On the volume of central diagonal sections of the n-cube

F. Bartha (Szeged, Hungary), F. Fodor (Szeged, Hungary) and B. Gonzalez Merino (Murcia, Spain)

Geometry Seminar, Rényi Institute

May 15, 2020

- $C^{n}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}$ unit cube in \mathbb{R}^{n}
- $C^{n}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}$ unit cube in \mathbb{R}^{n}
- H a hyperplane in \mathbb{R}^{n}
- $C^{n}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}$ unit cube in \mathbb{R}^{n}
- H a hyperplane in \mathbb{R}^{n}
- We are interested in $\mathrm{Vol}_{d-1}\left(C^{n} \cap H\right)$.
- $C^{n}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}$ unit cube in \mathbb{R}^{n}
- H a hyperplane in \mathbb{R}^{n}
- We are interested in $\mathrm{Vol}_{d-1}\left(C^{n} \cap H\right)$.
- Due to the convexity and central symmetry of the cube, the maximal section is always though the centre.
- $C^{n}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}$ unit cube in \mathbb{R}^{n}
- H a hyperplane in \mathbb{R}^{n}
- We are interested in $\mathrm{Vol}_{d-1}\left(C^{n} \cap H\right)$.
- Due to the convexity and central symmetry of the cube, the maximal section is always though the centre.
- The $n=2$ is uninteresting, $\max \mathrm{Vol}_{2}\left(C^{2} \cap H\right)=\sqrt{2}$.
- $C^{n}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}$ unit cube in \mathbb{R}^{n}
- H a hyperplane in \mathbb{R}^{n}
- We are interested in $\mathrm{Vol}_{d-1}\left(C^{n} \cap H\right)$.
- Due to the convexity and central symmetry of the cube, the maximal section is always though the centre.
- The $n=2$ is uninteresting, $\max \mathrm{Vol}_{2}\left(C^{2} \cap H\right)=\sqrt{2}$.
- The $n=3$ case is more complicated. By central symmetry, each central section of C^{3} is either a hexagon or a parallelogram.

- The $n=3$ requires an elementary case analysis depending on the direction of the normal vector of H.
- The $n=3$ requires an elementary case analysis depending on the direction of the normal vector of H.
- Interestingly, $\max \operatorname{Vol}_{2}\left(C^{3} \cap H\right)=\sqrt{2}$ again, and it is attained, for example, when H is orthogonal to $(0,1,1)$.
- The $n=3$ requires an elementary case analysis depending on the direction of the normal vector of H.
- Interestingly, $\max \operatorname{Vol}_{2}\left(C^{3} \cap H\right)=\sqrt{2}$ again, and it is attained, for example, when H is orthogonal to $(0,1,1)$.
- For a central diagonal section (orthogonal to the main diagonal of $\left.C^{3}\right) \operatorname{Vol}_{2}\left(C^{3} \cap H\right)=\sqrt{3 / 2}$.
- The $n=3$ requires an elementary case analysis depending on the direction of the normal vector of H.
- Interestingly, $\max \operatorname{Vol}_{2}\left(C^{3} \cap H\right)=\sqrt{2}$ again, and it is attained, for example, when H is orthogonal to $(0,1,1)$.
- For a central diagonal section (orthogonal to the main diagonal of $\left.C^{3}\right) \operatorname{Vol}_{2}\left(C^{3} \cap H\right)=\sqrt{3 / 2}$.
- Hensley (1979) showed that $\operatorname{Vol}_{n-1}\left(C^{n} \cap H\right) \leq 5$ and conjectured that it is, in fact, $\leq \sqrt{2}$.
- The $n=3$ requires an elementary case analysis depending on the direction of the normal vector of H.
- Interestingly, max $\operatorname{Vol}_{2}\left(C^{3} \cap H\right)=\sqrt{2}$ again, and it is attained, for example, when H is orthogonal to $(0,1,1)$.
- For a central diagonal section (orthogonal to the main diagonal of $\left.C^{3}\right) \mathrm{Vol}_{2}\left(C^{3} \cap H\right)=\sqrt{3 / 2}$.
- Hensley (1979) showed that $\operatorname{Vol}_{n-1}\left(C^{n} \cap H\right) \leq 5$ and conjectured that it is, in fact, $\leq \sqrt{2}$.
- Ball (1989) proved Hensley's conjecture (in fact he proved much more).
- The $n=3$ requires an elementary case analysis depending on the direction of the normal vector of H.
- Interestingly, max $\operatorname{Vol}_{2}\left(C^{3} \cap H\right)=\sqrt{2}$ again, and it is attained, for example, when H is orthogonal to $(0,1,1)$.
- For a central diagonal section (orthogonal to the main diagonal of $\left.C^{3}\right) \operatorname{Vol}_{2}\left(C^{3} \cap H\right)=\sqrt{3 / 2}$.
- Hensley (1979) showed that $\operatorname{Vol}_{n-1}\left(C^{n} \cap H\right) \leq 5$ and conjectured that it is, in fact, $\leq \sqrt{2}$.
- Ball (1989) proved Hensley's conjecture (in fact he proved much more).
- The maximum is attained for H orthogonal to $(1,1,0, \ldots, 0)$.
- The $n=3$ requires an elementary case analysis depending on the direction of the normal vector of H.
- Interestingly, max $\operatorname{Vol}_{2}\left(C^{3} \cap H\right)=\sqrt{2}$ again, and it is attained, for example, when H is orthogonal to $(0,1,1)$.
- For a central diagonal section (orthogonal to the main diagonal of $\left.C^{3}\right) \operatorname{Vol}_{2}\left(C^{3} \cap H\right)=\sqrt{3 / 2}$.
- Hensley (1979) showed that $\operatorname{Vol}_{n-1}\left(C^{n} \cap H\right) \leq 5$ and conjectured that it is, in fact, $\leq \sqrt{2}$.
- Ball (1989) proved Hensley's conjecture (in fact he proved much more).
- The maximum is attained for H orthogonal to $(1,1,0, \ldots, 0)$.
- Hensley (1979) also described Selberg's argument to show that the volume of the central diagonal section tends to $\sqrt{6 / \pi}$ as $n \rightarrow \infty$.
- K. Ball (1985): if $H(u)=u^{\perp}$ for $u=\left(u_{1}, \ldots, u_{n}\right)$, then
- K. Ball (1985): if $H(u)=u^{\perp}$ for $u=\left(u_{1}, \ldots, u_{n}\right)$, then

