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Abstract

We revisit the algorithmic problem of finding a triangle in a graph (Triangle Detection),
and examine its relation to other problems such as 3Sum and Independent set. We discuss
several new algorithms:

(I) A randomized algorithm which given a graph G = (V,E) with n vertices and m edges,
computes a (1± ε)-approximation of the number of triangles in G and finds a triangle with high
probability. We use this algorithm in relation to a question of Pǎtraşcu (2010) regarding the
triangle detection problem.

(II) An algorithm which given a graph G = (V,E) performs one of the following tasks in
O(m+n) (i.e., linear) time: (i) compute a Ω(1/

√
n)-approximation of Maximum Independent

Set in G or (ii) find a triangle in G.
(III) An algorithm which given a graph G = (V,E) performs one of the following tasks in

O(m + n3/2) time: (i) compute a
√
n-approximation for Graph Coloring of G or (ii) find a

triangle in G. The run-time is faster than that for any previous method for each of these tasks
on dense graphs, with m = ω(n9/8).

(IV) We revisit the algorithmic problem of finding all triangles in a graph G = (V,E) with
n vertices and m edges. Chiba and Nishizeki (1985) gave a combinatorial algorithm running in
O(mα) = O(m3/2) time, where α = α(G) is the graph arboricity. We provide a new very simple
combinatorial algorithm for finding all triangles in a graph that runs in the same time.

(V) We give improved arboricity-sensitive running times for counting and/or detection of
copies of K`, for small ` ≥ 4. Our new algorithms are faster than all previous algorithms in
certain high-range arboricity intervals for every ` ≥ 7.


