since, using Stirling’s

formula,
(
2k−2
k−1

)
∼ 22k−2√

π(k−1)
as k → +∞. We would like to obtain a non-trivial lower

bound for R2(k).

Theorem 2.4.1 (Erdős). For k ≥ 3, we have R2(k) > 2k/2.

Proof. By probabilistic method. In order to show that R2(k) > n, it is suffi-

cient to show that there exists a colouring of the edges of Kn that contains no

monochromatic Kk. Consider an edge colouring of Kn in which colours are as-

signed randomly. Let each edge be coloured independently, and such that for all

e ∈ E:

P(e is coloured red) = P(e is coloured blue) =
1

2
.

There are
(
n
k

)
copies of Kk in Kn. Let Ai be the event that the ith Kk is monochro-

matic (1 ≤ i ≤
(
n
k

)
). Then

P(Ai) = 2 ·
(
1

2

)(k2)
= 21−(

k
2),
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where the leading 2 is because there are two colours from which to choose. Take

n =
⌊
2k/2

⌋
, then

P(there exists a monochromatic Kk) = P(∪iAi) ≤
∑

i

P(Ai) =

(
n

k

)
21−(

k
2)

≤ nk

k!
21−

k(k−1)
2 ≤

(
2

k
2

)k

k!
21−

k2

2
+ k

2 =
21+

k
2

k!
.

For k = 3, 4, direct computation shows that 21+
k
2

k!
< 1. For k > 4, we can use the

inequality k! ≥
(
k
e

)k
, so 21+

k
2

k!
≤ 2

(√
2e
k

)k
< 2

(
4
k

)k
< 1. Therefore,

P(there does not exist a monochromatic Kk) > 0.

Hence, there exists a colouring with no monochromatic Kk.

Although Erdős’ proof shows that there is a colouring of Kn with no monochro-

matic Kk if n =
⌊
2k/2

⌋
, it does not give us a concrete colouring. The following

theorem is just a polynomial lower bound for R2(k), nevertheless, it is constructive.

Theorem 2.4.2 (Nagy). For k ≥ 4, we have R2(k) >
(
k−1
3

)
.

Proof. Take k − 1 points in the plane and consider all the
(
k−1
3

)
possible triples.

Define the graph G as follows. Let V (G) be the set of all triples and let G be the

complete graph on V (G). Colour an edge xy with colour red if |x ∩ y| = 1, and

with colour blue if |x ∩ y| = 0 or 2.

Claim. There is no red Kk.

Proof. Take the characteristic vectors of the vertices in R
k−1. Suppose, to the con-

trary, that we have a red Kk. Then there exist characteristic vectors v1, v2, . . . , vk
such that 〈vi, vj〉 = 1 for i 6= j, and 〈vi, vi〉 = 3 for all i = 1, 2, . . . , k. Here we used

the usual scalar product in R
k−1. Suppose that

λ1v1 + λ2v2 + · · ·+ λkvk = 0,

for some real numbers λ1, λ2, . . . , λk. Multiplying both sides with vi yields

λ1 + λ2 + · · ·+ 3λi + · · ·+ λk = 0.
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Summing up this for all i = 1, 2, . . . , k and dividing by 3, we obtain

λ1 + λ2 + · · ·+ λk = 0,

so by subtraction, 2λi = 0, i.e., λi = 0 for all i = 1, 2, . . . , k. Therefore,

v1, v2, . . . , vk are k different linearly independent vectors in the (k−1)-dimensional

space R
k−1, which is obviously a contradiction.

Claim. There is no blue Kk.

Proof. Take the characteristic vectors of the vertices in Z
k−1
2 . Suppose, to the con-

trary, that we have a blue Kk. Then there exist characteristic vectors u1, u2, . . . , uk

such that 〈ui, uj〉 = 0 or 2 = 0 for i 6= j, and 〈ui, ui〉 = 3 = 1 for all i = 1, 2, . . . , k.

Suppose that

µ1u1 + µ2u2 + · · ·+ µkuk = 0,

for some real numbers µ1, µ2, . . . , µk. Multiplying both sides with ui yields µi = 0

for all i = 1, 2, . . . , k. Therefore, u1, u2, . . . , uk are k different linearly independent

vectors in the (k − 1)-dimensional space Z
k−1
2 , which is a contradiction.

Hence, there exists a colouring with no monochromatic Kk in K(k−1
3 ), therefore,

R2(k) >
(
k−1
3

)
.

2.5 Van der Waerden’s Theorem

Theorem 2.5.1 (Van der Waerden’s Theorem). For any given k, ℓ ≥ 2, there is a

positive integerW (k, ℓ) such that for any k-colouring of the integers 1, 2, . . . ,W (k, ℓ),

there exists a monochromatic arithmetic progression of length ℓ.

The infinite version of the theorem is not true. Consider for example, the

colouring of the positive integers with colours red and blue. For every j ≥ 0, colour

the numbers in N∩ [22j , 22j+1) with colour red and the numbers in N∩ [22j+1, 22j+2)

with colour blue. Clearly, there is no monochromatic infinite arithmetic progres-

sion.

We shall deduce Van der Waerden’s Theorem from the following stronger result

we do not prove.
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Theorem 2.5.2 (Hales–Jewett Theorem). Consider the n-dimensional cube of

edge length ℓ:

Qn(ℓ)
def
= {(x1, x2, . . . , xn) | xi ∈ N, 0 ≤ xi ≤ ℓ− 1} .

It contains ℓn points. We say that the ℓ different points

(x11 , x12 , . . . , x1n) , (x21 , x22 , . . . , x2n) , . . . , (xℓ1 , xℓ2 , . . . , xℓn)

form a diagonal, if for each i ∈ {1, 2, . . . , n} we have

(i) x1i = x2i = · · · = xℓi or

(ii) x1i = 0, x2i = 1, . . . , xℓi = ℓ− 1 or

(iii) x1i = ℓ− 1, x2i = ℓ− 2, . . . , xℓi = 0.

Then for any given k, ℓ ≥ 2, there is a positive integer HJ(k, ℓ) such that for any

k-colouring of the points of Qn(ℓ) (n ≥ HJ(k, ℓ)), there exists a monochromatic

diagonal (of length ℓ).

In other words, the higher-dimensional, multi-player, ℓ-in-a-row generalization

of game of tic-tac-toe cannot end in a draw, no matter how large ℓ is, no matter

how many people k are playing, and no matter which player plays each turn,

provided only that it is played on a board of sufficiently high dimension HJ(k, ℓ).