$$
\operatorname{Vol}_{n-1}\left(C^{n} \cap H(u)\right)=\frac{\|u\|_{2}}{\pi} \int_{-\infty}^{+\infty} \prod_{k=1}^{n} \frac{\sin u_{k} t}{u_{k} t} d t
$$

- K. Ball (1985): if $H(u)=u^{\perp}$ for $u=\left(u_{1}, \ldots, u_{n}\right)$, then

$$
\operatorname{Vol}_{n-1}\left(C^{n} \cap H(u)\right)=\frac{\|u\|_{2}}{\pi} \int_{-\infty}^{+\infty} \prod_{k=1}^{n} \frac{\sin u_{k} t}{u_{k} t} d t
$$

- In fact, Ball proved a more general formula, for a hyperplanes not necessarily through o, but we do not need that here.
- K. Ball (1985): if $H(u)=u^{\perp}$ for $u=\left(u_{1}, \ldots, u_{n}\right)$, then

$$
\operatorname{Vol}_{n-1}\left(C^{n} \cap H(u)\right)=\frac{\|u\|_{2}}{\pi} \int_{-\infty}^{+\infty} \prod_{k=1}^{n} \frac{\sin u_{k} t}{u_{k} t} d t
$$

- In fact, Ball proved a more general formula, for a hyperplanes not necessarily through o, but we do not need that here.
- In our case, $H=H\left(u_{0}\right)$ is assumed to be orthogonal to $u_{0}=(1, \ldots, 1)$, so for such central diagonal cuts
- K. Ball (1985): if $H(u)=u^{\perp}$ for $u=\left(u_{1}, \ldots, u_{n}\right)$, then

$$
\operatorname{Vol}_{n-1}\left(C^{n} \cap H(u)\right)=\frac{\|u\|_{2}}{\pi} \int_{-\infty}^{+\infty} \prod_{k=1}^{n} \frac{\sin u_{k} t}{u_{k} t} d t
$$

- In fact, Ball proved a more general formula, for a hyperplanes not necessarily through o, but we do not need that here.
- In our case, $H=H\left(u_{0}\right)$ is assumed to be orthogonal to $u_{0}=(1, \ldots, 1)$, so for such central diagonal cuts

$$
\operatorname{Vol}_{n-1}\left(C^{n} \cap H\right)=\frac{\sqrt{n}}{\pi} \int_{-\infty}^{+\infty}\left(\frac{\sin t}{t}\right)^{n} d t
$$

- K. Ball (1985): if $H(u)=u^{\perp}$ for $u=\left(u_{1}, \ldots, u_{n}\right)$, then

$$
\operatorname{Vol}_{n-1}\left(C^{n} \cap H(u)\right)=\frac{\|u\|_{2}}{\pi} \int_{-\infty}^{+\infty} \prod_{k=1}^{n} \frac{\sin u_{k} t}{u_{k} t} d t
$$

- In fact, Ball proved a more general formula, for a hyperplanes not necessarily through o, but we do not need that here.
- In our case, $H=H\left(u_{0}\right)$ is assumed to be orthogonal to $u_{0}=(1, \ldots, 1)$, so for such central diagonal cuts

$$
\operatorname{Vol}_{n-1}\left(C^{n} \cap H\right)=\frac{\sqrt{n}}{\pi} \int_{-\infty}^{+\infty}\left(\frac{\sin t}{t}\right)^{n} d t
$$

