An Almost Optimal Bound on the Number of Intersections of Two Simple Polygons

Eyal Ackerman, Balázs Keszegh and Günter Rote

University of Haifa at Oranim, Israel

Rényi Institute and MTA-ELTE CoGe, Hungary

Freie Universität, Berlin, Germany

Problem statement

Problem

What is the maximum number $i(n, m)$ of intersection points between the boundaries of two simple polygons on n and m vertices?

Problem statement

Problem

What is the maximum number $i(n, m)$ of intersection points between the boundaries of two simple polygons on n and m vertices?

1. $i(n, m) \leq n m$ is a trivial upper bound which can be reached...

Problem

What is the maximum number $i(n, m)$ of intersection points between the boundaries of two simple polygons on n and m vertices?

1. $i(n, m) \leq n m$ is a trivial upper bound which can be reached...
when n and m are both even:

Problem

What is the maximum number $i(n, m)$ of intersection points between the boundaries of two simple polygons on n and m vertices?
2. $i(n, m) \leq n m-n$ when m is odd

The line through any red segment interects even many blue segments and thus must miss at least one blue segment.

Problem statement

Problem

What is the maximum number $i(n, m)$ of intersection points between the boundaries of two simple polygons on n and m vertices?
2. $i(n, m) \leq n m-n$ when m is odd

The line through any red segment interects even many blue segments and thus must miss at least one blue segment.

This can be reached when \underline{m} is odd and n is even.

Problem statement

Problem

What is the maximum number $i(n, m)$ of intersection points between the boundaries of two simple polygons on n and m vertices?
3. $i(n, m) \leq n m-\max (n, m)$ when n and m are both odd

Problem

What is the maximum number $i(n, m)$ of intersection points between the boundaries of two simple polygons on n and m vertices?
3. $i(n, m) \leq n m-\max (n, m)$ when n and m are both odd

Yet best lower bound is $(n-1)(m-1)=n m-n-m+1$

Problem statement

Problem

What is the maximum number $i(n, m)$ of intersection points between the boundaries of two simple polygons on n and m vertices?
3. $i(n, m) \leq n m-\max (n, m)$ when n and m are both odd

Yet best lower bound is $(n-1)(m-1)=n m \longrightarrow-n+1$

$$
n m-n-m+3
$$

Odd-odd case results

Problem

What is the maximum number $i(n, m)$ of intersection points between the boundaries of two simple polygons on n and m vertices when n and m are both odd?

Odd-odd case results

Problem

What is the maximum number $i(n, m)$ of intersection points between the boundaries of two simple polygons on n and m vertices when n and m are both odd?

$$
n m-n-m+3 \leq i(n, m) \leq n m-\max (n, m)
$$

Odd-odd case results

Problem

What is the maximum number $i(n, m)$ of intersection points between the boundaries of two simple polygons on n and m vertices when n and m are both odd?
$n m-n-m+3 \leq i(n, m) \leq n m-\max (n, m)$
Theorem (J. Černý, J. Kára, D. Král', P. Podbrdský, M. Sotáková and R. Šámal, 2003)
$i(n, m) \leq n m-m-\left\lceil\frac{n}{6}\right\rceil$, for $m \geq n$.

Odd-odd case results

Problem

What is the maximum number $i(n, m)$ of intersection points between the boundaries of two simple polygons on n and m vertices when n and m are both odd?
$n m-n-m+3 \leq i(n, m) \leq n m-\max (n, m)$
Theorem (J. Černý, J. Kára, D. Král', P. Podbrdský, M. Sotáková and R. Šámal, 2003)
$i(n, m) \leq n m-m-\left\lceil\frac{n}{6}\right\rceil$, for $m \geq n$.
Theorem (AKR, 2020)
$i(n, m) \leq n m-m-n+C$ for some constant C.

Odd-odd case results

Problem

What is the maximum number $i(n, m)$ of intersection points between the boundaries of two simple polygons on n and m vertices when n and m are both odd?
$n m-n-m+3 \leq i(n, m) \leq n m-\max (n, m)$
Theorem (J. Černý, J. Kára, D. Král', P. Podbrdský, M. Sotáková and R. Šámal, 2003)
$i(n, m) \leq n m-m-\left\lceil\frac{n}{6}\right\rceil$, for $m \geq n$.
Theorem (AKR, 2020)
$i(n, m) \leq n m-m-n+C$ for some constant C.
Sadly, C is huge ($\approx 2^{2^{70}}$). For small values we have:

Odd-odd case results

Problem

What is the maximum number $i(n, m)$ of intersection points between the boundaries of two simple polygons on n and m vertices when n and m are both odd?
$n m-n-m+3 \leq i(n, m) \leq n m-\max (n, m)$
Theorem (J. Černý, J. Kára, D. Král', P. Podbrdský,
M. Sotáková and R. Šámal, 2003)
$i(n, m) \leq n m-m-\left\lceil\frac{n}{6}\right\rceil$, for $m \geq n$.
Theorem (AKR, 2020)
$i(n, m) \leq n m-m-n+C$ for some constant C.
Sadly, C is huge ($\approx 2^{2^{70}}$). For small values we have:
Theorem (AKR, 2020)
$i(n, m) \leq n m-m-\left\lceil\frac{n-5}{2}\right\rceil$, for $m \geq n \geq 3$.

The non-intersection graph

Definition The disjointness/non-intersection graph G of polygons P and Q is a bipartite graph with vertices corresponding to edges of the polygons and two vertices are connected whenever the corresponding edges do not intersect.

The non-intersection graph

Definition The disjointness/non-intersection graph G of polygons P and Q is a bipartite graph with vertices corresponding to edges of the polygons and two vertices are connected whenever the corresponding edges do not intersect.

$i(n, m)=n m-e(G) \leq n m-(m+n-c c(G))$ where $c c(G)=$ the number of conn. components of G.
Thus it is enough to prove that $c c(G) \leq C$.

Hooking lemma

Definition For an edge p of a polygon $P, C C(p)$ denotes its connected component in G.

Hooking lemma

Definition For an edge p of a polygon $P, C C(p)$ denotes its connected component in G.

Lemma If $C C\left(p_{i}\right) \neq C C\left(p_{i+1}\right)$ then there exist q_{j} and $q_{j \pm 1}$ such that:

Hooking lemma

Definition For an edge p of a polygon $P, C C(p)$ denotes its connected component in G.

Lemma If $C C\left(p_{i}\right) \neq C C\left(p_{i+1}\right)$ then there exist q_{j} and $q_{j \pm 1}$ such that:

and $p_{i} p_{i+1}$ is either
a) hooking $q_{j} q_{j \pm 1}$ or is b) hooked by $q_{j} q_{j \pm 1}$ or c) both.

Proof of Lemma

Suppose $C C\left(p_{i}\right) \neq C C\left(p_{i+1}\right)$. Then every red edge intersects at least one of p_{i} and p_{i+1}.

Proof of Lemma

Suppose $C C\left(p_{i}\right) \neq C C\left(p_{i+1}\right)$. Then every red edge intersects at least one of p_{i} and p_{i+1}.
The red polygon induces an odd closed walk between cones I-IV which is a subgraph of this edge-labeled dummy graph:

Proof of Lemma

Suppose $C C\left(p_{i}\right) \neq C C\left(p_{i+1}\right)$. Then every red edge intersects at least one of p_{i} and p_{i+1}.
The red polygon induces an odd closed walk between cones I-IV which is a subgraph of this edge-labeled dummy graph:

It is easy to check that there is either a
a1) IV-I-II subwalk with labels p_{i} and p_{i+1} or
a2) IV-I-III subwalk with labels p_{i} and p_{i+1} or
a3) III-I-II subwalk with labels p_{i} and p_{i+1} or

Proof of Lemma

Suppose $C C\left(p_{i}\right) \neq C C\left(p_{i+1}\right)$. Then every red edge intersects at least one of p_{i} and p_{i+1}.
The red polygon induces an odd closed walk between cones I-IV which is a subgraph of this edge-labeled dummy graph:

It is easy to check that there is either a a1) IV-I-II subwalk with labels p_{i} and p_{i+1} or a2) IV-I-III subwalk with labels p_{i} and p_{i+1} or a3) III-I-II subwalk with labels p_{i} and p_{i+1} or
b) I-III-I subwalk with labels p_{i} and p_{i+1}

CCp Lemma

Lemma If $C C\left(p_{i}\right), C C\left(p_{i+1}\right), C C\left(p_{j}\right)$ and $C C\left(p_{j+1}\right)$ are all different then it is impossible that both of $p_{i} p_{i+1}$ and $p_{j} p_{j+1}$ are hooked or that both are hooking.

CCp Lemma

Lemma If $C C\left(p_{i}\right), C C\left(p_{i+1}\right), C C\left(p_{j}\right)$ and $C C\left(p_{j+1}\right)$ are all different then it is impossible that both of $p_{i} p_{i+1}$ and $p_{j} p_{j+1}$ are hooked or that both are hooking.