It is known that

HJ (k, ℓ) ≥ 22
..
.2k

,

where the power-tower contains ℓ copies of 2.

Proposition 2.5.3. The Hales–Jewett Theorem implies Van der Waerden’s The-

orem, more precisely, we have

W (k, ℓ) ≤ ℓHJ(k,ℓ).

Proof. Consider the HJ
def
= HJ(k, ℓ)-dimensional cube of edge length ℓ. Define

the bijective map Φ : QHJ(ℓ) →
{
0, 1, 2, . . . , ℓHJ − 1

}
by the formula

Φ((x1, x2, . . . , xHJ)) = x1 + x2ℓ+ · · ·+ xHJℓ
HJ−1.

So we write the integers 0, 1, 2, . . . , ℓHJ−1 in base-ℓ. By Φ, a k-colouring of QHJ(ℓ)

corresponds to a k-colouring of the integers 0, 1, 2, . . . , ℓHJ − 1, and vice-versa. By
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the Hales–Jewett Theorem, for any k-colouring of the points of QHJ(ℓ), there exists

a monochromatic diagonal. Take such a diagonal

(x11 , x12 , . . . , x1HJ
), (x21 , x22 , . . . , x2HJ

), . . . , (xℓ1 , xℓ2 , . . . , xℓHJ
).

By the definition of a diagonal, Φ maps the ℓ (different) elements of this diagonal

to a monochromatic arithmetic progression of length ℓ. So for any k-colouring of

the integers 0, 1, 2, . . . , ℓHJ − 1, there exists a monochromatic arithmetic progres-

sion of length ℓ, i.e., W (k, ℓ) ≤ ℓHJ (= |
{
0, 1, 2, . . . , ℓHJ − 1

}
|).

Theorem 2.5.4. For k ≥ 2, we have W (2, k) >
√
k − 12(k−1)/2.

Proof. By probabilistic method. In order to show that W (2, k) > n, it is sufficient

to show that there exists a colouring of the integers 1, 2 . . . , n that contains no

monochromatic arithmetic progression of length k. Consider a colouring of the

integers 1, 2 . . . , n in which colours are assigned randomly. Let each number be

coloured independently, and such that for all i ∈ {1, 2, . . . , n}:

P(i is coloured red) = P(i is coloured blue) =
1

2
.

Let N(n, k) be the number of arithmetic progression of length k from the set

{1, 2, . . . , n}. An arithmetic progression is completely determined by its first term

a and its difference d. To obtain an arithmetic progression of length k from the

set {1, 2, . . . , n}, we can choose a at most n− 1 different ways, and we can choose

d at most
⌊
n−1
k−1

⌋
different ways. In general, not all such pairs give an arithmetic

progression of length k from the set {1, 2, . . . , n} (some terms may be strictly larger

than n). So N(n, k) ≤ (n− 1) ·
⌊
n−1
k−1

⌋
. Let Ai be the event that the ith arithmetic

progression of length k is monochromatic (1 ≤ i ≤ N(n, k)). Then

P(Ai) = 2 ·
(
1

2

)k

= 21−k,

where the leading 2 is because there are two colours from which to choose. Take

n =
⌊√

k − 12(k−1)/2
⌋
, then

P(there exists a monochromatic arithmetic progression of length k)

= P (∪iAi) ≤
∑

i

P (Ai) ≤ (n− 1) ·
⌊
n− 1

k − 1

⌋
· 21−k

<
n2

k − 1
21−k ≤

(√
k − 12(k−1)/2

)2

k − 1
21−k = 1.
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Therefore, the probability that there is no monochromatic arithmetic progression

of length k is larger than 0. Hence, there exists a colouring with no monochromatic

arithmetic progression of length k.

Exercise 2.5.1. Prove that W (2, 3) = 9.



Chapter 3

Set systems and extremal graph

theory

3.1 Extremal set families

Theorem 3.1.1 (Fisher’s inequality). Let A1, A2, . . . , Am be distinct subsets of a

set S such that |Ai ∩ Aj| = k for some fixed 1 ≤ k ≤ |S| and every i 6= j. Then

m ≤ |S|.

Proof. Let v1, v2, . . . , vm be the characteristic vectors of A1, A2, . . . , Am. Let

n
def
= |S|. Since dim vi = n for all 1 ≤ i ≤ m, it is enough to show that these

vectors are linearly independent. Assume to the contrary, that

m∑

i=1

λivi = 0,

with not all coefficients being zero. We have 〈vi, vj〉 = k for i 6= j, and 〈vi, vi〉 =
|Ai|. Therefore,

0 =

〈
m∑

i=1

λivi,
m∑

i=1

λivi

〉
=

m∑

i=1

λ2
i 〈vi, vi〉+

∑

1≤i 6=j≤m

λiλj 〈vi, vj〉

=
m∑

i=1

λ2
i |Ai|+

∑

1≤i 6=j≤m

λiλjk =
m∑

i=1

λ2
i (|Ai| − k) + k

(
m∑

i=1

λi

)2

.

Clearly, |Ai| ≥ k for all 1 ≤ i ≤ m and |Ai| = k for at most one i, since otherwise

the intersection condition would not be satisfied. But then the right-hand side is

47
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greater than 0 (because the last sum can vanish only if at least two of the coeffi-

cients λi are non-zero), a contradiction.

Let S be a set with n elements. In what follows, F denotes a family of subsets

of S, i.e., F ⊆ 2S
def
= P(S).

Proposition 3.1.2. Suppose that for all X, Y ∈ F , X∩Y 6= ∅. Then |F | ≤ 2n−1.

Proof. For any X ∈ 2S consider the pair (X,X), where X is the complement of

X. There are 2n−1 such pairs and, by assumption, F can contain at most one set

from each pair.

Proposition 3.1.3. Suppose that for all X, Y ∈ F , X∪Y 6= S. Then |F | ≤ 2n−1.

Proof. Consider F
def
=
{
X | X ∈ F

}
. Clearly, |F | = |F |, and by Proposition

3.1.2, |F | ≤ 2n−1.

Proposition 3.1.4. Suppose that for all X, Y ∈ F , X ∩ Y 6= ∅ and X ∪ Y 6= S.

Then |F | ≤ 2n−2.

The proof is based on the following lemma, whose proof is left as an exercise.

Lemma 3.1.5. Let U be an up-set family, i.e., for all X ∈ U , X ⊆ X ′ implies

X ′ ∈ U . Similarly, let D be an down-set family, i.e., for all X ∈ D , X ′ ⊆ X

implies X ′ ∈ D . Suppose that U ,D ⊆ 2S, |S| = n. Then

|U ∩ D | ≤ |U ||D |
2n

.