- It has been known for a long time that

$$
\operatorname{Vol}_{n-1}\left(C^{n} \cap H\right) \rightarrow \sqrt{\frac{6}{\pi}}
$$

- Frank and Riede (2012) determined an explicit, formula for the volume of intersections of C^{n} with an arbitrary hyperplane H by evaluating the (general) integral formula of Ball.
- Frank and Riede (2012) determined an explicit, formula for the volume of intersections of C^{n} with an arbitrary hyperplane H by evaluating the (general) integral formula of Ball.
- If one specializes their formula for a central diagonal section, then one obtains
- Frank and Riede (2012) determined an explicit, formula for the volume of intersections of C^{n} with an arbitrary hyperplane H by evaluating the (general) integral formula of Ball.
- If one specializes their formula for a central diagonal section, then one obtains

$$
\begin{aligned}
& \operatorname{Vol}_{n-1}\left(C^{n} \cap H\right) \\
& \quad=\frac{\sqrt{n}}{2^{n+1}(n-1)!} \sum_{i=0}^{n}(-1)^{i}\binom{n}{i}(n-2 i)^{n-1} \operatorname{sign}(n-2 i) .
\end{aligned}
$$

- Frank and Riede (2012) determined an explicit, formula for the volume of intersections of C^{n} with an arbitrary hyperplane H by evaluating the (general) integral formula of Ball.
- If one specializes their formula for a central diagonal section, then one obtains

$$
\begin{aligned}
& \operatorname{Vol}_{n-1}\left(C^{n} \cap H\right) \\
& \qquad=\frac{\sqrt{n}}{2^{n+1}(n-1)!} \sum_{i=0}^{n}(-1)^{i}\binom{n}{i}(n-2 i)^{n-1} \operatorname{sign}(n-2 i) .
\end{aligned}
$$

- Numerical computations show that the above formula not only approaches $\sqrt{\frac{6}{\pi}}$ as $n \rightarrow \infty$, but also seems to be monotonically increasing for $n \geq 3$.

Figure: Vol $_{n-1}\left(C^{n} \cap H\right)$ for $3 \leq n \leq 110$.

Figure: Vol $_{n-1}\left(C^{n} \cap H\right)$ for $3 \leq n \leq 110$.

We do not know how to prove the monotonicty directly from this expression of Frank and Riede, so we will examine the integral of Ball instead.

- König and Koldobky (2018) proved that, in fact,

$$
\operatorname{Vol}_{n-1}\left(C^{n} \cap H\right) \leq \sqrt{6 / \pi} \quad \text { for all } n \geq 2
$$

- König and Koldobky (2018) proved that, in fact,

$$
\operatorname{Vol}_{n-1}\left(C^{n} \cap H\right) \leq \sqrt{6 / \pi} \quad \text { for all } n \geq 2
$$

- Very recently, Aliev (2020) proved that

$$
\frac{\sqrt{n}}{\sqrt{n+1}} \leq \frac{\operatorname{Vol}_{n}\left(C^{n+1} \cap H\right)}{\operatorname{Vol}_{n-1}\left(C^{n} \cap H\right)}
$$

which is slightly less than monotonicity.

We start with proving the following result:

We start with proving the following result:
Theorem (F. Bartha, F.F., B. Gonzalez)
There exists an integer n_{0} such that Vol $_{n-1}\left(C^{n} \cap H\right)$ is a strictly monotonically increasing function of n for all $n \geq n_{0}$.

We start with proving the following result:
Theorem (F. Bartha, F.F., B. Gonzalez)
There exists an integer n_{0} such that $\mathrm{Vol}_{n-1}\left(\mathrm{C}^{n} \cap H\right)$ is a strictly monotonically increasing function of n for all $n \geq n_{0}$.

- It will become clear from the proof that getting an explicit value for n_{0} is a purely numerical task.

We start with proving the following result:

Theorem (F. Bartha, F.F., B. Gonzalez)

There exists an integer n_{0} such that $\operatorname{Vol}_{n-1}\left(C^{n} \cap H\right)$ is a strictly monotonically increasing function of n for all $n \geq n_{0}$.

- It will become clear from the proof that getting an explicit value for n_{0} is a purely numerical task.
- If one has a bound for n_{0}, then one can verify monotonicity for all n by directly calculating the section volumes for $n<n_{0}$ with the formula of Frank and Riede.

We start with proving the following result:

Theorem (F. Bartha, F.F., B. Gonzalez)

There exists an integer n_{0} such that $\operatorname{Vol}_{n-1}\left(C^{n} \cap H\right)$ is a strictly monotonically increasing function of n for all $n \geq n_{0}$.