CCp Lemma

Lemma If $C C\left(p_{i}\right), C C\left(p_{i+1}\right), C C\left(p_{j}\right)$ and $C C\left(p_{j+1}\right)$ are all different then it is impossible that both of $p_{i} p_{i+1}$ and $p_{j} p_{j+1}$ are hooked or that both are hooking.

Proof case analysis,

 wlog. they are both hooking

$$
\left.a^{\prime}=p_{j}{ }^{2}\right)^{2}{ }^{2}{ }^{2}
$$

$$
b^{\prime}=p_{j+1} \stackrel{ }{ } B^{\prime}
$$

A, B meet in one of F_{1}, F_{2}, F_{3} and a^{\prime}, b^{\prime} meet in one of $F_{6}, F_{4}, F_{2}, F_{5} \Rightarrow$ we need to check 12 cases

One of the cases: $A \cap B \in F_{1}$ and $a^{\prime} \cap b^{\prime} \in F_{6}$

a) At least one of the sides a^{\prime}
and b^{\prime} has an endpoint in F_{4}
$\Rightarrow B$ cannot intersect this side

One of the cases: $A \cap B \in F_{1}$ and $a^{\prime} \cap b^{\prime} \in F_{6}$

a) At least one of the sides a^{\prime} and b^{\prime} has an endpoint in F_{4}
$\Rightarrow B$ cannot intersect this side $\Rightarrow A$ and B meet inside the cone of a^{\prime}, b^{\prime}
\Rightarrow none of A, B can intersect both of a^{\prime}, b^{\prime}

Showing that there are at most $\approx n / 2$ CC's

Lemma If $C C\left(p_{i}\right), C C\left(p_{i+1}\right), C C\left(p_{j}\right)$ and $C C\left(p_{j+1}\right)$ are all different then it is impossible that both of $p_{i} p_{i+1}$ and $p_{j} p_{j+1}$ are hooked or that both are hooking.

Showing that there are at most $\approx n / 2$ CC's

Lemma If $C C\left(p_{i}\right), C C\left(p_{i+1}\right), C C\left(p_{j}\right)$ and $C C\left(p_{j+1}\right)$ are all different then it is impossible that both of $p_{i} p_{i+1}$ and $p_{j} p_{j+1}$ are hooked or that both are hooking.
\Rightarrow There can be a pair of edges $C C\left(p_{i}\right) \neq C C\left(p_{i+1}\right)$ which is hooking $(=a b)$, another that is hooked $\left(=a^{\prime} b^{\prime}\right)$, the rest of such pairs must share a CC with one of $a b$ and $a^{\prime} b^{\prime}$. one of the dashed edges must be in G :

Showing that there are at most $\approx n / 2$ CC's

Lemma If $C C\left(p_{i}\right), C C\left(p_{i+1}\right), C C\left(p_{j}\right)$ and $C C\left(p_{j+1}\right)$ are all different then it is impossible that both of $p_{i} p_{i+1}$ and $p_{j} p_{j+1}$ are hooked or that both are hooking.
\Rightarrow There can be a pair of edges $C C\left(p_{i}\right) \neq C C\left(p_{i+1}\right)$ which is hooking $(=a b)$, another that is hooked $\left(=a^{\prime} b^{\prime}\right)$, the rest of such pairs must share a CC with one of $a b$ and $a^{\prime} b^{\prime}$. one of the dashed edges must be in G :

Showing that there are at most $\approx n / 2$ CC's

Lemma If $C C\left(p_{i}\right), C C\left(p_{i+1}\right), C C\left(p_{j}\right)$ and $C C\left(p_{j+1}\right)$ are all different then it is impossible that both of $p_{i} p_{i+1}$ and $p_{j} p_{j+1}$ are hooked or that both are hooking.
\Rightarrow There can be a pair of edges $C C\left(p_{i}\right) \neq C C\left(p_{i+1}\right)$ which is hooking $(=a b)$, another that is hooked $\left(=a^{\prime} b^{\prime}\right)$, the rest of such pairs must share a CC with one of $a b$ and $a^{\prime} b^{\prime}$. one of the dashed edges must be in G :

Showing that there are at most $\approx n / 2$ CC's

Lemma If $C C\left(p_{i}\right), C C\left(p_{i+1}\right), C C\left(p_{j}\right)$ and $C C\left(p_{j+1}\right)$ are all different then it is impossible that both of $p_{i} p_{i+1}$ and $p_{j} p_{j+1}$ are hooked or that both are hooking.
\Rightarrow There can be a pair of edges $C C\left(p_{i}\right) \neq C C\left(p_{i+1}\right)$ which is hooking $(=a b)$, another that is hooked $\left(=a^{\prime} b^{\prime}\right)$, the rest of such pairs must share a CC with one of $a b$ and $a^{\prime} b^{\prime}$. one of the dashed edges must be in G :