Exercise 3.1.1. Prove the lemma above. (Hint: by induction on n.)

Proof of Proposition 3.1.4. Define

F̃
def
= {X | there exists X0 ⊆ X,X0 ∈ F} ;

F̂
def
= {X | there exists X0 ⊇ X,X0 ∈ F} .
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By Proposition 3.1.2, |F̃ | ≤ 2n−1. Similarly, by Proposition 3.1.3, |F̂ | ≤ 2n−1.

Clearly, F̃ is an up-set family and F̂ is a down-set family. Using the lemma

above, we obtain

|F | ≤ |F̃ ∩ F̂ | ≤ |F̃ ||F̂ |
2n

≤ 2n−12n−1

2n
= 2n−2,

which completes the proof.

Theorem 3.1.6 (Sperner’s Theorem). Suppose that for all X, Y ∈ F , X 6⊆ Y .

Then |F | ≤
(

n
⌊n/2⌋

)
. This bound is sharp as the family of all ⌊n/2⌋-element subsets

of S shows.

Note that F is precisely an antichain.

Proof. This proof is due to Lubell, the original one was more complicated. Let

s1, s2, . . . , sn be a fixed ordering of the elements of S. We will say that a permu-

tation π of the elements of S begins with X ∈ F if X =
{
sπ(1), sπ(2), . . . , sπ(|X|)

}
.

The number of permutations beginning with X must be |X|! (n− |X|)!. Also, no
permutation can begin with two different sets in F , since one of these sets would

contain the other; therefore permutations beginning with different sets in F are

distinct. Thus, the number of permutations π begins by some X ∈ F is
∑

X∈F

|X|! (n− |X|)!,

which cannot be larger than the total number of permutations, n!, therefore,
∑

X∈F

|X|! (n− |X|)! ≤ n!.

Dividing both sides by n!, we have

∑

X∈F

1(
n
|X|
) =

∑

X∈F

|X|! (n− |X|)!
n!

≤ 1.

Since
(

n
|X|
)
≤
(

n
⌊n/2⌋

)
, we obtain

|F | 1(
n

⌊n/2⌋
) =

∑

X∈F

1(
n

⌊n/2⌋
) ≤

∑

X∈F

1(
n
|X|
) ≤ 1,

which is equivalent to the statement.
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Theorem 3.1.7 (Erdős–Ko–Rado Theorem). Suppose that for all X, Y ∈ F ,

X 6⊆ Y , X ∩ Y 6= ∅ and |X|, |Y | ≤ k ≤ n
2
. Then |F | ≤

(
n−1
k−1

)
. This bound is

sharp: fix an element of S and consider all the k-element subsets of S that contain

it.

Proof. The original proof of 1961 used induction on n. In 1972, Katona gave the

following short proof using double counting. We may assume that every element

of F has size k. Arrange the elements of S in any cyclic order, and consider the

sets from F that form intervals of length k within this cyclic order. However, it

is not possible for all of the intervals of the cyclic order to belong to F , because

some pairs of them are disjoint. We claim that at most k of the intervals for a

single cyclic order may belong to F . To see this, note that if (x1, x2, . . . , xk) is

one of these intervals in F , then every other interval of the same cyclic order that

belongs to F separates xi and xi+1 for some i (that is, it contains precisely one

of these two elements). The two intervals that separate these elements are either

disjoint or one contains the other, so at most one of them can belong to F . Thus,

the number of intervals in F is one plus the number of separated pairs, which is

at most k.

Based on this observation, we may count the number of pairs (X, π), where

X ∈ F and π is a cyclic order for which X is an interval, in two ways. First,

for each set X one may generate π by choosing one of k! permutations of X and

(n−k)! permutations of the remaining elements, showing that the number of pairs

is |F |k!(n − k)!. And second, there are (n − 1)! cyclic orders, each of which has

at most k intervals of F , so the number of pairs is at most k(n− 1)!. Combining

these two counts gives the inequality

|F | k! (n− k)! ≤ k (n− 1)!

and dividing both sides by k!(n− k)! gives the result

|F | ≤ k (n− 1)!

k! (n− k)!
=

(n− 1)!

(k − 1)! (n− k)!
=

(
n− 1

k − 1

)
.
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3.2 Extremal graph theory

Let H be a graph and n be a positive integer. Define

ex(n,H)
def
= max

|V (G)|=n
{e(G) | H 6⊆ G} ,

where e(G) = |E(G)|. So we are looking for a graph G on n vertices with maximal

number of edges such that G does not contain the graph H as a subgraph.

Theorem 3.2.1 (Erdős). We have

ex(n, C4) =
1

2
n3/2 + o(n3/2),

as n → +∞.

Proof. ≤ A C4 can be viewed as two paths of length 2 with the same start and

endpoint. Let G be a C4-free graph. Denote by #P3 the number of paths of length

2 in G (such a path consists of 3 vertices). Since the graph does not contain any

C4, a start and an endpoint uniquely determine a path of length 2, so #P3 ≤
(
n
2

)
.

On the other hand, if x ∈ V (G) is the middle point of the path, then we can choose

its start and endpoint in
(
d(x)
2

)
ways. Therefore,

(
n

2

)
≥ #P3 =

∑

x∈V (G)

(
d (x)

2

)
.

Hence, we have
∑

x∈V (G)

d2 (x)

2
−
∑

x∈V (G)

d (x)

2
≤ n (n− 1)

2
,

∑

x∈V (G)

d2 (x)−
∑

x∈V (G)

d (x)

︸ ︷︷ ︸
2e

def
= 2e(G)

≤ n (n− 1) .

Using the inequality between the arithmetic and quadratic mean, we obtain

∑

x∈V (G)

d2 (x) = n



√

1

n

∑

x∈V (G)

d2 (x)




2

≥ n


 1

n

∑

x∈V (G)

d (x)




2

= n

(
2e

n

)2

=
4e2

n

So by the above,
4e2

n
− 2e ≤ n (n− 1) .
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Solving for e, we deduce the required result:

e ≤ n+ n
√
4n− 3

4
=

n3/2

2

√
1− 3

4n
+

n

4
=

n3/2

2

(
1 +O

(
1

n

))
+

n

4

=
n3/2

2
+O

(√
n
)
+

n

4
=

n3/2

2
+O (n) =

n3/2

2
+ o

(
n3/2

)
,

as n → +∞.

≥ We prove the bound for n’s of the form p2 + p + 1, where p > 2 is a prime.