- It will become clear from the proof that getting an explicit value for n_{0} is a purely numerical task.
- If one has a bound for n_{0}, then one can verify monotonicity for all n by directly calculating the section volumes for $n<n_{0}$ with the formula of Frank and Riede.
- Such a verification also yields, as a corollary, the upper bound of König and Koldobsky.

Proof.

- We need to examine the behaviour of

$$
I(n)=\frac{2 \sqrt{n}}{\pi} \int_{0}^{+\infty}\left(\frac{\sin t}{t}\right)^{n} d t, \quad \text { for } n \geq 3
$$

Proof.

- We need to examine the behaviour of

$$
I(n)=\frac{2 \sqrt{n}}{\pi} \int_{0}^{+\infty}\left(\frac{\sin t}{t}\right)^{n} d t, \quad \text { for } n \geq 3
$$

- As a first step, we only consider the part of the integral close to 0 , as most of the weight is located there as $n \rightarrow \infty$.

Proof.

- We need to examine the behaviour of

$$
I(n)=\frac{2 \sqrt{n}}{\pi} \int_{0}^{+\infty}\left(\frac{\sin t}{t}\right)^{n} d t, \quad \text { for } n \geq 3
$$

- As a first step, we only consider the part of the integral close to 0 , as most of the weight is located there as $n \rightarrow \infty$.

- If $a>0$ fixed, then

$$
\begin{aligned}
\left|\frac{2 \sqrt{n}}{\pi} \int_{a}^{+\infty}\left(\frac{\sin t}{t}\right)^{n} d t\right| & \leq \frac{2 \sqrt{n}}{\pi} \int_{a}^{+\infty}\left|\frac{\sin t}{t}\right|^{n} d t \\
\quad<\frac{2 \sqrt{n}}{\pi} \int_{a}^{+\infty} t^{-n} d t & =\frac{2 \sqrt{n}}{\pi} \frac{a^{-n+1}}{n-1}<2 a^{-n}=: e_{1}(n)
\end{aligned}
$$

- If $a>0$ fixed, then

$$
\begin{aligned}
\left|\frac{2 \sqrt{n}}{\pi} \int_{a}^{+\infty}\left(\frac{\sin t}{t}\right)^{n} d t\right| & \leq \frac{2 \sqrt{n}}{\pi} \int_{a}^{+\infty}\left|\frac{\sin t}{t}\right|^{n} d t \\
\quad<\frac{2 \sqrt{n}}{\pi} \int_{a}^{+\infty} t^{-n} d t & =\frac{2 \sqrt{n}}{\pi} \frac{a^{-n+1}}{n-1}<2 a^{-n}=: e_{1}(n) .
\end{aligned}
$$

- Let

$$
I_{a}(n):=\frac{2 \sqrt{n}}{\pi} \int_{0}^{a}\left(\frac{\sin t}{t}\right)^{n} d t
$$

- If $a>0$ fixed, then

$$
\begin{aligned}
\left|\frac{2 \sqrt{n}}{\pi} \int_{a}^{+\infty}\left(\frac{\sin t}{t}\right)^{n} d t\right| & \leq \frac{2 \sqrt{n}}{\pi} \int_{a}^{+\infty}\left|\frac{\sin t}{t}\right|^{n} d t \\
\quad<\frac{2 \sqrt{n}}{\pi} \int_{a}^{+\infty} t^{-n} d t & =\frac{2 \sqrt{n}}{\pi} \frac{a^{-n+1}}{n-1}<2 a^{-n}=: e_{1}(n) .
\end{aligned}
$$

- Let

$$
I_{a}(n):=\frac{2 \sqrt{n}}{\pi} \int_{0}^{a}\left(\frac{\sin t}{t}\right)^{n} d t
$$

- Then

$$
\left|I(n)-I_{a}(n)\right|<e_{1}(n) .
$$

- If $a>0$ fixed, then

$$
\begin{aligned}
\left|\frac{2 \sqrt{n}}{\pi} \int_{a}^{+\infty}\left(\frac{\sin t}{t}\right)^{n} d t\right| & \leq \frac{2 \sqrt{n}}{\pi} \int_{a}^{+\infty}\left|\frac{\sin t}{t}\right|^{n} d t \\
\quad<\frac{2 \sqrt{n}}{\pi} \int_{a}^{+\infty} t^{-n} d t & =\frac{2 \sqrt{n}}{\pi} \frac{a^{-n+1}}{n-1}<2 a^{-n}=: e_{1}(n)
\end{aligned}
$$

- Let

$$
I_{a}(n):=\frac{2 \sqrt{n}}{\pi} \int_{0}^{a}\left(\frac{\sin t}{t}\right)^{n} d t
$$

- Then

$$
\left|I(n)-I_{a}(n)\right|<e_{1}(n) .
$$

- For $1<a<\frac{\pi}{2}$, the error $e_{1}(n)$ is exponentially small in n.
- We will use Laplace's method (with an explicit error estimate) to study the behaviour of $I_{a}(n)$.
- We will use Laplace's method (with an explicit error estimate) to study the behaviour of $I_{a}(n)$.
- Let us make the following change of variables in the integral

$$
\frac{\sin t}{t}=e^{-x^{2} / 6}, \text { thus } x=\sqrt{-6 \log \frac{\sin t}{t}}
$$

where we define the value of $\sin t / t$ to be 1 at $t=0$.