Showing that there are only Constant many CC's

Assume from now on that there are $>C$ many CC's in G. After a bit of thinning we have $>C^{\prime}$ hooking pairs:

Showing that there are only Constant many CC's

Assume from now on that there are $>C$ many CC's in G. After a bit of thinning we have $>C^{\prime}$ hooking pairs:

$$
\begin{array}{lll}
p_{i_{1}} \\
Q_{0}
\end{array} q_{i_{1}} \quad C C\left(p_{i_{j}}\right) \text { are all different } \Rightarrow \text { the }
$$

Showing that there are only Constant many CC's

Assume from now on that there are $>C$ many CC's in G. After a bit of thinning we have $>C^{\prime}$ hooking pairs:
$C C\left(p_{i_{j}}\right)$ are all different \Rightarrow the union of vertices $p_{i_{j}}, q_{i_{j}}$ induces a matching
$C C\left(p_{i_{j}+1}\right)$ are all the same.

Ramsey-type arguments that improve the structure

Hooking Lemma for avoiding pairs + CCp Lemma \Rightarrow For $>C^{\prime}-5$ pairs all $p_{i_{j}}$ and $p_{i_{k}}$ are non-avoiding: $p_{i_{j}}$ stabs $p_{i_{k}}$ (or vice versa).

Ramsey-type arguments that improve the structure

Hooking Lemma for avoiding pairs + CCp Lemma \Rightarrow For $>C^{\prime}-5$ pairs all $p_{i_{j}}$ and $p_{i_{k}}$ are non-avoiding: $p_{i_{j}}$ stabs $p_{i_{k}}$ (or vice versa).

$$
p_{i_{k}}
$$

Stabbings define a tournament on the $p_{i_{j}}$'s. It has a transitive subtournament of size $C^{\prime \prime} \approx \log \left(C^{\prime}\right)$.

Ramsey-type arguments that improve the structure

Hooking Lemma for avoiding pairs + CCp Lemma \Rightarrow For $>C^{\prime}-5$ pairs all $p_{i_{j}}$ and $p_{i_{k}}$ are non-avoiding: $p_{i_{j}}$ stabs $p_{i_{k}}$ (or vice versa).

$$
p_{i_{k}}
$$

Stabbings define a tournament on the $p_{i_{j}}$'s. It has a transitive subtournament of size $C^{\prime \prime} \approx \log \left(C^{\prime}\right)$.
By Erdős-Szekeres Theorem on cups/caps there are $>C^{\prime \prime \prime}$ $p_{i_{j}}$'s such that their supporting lines form a cap or cup.

Ramsey-type arguments that improve the structure

Hooking Lemma for avoiding pairs + CCp Lemma \Rightarrow For $>C^{\prime}-5$ pairs all $p_{i_{j}}$ and $p_{i_{k}}$ are non-avoiding: $p_{i_{j}}$ stabs $p_{i_{k}}$ (or vice versa).

$$
p_{i_{k}}
$$

Stabbings define a tournament on the $p_{i_{j}}$'s. It has a transitive subtournament of size $C^{\prime \prime} \approx \log \left(C^{\prime}\right)$.
By Erdős-Szekeres Theorem on cups/caps there are $>C^{\prime \prime \prime}$ $p_{i_{j}}$'s such that their supporting lines form a cap or cup.

Order these $p_{i_{j}}$'s according to the transitive subtournament.

Ramsey-type arguments that improve the structure

Hooking Lemma for avoiding pairs + CCp Lemma \Rightarrow For $>C^{\prime}-5$ pairs all $p_{i_{j}}$ and $p_{i_{k}}$ are non-avoiding: $p_{i_{j}}$ stabs $p_{i_{k}}$ (or vice versa).

Stabbings define a tournament on the $p_{i_{j}}$'s. It has a transitive subtournament of size $C^{\prime \prime} \approx \log \left(C^{\prime}\right)$.
By Erdős-Szekeres Theorem on cups/caps there are $>C^{\prime \prime \prime}$ $p_{i_{j}}$'s such that their supporting lines form a cap or cup.

Order these $p_{i_{j}}$'s according to the transitive subtournament. By Erdős-Szekeres Theorem on monotone subsequences there is $>C^{\prime \prime \prime \prime}=7 p_{i_{j}}$'s such that their slopes are monotone increasing or decreasing.

Concluding the proof

The remaining ≥ 7 sides must have this structure:

Concluding the proof

The remaining ≥ 7 sides must have this structure:

Again a case analysis of the hooking pairs leads to contradiction.

etc.

Thank you for your attention