Let p > 2 be a fixed prime. Consider the 3-tuples formed by elements of Fp. We

have p3 − 1 non-zero ( 6= (0, 0, 0)) such 3-tuples. Define the equivalence relation ∼
on them as follows

(x, y, z) ∼ (x′, y′, z′) ⇔ there is an a ∈ Fp\{0} such that (x′, y′, z′) = (ax, ay, az) .

Each equivalence class contains p − 1 elements, and the number of equivalence

classes is
p3 − 1

p− 1
= p2 + p+ 1.

We call the equivalence classes points. So we have p2 + p+ 1 different points.

Exactly the same way, we define the lines [a, b, c]. Again, there are p2 + p + 1

different lines. We say that the line [a, b, c] contains the point (x, y, z) if and only

if ax+ by + cz = 0 in Fp. It is easy to see that this concept is well-defined.

We shall count the number of points in a line. Consider a line [a, b, c]. We may

assume that a 6= 0. Suppose that ax+ by + cz = 0. Any fixed (y, z) 6= (0, 0) gives

a unique solution x, so we have p2− 1 solutions. But some of these points (x, y, z)

are equivalent. Thus, there are

p2 − 1

p− 1
= p+ 1

points in a line.

We show that every two different lines intersects at one point. Let [a, b, c]

and [a′, b′, c′] two different lines. We may assume that (b′, c′) 6= (λb, λc) for any

λ ∈ Fp \ {0}. Suppose that

ax+ by + cz = 0 and a′x+ b′y + c′z = 0.

The x 6= 0 can be chosen in p−1 different ways. For any x the above gives a system

of equations for y and z with unique solutions. Hence, we have p − 1 solutions,
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which clearly yield equivalent points. Thus, every two different lines intersects at

one point.

Note that there is a duality between points and lines. Consider a graph G

on n = p2 + p + 1 points. We view each vertex as a point (x, y, z) and, at the

same time, as a line [x, y, z]. We draw an edge between two vertices if and only if

one contains the other, as a line contains a point. This graph G does not contain

any C4, otherwise there would be two different lines intersecting in more than one

point. Each of the n lines contains p + 1 points, maybe one of them is itself as a

point. So each vertex has degree p+ 1 or p. Since 2e =
∑

x∈V (G) d(x), we obtain

np ≤ 2e ≤ n (p+ 1) or
p√
n
≤ e

n3/2/2
≤ p+ 1√

n
=

p√
n
+

1√
n
.

Therefore,

e =
n3/2

2

(
p√
n
+O

(
1√
n

))

as n → +∞ (or equivalently p → +∞). But

p√
n
=

p√
p2 + p+ 1

=
1√

1 + 1
p
+ 1

p2

= 1 +O
(
1

p

)
= 1 +O

(
1√
n

)

as n → +∞. Thus,

e =
n3/2

2

(
1 +O

(
1√
n

)
+O

(
1√
n

))
=

n3/2

2

(
1 +O

(
1√
n

))

=
n3/2

2
+O (n) =

n3/2

2
+ o

(
n3/2

)

as n → +∞.

Definition 3.2.1. For every r ≥ 2, define the Turán number as

tr(n)
def
= ex(n,Kr+1).

The Turán graph Tr(n) is a graph formed by partitioning a set of n vertices into

r subsets, with sizes as equal as possible, and connecting two vertices by an edge

whenever they belong to different subsets. The graph will have (n mod r) subsets

of size ⌈n/r⌉, and r − (n mod r) subsets of size ⌊n/r⌋. That is, it is a complete
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r-partite graph (i.e., a graph with chromatic number r and maximum possible

number of edges)

K⌈n/r⌉,⌈n/r⌉,...,⌊n/r⌋,⌊n/r⌋.

Each vertex has degree either n− ⌈n/r⌉ or n− ⌊n/r⌋.

Theorem 3.2.2 (Turán’s Theorem). For any fixed r ≥ 2, the graph Tr(n) is the

only graph G that does not contain Kr+1 as a subgraph and for which e(G) = tr(n).

First, we prove Turán’s Theorem in the case r = 2.

Proof. First, we prove that for any K3-free graph G on n vertices, we have

e(G) ≤ ⌊n2/4⌋. We proceed by induction on V (G) = n. For n = 2, 3 the statement

is obviously true. Suppose that the statement is true for n ≥ 2 and we proceed to

n+2 (this is enough, because the statement is true for both n = 2 and n = 3). Let

G be a K3-free graph with n + 2 vertices. Choose two vertices x and y such that

xy ∈ E(G). Since G is triangle-free, x and y do not have common neighbours, so

there are at most n edges that have x or y as an endpoint and which are different

from xy. Hence, by the induction hypothesis,

e(G) ≤ 1 + n+ e(G− xy) ≤ 1 + n+

⌊
n2

4

⌋
=

⌊
n2 + 4n+ 4

4

⌋
=

⌊
(n+ 2)2

4

⌋
.

The Turán graph K⌊n/2⌋,⌈n/2⌉ is triangle-free and has ⌊n2/4⌋ many edges. The in-

duction above shows that it is the unique such graph.

Exercise 3.2.1. Let G be a graph consisting of two triangles sharing a common

edge. Prove that

ex(n,G) =

⌊
n2

4

⌋
.

Exercise 3.2.2. Let G be a graph consisting of two triangles sharing a common

vertex. Prove that

ex(n,G) =

⌊
n2

4

⌋
+ 1.

Turán’s Theorem is the consequence of the following lemma.

Lemma 3.2.3. Let G be a Kr-free graph. Then there exists a graph G′ such that

(i) V (G′) = V (G);
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(ii) dG′(x) ≥ dG(x) for all x ∈ V ;

(iii) G′ is (r − 1)-partite, i.e., χ(G′) = r − 1.

Proof. The method of the proof is called the method of symmetrization. It is due

to Zykov. We proceed by induction on r. For r = 2, the statement is obvious.

Suppose that the statement is true for r − 1 and we proceed to r. Let G be a

Kr-free graph. Let x ∈ V (G) be a vertex of maximum degree. Let N be the set of

neighbours of x, and M be the set of non-neighbours of x. So V (G) = {x} ∪̇N ∪̇M .

Let G0 be the graph induced by N . Since G is Kr-free, we must have that G0 is

Kr−1-free. By the induction hypothesis, there is an (r − 2)-partite graph G′
0 on

the vertices N , such that dG′

0
(v) ≥ dG0(v) for all v ∈ N .

Figure 3.1. The graph G′.

We form a new graph G′ = (V,E ′). There are three type of vertices: the x

itself and the sets N and M . On the vertex set N we form the graph G′
0. Then we

introduce an edge between every vertex in V (G′
0) and every vertex in V \N (this is

x and M). This is the graph G′ (see Figure 3.1), and it satisfies the requirements

of the lemma.