- We will use Laplace's method (with an explicit error estimate) to study the behaviour of $I_{a}(n)$.
- Let us make the following change of variables in the integral

$$
\frac{\sin t}{t}=e^{-x^{2} / 6}, \text { thus } x=\sqrt{-6 \log \frac{\sin t}{t}}
$$

where we define the value of $\sin t / t$ to be 1 at $t=0$.

- This way $\sin t / t$ is analytic everywhere on \mathbb{R}, and thus $x(t)$ is analytic in $[0, x(a)]$. (Note that $x(a)<1.08$.)
- We will use Laplace's method (with an explicit error estimate) to study the behaviour of $I_{a}(n)$.
- Let us make the following change of variables in the integral

$$
\frac{\sin t}{t}=e^{-x^{2} / 6}, \text { thus } x=\sqrt{-6 \log \frac{\sin t}{t}}
$$

where we define the value of $\sin t / t$ to be 1 at $t=0$.

- This way $\sin t / t$ is analytic everywhere on \mathbb{R}, and thus $x(t)$ is analytic in $[0, x(a)]$. (Note that $x(a)<1.08$.)
- The Taylor series of $x(t)$ around $t=0$ begins as

$$
x=t+\frac{t^{3}}{60}+\frac{139 t^{5}}{151200}+\frac{83 t^{7}}{1296000}+\ldots
$$

- The Taylor series of $x(t)$ around $t=0$ begins as

$$
x=t+\frac{t^{3}}{60}+\frac{139 t^{5}}{151200}+\frac{83 t^{7}}{1296000}+\ldots
$$

- On can easily check by simple differentiation that $x^{\prime}(t)>0$ for all $t \in[0, a]$, thus $x(t)$ is strictly monotonically increasing.
- The Taylor series of $x(t)$ around $t=0$ begins as

$$
x=t+\frac{t^{3}}{60}+\frac{139 t^{5}}{151200}+\frac{83 t^{7}}{1296000}+\ldots
$$

- On can easily check by simple differentiation that $x^{\prime}(t)>0$ for all $t \in[0, a]$, thus $x(t)$ is strictly monotonically increasing.
- As $x(0)=0, x(t)$ maps $[0, a]$ bijectively onto $[0, x(a)]$.
- The Taylor series of $x(t)$ around $t=0$ begins as

$$
x=t+\frac{t^{3}}{60}+\frac{139 t^{5}}{151200}+\frac{83 t^{7}}{1296000}+\ldots
$$

- On can easily check by simple differentiation that $x^{\prime}(t)>0$ for all $t \in[0, a]$, thus $x(t)$ is strictly monotonically increasing.
- As $x(0)=0, x(t)$ maps $[0, a]$ bijectively onto $[0, x(a)]$.
- Therefore, $x(t)$ has an inverse $t=t(x):[0, x(a)] \rightarrow[0, a]$.
- The Taylor series of $x(t)$ around $t=0$ begins as

$$
x=t+\frac{t^{3}}{60}+\frac{139 t^{5}}{151200}+\frac{83 t^{7}}{1296000}+\ldots
$$

- On can easily check by simple differentiation that $x^{\prime}(t)>0$ for all $t \in[0, a]$, thus $x(t)$ is strictly monotonically increasing.
- As $x(0)=0, x(t)$ maps $[0, a]$ bijectively onto $[0, x(a)]$.
- Therefore, $x(t)$ has an inverse $t=t(x):[0, x(a)] \rightarrow[0, a]$.
- Since $x^{\prime}(t) \neq 0$ everywhere in $[0, a]$, the inverse function $t(x)$ is analytic in $[0, x(a)]$ by the Lagrange Inversion Theorem.
- We can get the first few terms of the Taylor series of $t(x)$ around $x=0$ by inverting the Taylor series of $x(t)$ at $t=0$ as follows:

$$
t(x)=x-\frac{x^{3}}{60}-\frac{13 x^{5}}{151200}+\frac{x^{7}}{33600}+\ldots
$$

- We can get the first few terms of the Taylor series of $t(x)$ around $x=0$ by inverting the Taylor series of $x(t)$ at $t=0$ as follows:

$$
t(x)=x-\frac{x^{3}}{60}-\frac{13 x^{5}}{151200}+\frac{x^{7}}{33600}+\ldots
$$

- Then

$$
t^{\prime}(x)=1-\frac{x^{2}}{20}-\frac{13 x^{4}}{30240}+R_{6}(x)
$$

is the order 5 Taylor polynomial of $t^{\prime}(x)$ around 0 (observe that the degree 5 term is zero), and

