MONOTONE ARRAYS AND A MULTIDIMENSIONAL RAMSEY THEOREM

A foundational result in Ramsey theory appears in a paper Erdős and Szekeres from 1935: any sequence of $n^{2}+1$ distinct real numbers contains either an increasing or decreasing subsequence of length $n+1$. This simple result was one of the starting seeds for the development of Ramsey theory. There are a number of different ways to generalise the Erdős-Szekeres Theorem to higher dimensions but perhaps the most natural approach was developed thirty years ago by Fishburn and Graham. A d-dimensional array is an injective function f from $A_{1} \times \ldots \times A_{d}$ to \mathbb{R} where $A_{1}, \ldots A_{d}$ are non-empty subsets of \mathbb{Z}; we say f has size $\left|A_{1}\right| \times \cdots \times\left|A_{d}\right|$; if $\left|A_{i}\right|=n$ for each i, it will be convenient to say that f has size $[n]^{d}$. A multidimensional array is said to be monotone if for each direction all the 1-dimensional subarrays in that direction are increasing or decreasing. In other words, for every i, one of the following holds:

- For every choice of $a_{j}, j \neq i$, the function $f\left(a_{1}, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_{d}\right)$ is increasing in x.
- For every choice of $a_{j}, j \neq i$, the function $f\left(a_{1}, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_{d}\right)$ is decreasing in x. Let $M_{d}(n)$ be the smallest N such that a d-dimensional array on $[N]^{d}$ contains a monotone d dimensional subarray of size $[n]^{d}$. We will show how to improve the bounds on $M_{d}(n)$ recently proved by Bucić, Sudakov and Tran. More precisely, we will show that a doubly exponential upper bound holds in all dimensions.

Theorem 0.1. For every $d \geq 2$, there is $C_{d}>0$, such that for every positive $n, M_{d}(n) \leq 2^{n^{C_{d} n^{d-1}}}$.
Finally, we will see how this is intimately connected to a generalisation of Ramsey Theorem on the cartesian product of cliques.

[^0]
[^0]: Date: November 2022.