Remark. It is not hard to see that if there are edges between the vertices in M then

the new graph G′ has strictly larger number of edges. Hence, if e(G) = tr−1(n),

then there can not be edges between the vertices in M , otherwise we would have

e(G′) > e(G). Also, since e(G) is maximal, we must have G′ = G.

Proof of Turán’s Theorem. Consider any a Kr-free graph G on n vertices.

Form the graph G′ whose existence is stated in the previous lemma. We have

e(G) ≤ e(G′) ≤ tr−1(n) (G
′ is (r−1)-partite, so it does not contain a Kr). If e(G

′)

is not a complete (r − 1)-partite graph then we can add new edges to it without

creating a Kr, until we get a complete (r − 1)-partite graph.
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We claim that the number of edges in a complete (r − 1)-partite graph is

maximized when the size of the parts differs by at most one. If G′ is a complete

(r− 1)-partite graph with parts X and Y and |X| > |Y |+1, then we can increase

the number of edges in G′ by moving a vertex from part X to part Y . By moving

a vertex from part X to part Y , the graph loses |Y | edges, but gains |X|−1 edges.

Thus, it gains at least |X| − 1− |Y | ≥ 1 edge.

It follows that e(G′) ≤ e(Tr−1(n)), and therefore, e(G) ≤ e(Tr−1(n)) for all

Kr-free graph G on n vertices. Consequently, e(Tr−1(n)) = tr−1(n).

It remains to prove that Tr−1(n) is the unique such graph. Suppose that G is

an extremum. Form the graph G′ whose existence is stated in the previous lemma.

We have tr−1(n) = e(G) ≤ e(G′) ≤ tr−1(n), i.e., e(G
′) = tr−1(n). From the previ-

ous argument, it follows that G′ must be the Turán graph Tr−1(n). According to

our remark, G = G′, i.e., G = Tr−1(n).

Definition 3.2.2. Let G be an arbitrary graph with vertices v1, v2, . . . , vn. We

construct a new graph G̃, by replacing each vi with an independent set of vertices

Vi (1 ≤ i ≤ n). We draw an edge between each vertex in Vi and each vertex in Vj

if and only if vivj ∈ E(G). This new graph G̃ is called a blow-up of the original

graph G.

For example, Tr(n) is a blow-up of Kr.

Exercise 3.2.3. Let G be a blow-up of a graph H. Prove that there is a maximal

sized bipartite subgraph G0 of G which is a blow-up of a bipartite subgraph H0 of

H.

Exercise 3.2.4. With the notations of the previous exercise, find a G and H such

that G0 is not a blow-up of a maximal bipartite subgraph H0 of H.

Conjecture 3.2.4 (Erdős). Let G be a triangle-free graph. Then there exists a

subgraph G0 of G such that

(i) G0 is bipartite;

(ii) e(G0) ≥ e(G)− n2

25
,

and an appropriate blow-up of a C5 shows that this is sharp.

Exercise 3.2.5. Prove that Erdős’s conjecture is true if e(G) ≥ n2

5
.
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Theorem 3.2.5. For every graph G, there is a subgraph G0 of G such that

(i) G0 is bipartite;

(ii) e(G0) ≥ 1
2
e(G).

Proof. Divide the vertices of the graph G into two arbitrary non-empty classes A

and B. Consider a vertex v in A (or B). If v has more neighbours in A (or B) than

in B (or B), then put it into the class B (or A). Do this with every vertex of G.

Finally, every vertex in A will have at least as many neighbours in B as in A; and

every vertex in B will have at least as many neighbours in A as in B. Therefore,

if we delete the edges between every two vertices in A and every two vertices in

B, we get a subgraph G0 which is bipartite and has at least half as many edges as

the original graph G.

Theorem 3.2.6 (Erdős–Stone–Simonovits). Let H be a fixed graph such that

χ(H) = r. Then

ex(n,H) = tr−1(n) + o(n2),

as n → +∞.

The formula in the theorem is indeed an asymptotic one since

tr−1(n) ∼
r − 2

2r − 2
n2

as n → +∞. We can extend tr(n) to r = 1 as t1(n) = 0. In this case we have the

weaker result ex(n,H) = o(n2) for any bipartite graph H.

We shall give a sketch of the proof using Szemerédi’s Regularity Lemma.

Definition 3.2.3. Let G be a graph, X, Y ⊆ V (G) such that X ∩ Y = ∅ and

|X| = |Y |. Let ε > 0 be fixed. The pair (X, Y ) is called an ε-regular pair if for

any X0 ⊆ X, |X0| ≥ ε|X| and for any Y0 ⊆ Y , |Y0| ≥ ε|Y |, we have

d(X, Y )− ε ≤ d(X0, Y0) ≤ d(X, Y ) + ε.

Here

d(X, Y )
def
=

number of edges between X and Y

|X||Y |
and similarly for d(X0, Y0).
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Theorem 3.2.7 (Szemerédi’s Regularity Lemma). For every ε > 0 and M ∈ Z
+,

there are positive integers N0(ε,M) and N(ε,M) such that for any graph G for

which |V (G)| > N0(ε,M) ≫ N(ε,M) (≫ means much bigger), there is a p such

that G has an ε-regular partition of N(ε,M) ≥ p > M classes, i.e., we have a

partition of the vertices into sets S1, S2, . . . , Sp with equal size and to a small set

with size at most ε|V (G)| such that all pairs (Si, Sj) are ε-regular with the exception

of ε
(
p
2

)
pairs.

Proposition 3.2.8. Let (X, Y ) be an ε-regular pair. Then the number of vertices

x belonging to X such that d(x, Y ) < d(X, Y )− ε is less than ε|X|.

Sketch of the proof of the Erdős–Stone–Simonovits Theorem. The

theorem states that with fixed H, χ(H) = r, for every ε > 0 there is an n0 ∈ N

such that for n ≥ n0, we have

|ex (n,H)− tr−1 (n)| ≤ εn2.

Suppose, to the contrary, that there is an ε > 0 and a sequence of graphs G1, G2, . . .

with e(G1) < e(G2) < · · · such that H is not a subgraph of any Gi and

e (Gi) ≥ tr−1 (ni) + εn2
i ,

where ni = |V (Gi)|. Choose G
def
= Gi such that Gi has an ε-regular partition with

p classes. Let S1, S2, . . . , Sp be the classes. Form a (reduced) graph R on p vertices

v1, v2, . . . , vp as follows. Let vivj ∈ E(R) if and only if (Si, Sj) is ε-regular and

d(Si, Sj) ≥ ε.