- We can get the first few terms of the Taylor series of $t(x)$ around $x=0$ by inverting the Taylor series of $x(t)$ at $t=0$ as follows:

$$
t(x)=x-\frac{x^{3}}{60}-\frac{13 x^{5}}{151200}+\frac{x^{7}}{33600}+\ldots
$$

- Then

$$
t^{\prime}(x)=1-\frac{x^{2}}{20}-\frac{13 x^{4}}{30240}+R_{6}(x)
$$

is the order 5 Taylor polynomial of $t^{\prime}(x)$ around 0 (observe that the degree 5 term is zero), and

$$
R_{6}(x)=\frac{t^{(7)}(\xi)}{6!} x^{6}
$$

for some $\xi \in(0, x)$ (depending on x). Lagrange remainder

- We can get the first few terms of the Taylor series of $t(x)$ around $x=0$ by inverting the Taylor series of $x(t)$ at $t=0$ as follows:

$$
t(x)=x-\frac{x^{3}}{60}-\frac{13 x^{5}}{151200}+\frac{x^{7}}{33600}+\ldots
$$

- Then

$$
t^{\prime}(x)=1-\frac{x^{2}}{20}-\frac{13 x^{4}}{30240}+R_{6}(x)
$$

is the order 5 Taylor polynomial of $t^{\prime}(x)$ around 0 (observe that the degree 5 term is zero), and

$$
R_{6}(x)=\frac{t^{(7)}(\xi)}{6!} x^{6}
$$

for some $\xi \in(0, x)$ (depending on x). Lagrange remainder

- Since $t^{(7)}$ is C^{∞} in $[0, x(a)]$, it attains its maximum, so $\left|t^{7}(x)\right| \leq R$ for some $R>0$ and every $x \in[0, x(a)]$.

Therefore, after the change of variables, we get

$$
\begin{aligned}
I_{a}(n) & =\frac{2 \sqrt{n}}{\pi} \int_{0}^{x(a)} e^{-n x^{2} / 6} t^{\prime}(x) d x \\
& =\frac{2 \sqrt{n}}{\pi} \int_{0}^{x(a)} e^{-n x^{2} / 6}\left(1-\frac{x^{2}}{20}-\frac{13 x^{4}}{30240}+R_{6}(x)\right) d x \\
& =\frac{2 \sqrt{n}}{\pi} \int_{0}^{x(a)} e^{-n x^{2} / 6}\left(1-\frac{x^{2}}{20}-\frac{13 x^{4}}{30240}\right) d x \\
& +\frac{2 \sqrt{n}}{\pi} \int_{0}^{x(a)} e^{-n x^{2} / 6} R_{6}(x) d x
\end{aligned}
$$

In order to evaluate the above integrals we will use the central moments of the normal distribution: If $y=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$, then for an integer $p \geq 0$ it holds that

In order to evaluate the above integrals we will use the central moments of the normal distribution: If $y=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$, then for an integer $p \geq 0$ it holds that

$$
\mathbb{E}\left[y^{p}\right]= \begin{cases}0, & \text { if } p \text { is odd } \\ \sigma^{p}(p-1)!!, & \text { if } p \text { is even. }\end{cases}
$$

In our case $\mu=0$ and $\sigma^{2}=3 / n$. Thus, we get that

$$
\begin{aligned}
\frac{2 \sqrt{n}}{\pi} \int_{0}^{x(a)} e^{-n x^{2} / 6}\left|R_{6}(x)\right| d x & \leq \frac{2 R \sqrt{n}}{\pi 6!} \int_{0}^{x(a)} e^{-n x^{2} / 6} x^{6} d x \\
& <\frac{2 R \sqrt{n}}{\pi 6!} \int_{0}^{+\infty} e^{-n x^{2} / 6} x^{6} d x \\
& =\frac{2 R \sqrt{n}}{\pi 6!} \frac{3^{3}}{n^{3}} 5!! \\
& =\frac{9 R}{8 \pi} \frac{1}{n^{5 / 2}} \\
& <\frac{R}{2} \frac{1}{n^{5 / 2}}=: e_{2}(n) .
\end{aligned}
$$

Notice also that

$$
\begin{aligned}
& \frac{2 \sqrt{n}}{\pi} \int_{0}^{+\infty} e^{-n x^{2} / 6}\left(1-\frac{x^{2}}{20}-\frac{13 x^{4}}{30240}\right) d x \\
& =\sqrt{\frac{3 \pi}{2}} \frac{2 \sqrt{n}}{\pi}\left(\frac{1}{n^{1 / 2}}-\frac{3}{20 n^{3 / 2}}-\frac{13}{1120 n^{5 / 2}}\right) \\
& =\sqrt{\frac{6}{\pi}}\left(1-\frac{3}{20 n}-\frac{13}{1120 n^{2}}\right) .
\end{aligned}
$$