In R, we have more edges, consequently, it contains a Kr. Dividing the classes

Si into t equal parts and using Proposition 3.2.8, it can be shown that in G there

is a blow-up of Kr: Kt,t,...,t, a complete r-partite graph. If t = |V (H)|, then Kt,t,...,t

contains H. Therefore G contains H, which is a contradiction.

Theorem 3.2.9. For every r ≥ 3, there is a c(r) > 0 such that if e(G) ≥ c(r)n,

then G contains a topological Kr as a subgraph.

The theorem was proved with c(r) = 2(
r
2) by Mader. Komlós and Szemerédi

improved the constant to c(r) = 256r2. The theorem is a consequence of the

following stronger assertion with H = Kr.
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Lemma 3.2.10. Let H be a connected graph with m edges and r vertices. If the

graph G has at least 2m|V (G)| edges, then a subdivision of H is contained in G.

Proof. We proceed by induction on m. Since H is connected, m = r−1 is the first

case (so H is a tree). Suppose that G is a graph on n vertices with e(G) ≥ 2r−1n.

Then its average degree is

d (G)
def
=

1

n

∑

x∈V (G)

d (x) =
2

n
e (G) ≥ 2r.

We claim that there is a G0 subgraph of G such that

δ (G0)
def
= min

x∈V (G0)
d (x) ≥ d (G)

2
≥ 2r−1.

Indeed, suppose that G contains a vertex v such that d (v) < d (G) /2. If we delete

this v form G, the average degree of the resulting graph is

d (G− v) =
1

n− 1

∑

x∈V (G−v)

d (x) =
n

n− 1
d (G)− d (v)

n− 1
>

n− 1/2

n− 1
d (G) > d (G) .

Therefore, the average degree in the resulting graph did not decrease. We repeat

this procedure until the resulting subgraph of G satisfies δ ≥ d(G)
2

.

Hence, there is a G0 subgraph of G such that δ (G0) ≥ 2r−1 ≥ r−1. Using this

bound we can build up the tree H in G0 using a greedy algorithm.

Now, suppose that the statement in true for m− 1 ≥ r − 1 and we proceed to

m. Thus, H is a connected graph with m ≥ r edges. Since it is not a tree, there

is an e ∈ E(H) such that the graph H − e is still connected. Choose an edge e

like that and delete it from the graph H. For an A ⊆ V (G), denote by G [A] the

subgraph of G which is induced by A. Take an S ⊆ V (G) such that

(i) the G [S] is connected;

(ii) if S is contracted to one vertex then the average degree of the resulting graph

is still at least 2m+1 (note that this is the lower bound for d(G) too);

(iii) the S is maximal sized with the properties (i) and (ii).

Denote by N(S) the neighbours of S, and consider the induced subgraph G [N(S)].

We claim that

dG[N(S)](x) ≥ 2m
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for each x ∈ V (G [N(S)]). Indeed, if dG[N(S)](x) < 2m for some x ∈ V (G [N(S)]),

then add x to S. We loose at most 2m edges, but just one vertex after contracting

S ∪ {x} to a vertex. Hence, the average degree of the resulting graph did not

decrease. Thus, the set S ∪{x} satisfies the properties (i) and (ii), and it is bigger

than S. This is a contradiction. Using our claim, we obtain

e (G [N (S)]) =
1

2

∑

x∈V (G[N(S)])

dG[N(S)] (x) ≥
1

2

∑

x∈V (G[N(S)])

2m = 2m−1 |N (S)| .

By the induction hypothesis, G [N(S)] contains a subdivision of H − e. Find the

endpoints of e in H in the subdivision of H−e. These are in N(S), so they can be

connected to vertices in S. If they can be connected to the same vertex in S we get

a subdivision of H in G. If they can only be connected to two different vertices,

then those vertices can be connected by a path in S (since S is connected). In this

way we get a subdivision of H in G.

For the first few Kr, we can compute the exact value of the extremum.

Proposition 3.2.11. We have ex(n, topological K3) = n− 1 for n ≥ 3.

Proof. A topological K3 is a cycle. The cycle-free graph on n vertices that has

maximal number of edges is a connected tree, which has n− 1 edges.

Proposition 3.2.12. We have ex(n, topological K4) = 2n− 3 for n ≥ 4.

Proof. ≥ For n = 4 take K4 and delete an edge from it. For n ≥ 5 consider

K2,n−2 and draw an edge between the two vertices in the first class.

≤ The proof follows from the following lemma:

Lemma 3.2.13. If d(x) ≥ 3 for all x ∈ V (G) then G contains a topological K4 as

a subgraph.

Suppose that G is a graph on n vertices such that e(G) ≥ 2n− 2. If d(x) ≥ 3

for all x ∈ V (G) then e =
∑

x∈V (G) d (x) ≥ 3n > 2n − 3 and by the previous

lemma, G contains a topological K4 as a subgraph. Suppose that there is an

x ∈ V (G) such that d(x) < 3 and delete this vertex. Then |V (G−x)| = n− 1 and

e(G − x) ≥ e(G) − 2 ≥ 2n − 4 = 2(n − 1) − 2. Using an induction argument on

the number of vertices, we have that G− x contains a topological K4, and hence

so does G.

To prove the lemma above, we prove the following one that can be proved by

induction.
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Lemma 3.2.14. If d(x) ≥ 3 for all but one x ∈ V (G) then G contains a topological

K4 as a subgraph.

Proof. We proceed by induction on n = |V (G)|. For n = 4, the statement is true.

Suppose that it is true for n− 1 ≥ 4 and we proceed to n > 4. Let x be a vertex

with minimal degree. If d(x) = 0, 1 or 4, we delete x and we can use the induction

hypothesis.

Consider the case d(x) = 2. Denote by y and z the neighbours of x. There are

two main cases:

(i) The y and z are not adjacent, i.e., yz /∈ E(G). In this case, delete x from the

graph and add the edge yz to it. For this new graph we can use the induction

hypothesis: it contains a topological K4. If this topological K4 does not

contain the edge yz, then the original graph contained this topological K4

too. If it contains the edge yz, delete this edge and draw back the vertex x

with the edges xy and xz. Clearly, we get a topological K4 in G.

(ii) The y and z are adjacent, i.e., yz ∈ E(G). There are two cases:

(a) The y and z do not have a common neighbour other than x. Denote by

v1, v2, . . . , vs the neighbours of z. Delete x and z from the graph and

connect v1, v2, . . . , vs to y. For this new graph we can use the induction

hypothesis: it contains a topological K4. If this topological K4 does

not contain any of the edges yvi, then the original graph contained this

topological K4 too. If it contains any of the edges yvi, delete those edges

and draw back the vertices x and z with the edges xy, xz, yz and the

zvi’s. Clearly, we get a topological K4 in G by considering the path yxzvi
instead of yvi.

(b) The y and z have a common neighbour w 6= x. If d(y) ≥ 4 or d(z) ≥ 4,

we can delete x and use the induction hypothesis. If both of them have

degree 3, delete x, y and z. In the remaining graph, w is the only vertex

that could have degree less than 3. Hence, we can use the induction

hypothesis for this graph.

Consider the case d(x) = 3. Denote by y, z and v the neighbours of x. There

are two main cases:

(i) All the neighbours of x are adjacent to each other, i.e., yz, yv, zv ∈ E(G). In

this case, x, y, z, v form a K4, so we are done.
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(ii) There exist two neighbours of x that are not adjacent to each other. We may

assume that yz /∈ E(G). In this case, delete x from the graph and add the

edge yz to it. For this new graph we can use the induction hypothesis: it

contains a topological K4. If this topological K4 does not contain the edge

yz, then the original graph contained this topological K4 too. If it contains

the edge yz, delete this edge and draw back the vertex x with the edges xy

and xz. Clearly, we get a topological K4 in G.

The proof of the proposition is complete.

Exercise 3.2.6. Show that

ex(n, a cycle with a chord) = 2n− 4.

(Hint: first, consider the case δ(G) ≥ 3, then use induction.)

Exercise 3.2.7. A theta graph is the union of three internally disjoint (simple)

paths that have the same two distinct end vertices. Show that

ex(n, theta graph) =

⌊
3

2
(n− 1)

⌋
.

Theorem 3.2.15 (Erdős–Gallai). Denote by Pk a path on k vertices. We have

ex(n, Pk) ≤
k − 2

2
n,

and equality holds if k − 1 | n.

Proof. By induction on k, then by induction on n. The case k = 2 is obvious.

We proceed to k > 2. Suppose that

e(G) >
k − 2

2
n.

Since k−2
2
n > k−3

2
n, by the induction hypothesis, G contains a path Pk−1. Denote

by v1, v2, . . . , vk−1 the vertices of the path in the order as they follow each other.

If we can extend it to a Pk, then we are done. Otherwise, consider the neighbours

of v1 and vk−1. Since we can not extend the path to a longer one, the neighbours

of them are among the vertices v2, v3, . . . , vk−2. There are two cases:
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(i) There is an 2 ≤ i ≤ k− 1 such that v1vi and vk−1vi−1 are edges in the graph.

In this case, we have the cycle v1vivi+1vi+2 . . . vk−1vi−1vi−2 . . . v1 (see Figure

3.2). If any of the vertices vi has a neighbour different from the ones in the

cycle, we obtain a path Pk and we are done. If not, these k− 1 vertices form

a component of the graph G. Consider the graph G′ = G−{v1, v2, . . . , vk−1}.
We have

|V (G′)| = n− (k − 1) and

e (G′) ≥ e (G)−
(
k − 1

2

)
>

k − 2

2
n−

(
k − 1

2

)
=

k − 2

2
(n− (k − 1)) .

If the theorem holds for graphs with vertices at most k − 1, then we can

proceed by induction on n and conclude that G′ contains a path Pk (and so

does G). Clearly, a graph on at most k − 1 vertices does not contain a Pk

and satisfies

e ≤
(|V |

2

)
=

(|V | − 1) |V |
2

≤ (k − 1)− 1

2
|V | = k − 2

2
|V | .

Therefore, in this case we are done.

Figure 3.2

(ii) In this case we assume that if vi is adjacent to v1 then vi−1 can not be adjacent

to vk−1 (2 ≤ i ≤ k − 1). Therefore, vk−1 can have at most k − 2 − d(v1)

neighbours, i.e.,

d (v1) + d (vk−1) ≤ k − 2.

Consider the graph G′ = G− {v1, vk−1}. We have

|V (G′)| = n− 2 and

e (G′) ≥ e (G)− (d (v1) + d (vk−1)) >
k − 2

2
n− (k − 2) =

k − 2

2
(n− 2) .

As in the previous case, we can proceed by induction on n and conclude that

G′ contains a path Pk (and so does G).

To prove the last statement, consider n
k−1

distinct copies of Kk−1.
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Definition 3.2.4. A Hamiltonian path is a path in a graph that visits each

vertex exactly once. A Hamiltonian cycle is a Hamiltonian path that is a cycle.

Theorem 3.2.16 (Dirac). Let G be a graph. If d(x) ≥ n
2
for all x ∈ V (G), then

G has a Hamiltonian cycle.

Proof. Take a maximal counterexample G, i.e., d(x) ≥ n
2
for all x ∈ V (G),

G does not contain a Hamiltonian cycle, and adding any xy /∈ E(G) edge to

G, the resulting graph contains a Hamiltonian cycle. It is easy to see that G

contains a Hamiltonian path v1v2 . . . vn (|V (G)| = n). If there is an 2 ≤ i ≤ n

such that v1vi and vnvi−1 are edges in the graph, then we have the Hamiltonian

cycle v1vivi+1vi+2 . . . vnvi−1vi−2 . . . v1. Therefore, vn can have at most n−1−d(v1)

neighbours, i.e.,

d (v1) + d (vn) ≤ n− 1 < n.

On the other hand, by assumption, d (v1) + d (vn) ≥ n
2
+ n

2
= n. This is a contra-

diction.

3.3 Algebraic methods

Let G be an r-regular graph with girth g. First, suppose that g is odd. Choose

an arbitrary vertex x of G. Let us call the set {x} as the zeroth level. This

vertex has precisely r different neighbours, call the set of these neighbours as the

first level. There are r = r(r − 1)0 edges between the zeroth and the first level,

and this is the number of vertices in the first level too. If g > 3, then there are

no edges between the vertices of the first level. Consider the neighbours of the

vertices of the first level. These vertices form the second level. If g > 3, then there

are r(r − 1) = r(r − 1)1 edges between the first and the second level, and this is

the number of vertices in the second level too. If g > 5, then there are no edges

between the vertices of the second level. An example is shown in Figure 3.3. We

can continue this procedure further. The g−1
2
th level is the first level that might

contain edges between the vertices of the level. Hence,

|V (G)| = n ≥ 1 +

g−1
2

−1∑

i=0

r (r − 1)i = 1 + r
(r − 1)

g−1
2 − 1

r − 2
.
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When g is even, we start with an edge xy and we carry out the above procedure

both with x and y. It follows that

|V (G)| = n ≥ 2

g
2
−1∑

i=0

(r − 1)i = 2
(r − 1)

g
2 − 1

r − 2
.