The complementary error function is defined as

$$
\operatorname{erfc}(x):=\frac{2}{\sqrt{\pi}} \int_{x}^{+\infty} e^{-\tau^{2}} d \tau
$$

The complementary error function is defined as

$$
\operatorname{erfc}(x):=\frac{2}{\sqrt{\pi}} \int_{x}^{+\infty} e^{-\tau^{2}} d \tau
$$

It is known that $\operatorname{erfc}(x) \leq e^{-x^{2}}$ for $x>1$. Then

The complementary error function is defined as

$$
\operatorname{erfc}(x):=\frac{2}{\sqrt{\pi}} \int_{x}^{+\infty} e^{-\tau^{2}} d \tau
$$

It is known that $\operatorname{erfc}(x) \leq e^{-x^{2}}$ for $x>1$. Then

$$
\begin{aligned}
& \quad \frac{2 \sqrt{n}}{\pi}\left|\int_{x(a)}^{+\infty} e^{-n x^{2} / 6}\left(1-\frac{x^{2}}{20}-\frac{13 x^{4}}{30240}\right) d x\right| \\
& \leq \frac{2 \sqrt{n}}{\pi} \int_{x(a)}^{+\infty} e^{-n x^{2} / 6}\left|1-\frac{x^{2}}{20}-\frac{13 x^{4}}{30240}\right| d x \\
& \quad<\frac{2 \sqrt{n}}{\pi} \int_{1}^{+\infty} e^{-n x^{2} / 6}\left(1+\frac{x^{2}}{20}+\frac{13 x^{4}}{30240}\right) d x \\
& \quad=\sqrt{6 \pi} \operatorname{erfc}(\sqrt{n / 6})\left(\frac{13+168 n+1120 n^{2}}{2240 n^{5 / 2}}\right) \\
& \quad+e^{-n / 6} \sqrt{n} \frac{117+1525 n}{10080 n^{5 / 2}}<5 e^{-n / 6}=: e_{3}(n)
\end{aligned}
$$

Now, using the monotonicity of $e_{1}(n)$, we obtain that

Now, using the monotonicity of $e_{1}(n)$, we obtain that

$$
\begin{array}{r}
I(n+1)-I(n) \geq\left(I_{a}(n+1)-e_{1}(n+1)\right)-\left(I_{a}(n)+e_{1}(n)\right) \\
\geq I_{a}(n+1)-I_{a}(n)-2 e_{1}(n) .
\end{array}
$$

Now, using the monotonicity of $e_{1}(n)$, we obtain that

$$
\begin{array}{r}
I(n+1)-I(n) \geq\left(I_{a}(n+1)-e_{1}(n+1)\right)-\left(I_{a}(n)+e_{1}(n)\right) \\
\geq I_{a}(n+1)-I_{a}(n)-2 e_{1}(n) .
\end{array}
$$

Furthermore,

$$
I_{a}(n+1) \geq \sqrt{\frac{6}{\pi}}\left(1-\frac{3}{20(n+1)}-\frac{13}{1120(n+1)^{2}}\right)-e_{2}(n+1)-e_{3}(n+1)
$$

Now, using the monotonicity of $e_{1}(n)$, we obtain that

$$
\begin{array}{r}
I(n+1)-I(n) \geq\left(I_{a}(n+1)-e_{1}(n+1)\right)-\left(I_{a}(n)+e_{1}(n)\right) \\
\geq I_{a}(n+1)-I_{a}(n)-2 e_{1}(n)
\end{array}
$$

Furthermore,
$I_{a}(n+1) \geq \sqrt{\frac{6}{\pi}}\left(1-\frac{3}{20(n+1)}-\frac{13}{1120(n+1)^{2}}\right)-e_{2}(n+1)-e_{3}(n+1)$,
and

$$
I_{a}(n) \leq \sqrt{\frac{6}{\pi}}\left(1-\frac{3}{20 n}-\frac{13}{1120 n^{2}}\right)+e_{2}(n)+e_{3}(n)
$$