Figure 3.3

Let us consider now the case g = 5. By the above argument, if G is an r-regular

graph with girth 5, we must have

|V (G)| = n ≥ 1 + r
(r − 1)2 − 1

r − 2
= 1 + r

r (r − 2)

r − 2
= r2 + 1.

The question arises naturally whether there are r-regular graphs on r2+1 vertices

with girth 5. For r = 2 and 3 the 5-cycle C5 and the Petersen graph provide

positive answer. In general, we have the following theorem:

Theorem 3.3.1 (Hofmann–Singleton). If there exists an r-regular graph of r2+1

vertices with girth 5 then r must be 2, 3, 7 or 57.

Remark. We saw that for r = 2, 3 such graphs exist. Hofmann and Singleton

constructed a graph for r = 7. The existence of such a graph for r = 57 is not

known.

Proof. Let v1, v2, . . . , vn be the vertices of the r-regular graph G (n = r2 + 1).

Let A be the adjacency matrix of G, i.e., a 0-1 matrix whose ijth element is 1

if vivj ∈ E(G) and 0 otherwise. Consider the matrix A2 = {aij}ni,j=0. It is easy

to see that aij is the number of walks from vi to vj of length 2. Thus, the aii is
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precisely the number of neighbours of vi, i.e., aii = r. If i 6= j, aij is precisely the

number of common neighbours of vi and vj. If vi and vj have more than 1 common

neighbours, then they form a C4 which is impossible since the girth number of G

is 5. Therefore, aij ≤ 1 for i 6= j. If vivj ∈ E(G), then aij = 0 otherwise we would

have a triangle in the graph. If vivj /∈ E(G), then aij = 1. Indeed, starting with

x = vi, the vertices can be divide into three levels as in the argument of the first

paragraph of this section (this is because g = 5 and n = r2 + 1). Then vj must be

in the second level. They have a common neighbour in the first level (see Figure

3.3), therefore aij = 1. Therefore, we have the matrix equation

A+ A2 − (r − 1) I = J,

where I is the n× n identity matrix and J is the n× n matrix whose each entry

is 1.

Since A is a symmetric matrix (A = A⊤), all its eigenvalues are real and some

of the eigenvectors constitute an orthogonal basis. Note that r is an eigenvalue

with eigenvector e
def
= (1, 1, . . . , 1)⊤. Let λ 6= r be an other eigenvalue of A with

eigenvector v 6= 0. By the above matrix equation, we have

λv + λ2v − (r − 1) v = Jv.

The right-hand side is Jv = 〈e, v〉 = 0 by the orthogonality. Therefore, we find

λ+ λ2 − (r − 1) = 0.

This quadratic equation has the solutions

λ1,2 =
−1±

√
4r − 3

2
.

Thus, A has three different eigenvalues: r, λ1 and λ2. The multiplicity of r is 1,

and denote by m1 and m2 the multiplicities of λ1 and λ2. Since 1 +m1 +m2 = n,

we obtain

m1 +m2 = n− 1 = r2.

On the other hand,

0 = tr (A) = r +m1λ1 +m2λ2.

Substituting the values of λ1 and λ2 yields

2r −m1 +m1

√
4r − 3−m2 −m2

√
4r − 3 = 0.
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If m1 = m2, then r = 2. If m1 6= m2, we must have 4r − 3 = s2 for some positive

integer s. Hence,

2r −m1 +m1s−m2 −m2s = 0,

or

32r − 16 (m1 +m2) + 16 (m1 −m2) s = 0.

Since m1 +m2 = r2 and r = s2+3
4

, we obtain

8
(
s2 + 3

)
−
(
s2 + 3

)2
+ 16 (m1 −m2) s = 0,

or

−s4 + 2s2 + 16 (m1 −m2) s+ 15 = 0.

The right-hand side is divisible by s, so has to be the left-hand side, i.e., s | 15.
Therefore, s = 1, 3, 5 or 15 which give the values r = 1, 3, 7 and 57.

Consider Rd with the usual metric d( · , · ). Let c > 0 be a constant. Let S ⊂ R
d

be a set of n distinct points:

S = {p1, p2, . . . , pn} ,

such that d(pi, pj) = c for all i 6= j. Then it is known that n ≤ d+ 1 and equality

holds if S is the standard d-dimensional simplex.

A similar problem is the following. Let c1, c2 > 0 be constants. Let S ⊂ R
d be

a set of n distinct points:

S = {p1, p2, . . . , pn} ,

such that d(pi, pj) = c1 or c2 for all i 6= j. Such a set is called a two-distance set.

The question is, how large n can be? Consider the set of (d+1)-dimensional vectors

whose two coordinates are 1 and all the others are 0. There are
(
d+1
2

)
= d2

2
+ d

2

such vectors. They are contained in the hyperplane

d+1∑

i=1

xi = 2.

Hence, by translation, they are points in R
d. This shows that

d2

2
+

d

2
≤ n = |S|
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is possible. The precise value of the maximum is not known. Nevertheless, we

shall show that it is d2

2
+ O(d) as d → +∞. Suppose that S = {p1, p2, . . . , pn}

satisfies the conditions. Consider the polynomials

Pi (x1, x2, . . . , xd) =
(
‖x− pi‖2 − c21

) (
‖x− pi‖2 − c22

)
i = 1, 2, . . . , n

where x = (x1, x2, . . . , xd) ∈ R
d. Let P be the vector space, generated by the

polynomials P1, P2, . . . , Pn. Suppose that

n∑

i=1

λiPi = 0

holds for some real constants λ1, λ2, . . . , λn. Substituting x = pj shows that λj = 0,

therefore, our polynomials are linearly independent. Consequently dimP = n.

The polynomials can contain the following terms:

constant term;

x1, x2, . . . , xd;

xixj for i, j = 1, 2, . . . , d;
(

d∑

i=1

x2
i

)2

;

(
d∑

i=1

x2
i

)
xj for i = 1, 2, . . . , d.

These polynomials are linearly independent in the space of d-variable polynomials

and P is contained in the subspace generated by these polynomials. The dimension

of the space that they generate is

1 + d+

((
d

2

)
+ d

)
+ 1 + d =

d2

2
+

5

2
d+ 2,

whence, |S| = n = dimP ≤ d2

2
+ 5

2
d+ 2.
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