Therefore

$$
\begin{aligned}
I(n+1) & -I(n) \\
& \geq \sqrt{\frac{6}{\pi}}\left(\frac{3}{20 n(n+1)}+\frac{13(2 n+1)}{1120 n^{2}(n+1)^{2}}\right) \\
& -4 a^{-n}-\left(e_{2}(n)+e_{2}(n+1)+e_{3}(n)+e_{3}(n+1)\right) \\
& \geq \sqrt{\frac{6}{\pi}}\left(\frac{3}{20 n(n+1)}\right)-4 \cdot 1.1^{-n}-\frac{R}{n^{5 / 2}}-10 e^{-n / 6} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
I(n+1) & -I(n) \\
& \geq \sqrt{\frac{6}{\pi}}\left(\frac{3}{20 n(n+1)}+\frac{13(2 n+1)}{1120 n^{2}(n+1)^{2}}\right) \\
& -4 a^{-n}-\left(e_{2}(n)+e_{2}(n+1)+e_{3}(n)+e_{3}(n+1)\right) \\
& \geq \sqrt{\frac{6}{\pi}}\left(\frac{3}{20 n(n+1)}\right)-4 \cdot 1.1^{-n}-\frac{R}{n^{5 / 2}}-10 e^{-n / 6} .
\end{aligned}
$$

Clearly, there exists an n_{0}, such that for all $n \geq n_{0}$ the above expression is strictly positive. Thus, $\mathrm{Vol}_{n-1}\left(C^{n} \cap H\right)$ is strictly monotonically increasing for $n \geq n_{0}$.

Therefore

$$
\begin{aligned}
I(n+1) & -I(n) \\
& \geq \sqrt{\frac{6}{\pi}}\left(\frac{3}{20 n(n+1)}+\frac{13(2 n+1)}{1120 n^{2}(n+1)^{2}}\right) \\
& -4 a^{-n}-\left(e_{2}(n)+e_{2}(n+1)+e_{3}(n)+e_{3}(n+1)\right) \\
& \geq \sqrt{\frac{6}{\pi}}\left(\frac{3}{20 n(n+1)}\right)-4 \cdot 1.1^{-n}-\frac{R}{n^{5 / 2}}-10 e^{-n / 6} .
\end{aligned}
$$

Clearly, there exists an n_{0}, such that for all $n \geq n_{0}$ the above expression is strictly positive. Thus, $\mathrm{Vol}_{n-1}\left(C^{n} \cap H\right)$ is strictly monotonically increasing for $n \geq n_{0}$. Thus, we have finished the proof of the main theorem.

Therefore

$$
\begin{aligned}
I(n+1) & -I(n) \\
& \geq \sqrt{\frac{6}{\pi}}\left(\frac{3}{20 n(n+1)}+\frac{13(2 n+1)}{1120 n^{2}(n+1)^{2}}\right) \\
& -4 a^{-n}-\left(e_{2}(n)+e_{2}(n+1)+e_{3}(n)+e_{3}(n+1)\right) \\
& \geq \sqrt{\frac{6}{\pi}}\left(\frac{3}{20 n(n+1)}\right)-4 \cdot 1.1^{-n}-\frac{R}{n^{5 / 2}}-10 e^{-n / 6} .
\end{aligned}
$$

Clearly, there exists an n_{0}, such that for all $n \geq n_{0}$ the above expression is strictly positive. Thus, $\mathrm{Vol}_{n-1}\left(C^{n} \cap H\right)$ is strictly monotonically increasing for $n \geq n_{0}$. Thus, we have finished the proof of the main theorem.

- We note that with the same method (but more terms in the Taylor expansion) we can prove that $\operatorname{Vol}_{n-1}\left(C_{n} \cap H\right)$ is a concave sequence, i.e., $2 I(n+1) \geq I(n)+I(n+2)$ for sufficiently large n.

Numerical bounds

- The following rigorous upper bound

$$
\left|t^{(7)}(x)\right| \leq 1.25 \quad \text { for all } x \in[0, x(a)]
$$

can be obtained using interval arithmetic and automatic differentiation combined with general analytic methods.

Numerical bounds

- The following rigorous upper bound

$$
\left|t^{(7)}(x)\right| \leq 1.25 \quad \text { for all } x \in[0, x(a)]
$$

can be obtained using interval arithmetic and automatic differentiation combined with general analytic methods.

- Comparing this with the above estimate, we obtain that $n_{0}=145$ is sufficient.

Numerical bounds

- The following rigorous upper bound

$$
\left|t^{(7)}(x)\right| \leq 1.25 \quad \text { for all } x \in[0, x(a)]
$$

can be obtained using interval arithmetic and automatic differentiation combined with general analytic methods.

- Comparing this with the above estimate, we obtain that $n_{0}=145$ is sufficient.
- We can check $I(n)$ for $3 \leq n \leq 145$ by calculating the exact value by the Frank-Riede formula:

Numerical bounds

Figure: $I(n+1)-I(n)$ for $50 \leq n \leq 145$ plotted by Mathematica

Numerical bounds

Figure: $I(n+1)-I(n)$ for $50 \leq n \leq 145$ plotted by Mathematica

Thus, we get the following theorem:
Theorem (F. Bartha, F.F., B. Gonzalez)
Vol $_{n-1}\left(C^{n} \cap H\right)$ is a strictly monotonically increasing function of n for all $n \geq 3$.

Thank you for your attention.

