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M. Sotáková and R. Šámal, 2003)
i(n,m) ≤ nm−m− dn6 e, for m ≥ n.

Theorem (AKR, 2020)
i(n,m) ≤ nm−m− n+ C for some constant C.

Sadly, C is huge (≈ 22
70

). For small values we have:

Theorem (AKR, 2020)
i(n,m) ≤ nm−m− dn−52 e, for m ≥ n ≥ 3.



The non-intersection graph

Definition The disjointness/non-intersection graph G of
polygons P and Q is a bipartite graph with vertices
corresponding to edges of the polygons and two vertices are
connected whenever the corresponding edges do not intersect.
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The non-intersection graph

Definition The disjointness/non-intersection graph G of
polygons P and Q is a bipartite graph with vertices
corresponding to edges of the polygons and two vertices are
connected whenever the corresponding edges do not intersect.

i(n,m) = nm− e(G) ≤ nm− (m+ n− cc(G)) where
cc(G) = the number of conn. components of G.
Thus it is enough to prove that cc(G) ≤ C.
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Hooking lemma

Definition For an edge p of a polygon P , CC(p) denotes its
connected component in G.
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Definition For an edge p of a polygon P , CC(p) denotes its
connected component in G.

Lemma If CC(pi) 6= CC(pi+1) then there exist qj and qj±1
such that:
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and pipi+1 is either
a) hooking qjqj±1 or is b) hooked by qjqj±1 or c) both.

pi

pi+1 qj
qj±1 pi

pi+1
qj

qj±1 pi

pi+1
qj

qj±1

(a) (b) (c)



Proof of Lemma
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Suppose CC(pi) 6= CC(pi+1). Then every red edge intersects
at least one of pi and pi+1.

The red polygon induces an odd closed walk between cones
I-IV which is a subgraph of this edge-labeled dummy graph:
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It is easy to check that there is either a
a1) IV-I-II subwalk with labels pi and pi+1 or
a2) IV-I-III subwalk with labels pi and pi+1 or
a3) III-I-II subwalk with labels pi and pi+1 or

pi
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b) I-III-I subwalk with labels pi and pi+1

b) pipi+1 is hooked by
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CCp Lemma

Lemma If CC(pi), CC(pi+1), CC(pj) and CC(pj+1) are all
different then it is impossible that both of pipi+1 and pjpj+1

are hooked or that both are hooking.
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Proof case analysis,
wlog. they are both hooking
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A,B meet in one of F1, F2, F3 and a′, b′ meet in one of
F6, F4, F2, F5 ⇒ we need to check 12 cases
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an endpoint in F2 ∪ F5
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cone of a′, b′

⇒ none of A,B can intersect
both of a′, b′
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Lemma If CC(pi), CC(pi+1), CC(pj) and CC(pj+1) are all
different then it is impossible that both of pipi+1 and pjpj+1

are hooked or that both are hooking.

⇒ There can be a pair of edges CC(pi) 6= CC(pi+1) which is
hooking (= ab), another that is hooked (= a′b′), the rest of
such pairs must share a CC with one of ab and a′b′.

hooking

hooking
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b

one of the dashed edges must be in G:

⇒ Every pair of edges can ‘add’ only
at most one new CC.
⇒ There are at most ≈ n/2 CC’s. ⇒

Theorem (AKR, 2020)
i(n,m) ≤ nm−m− dn−52 e, for
m ≥ n ≥ 3.
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Showing that there are only Constant many CC’s

CC(pij ) are all different ⇒ the
union of vertices pij , qij induces a
matching

pi1+1

pi2+1

piC+1

Assume from now on that there are > C many CC’s in G.
After a bit of thinning we have > C ′ hooking pairs:

CC(pij+1) are all the same.
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Ramsey-type arguments that improve the structure

Hooking Lemma for avoiding pairs + CCp Lemma ⇒ For
> C ′ − 5 pairs all pij and pik are non-avoiding: pij stabs pik
(or vice versa).

pij

pik
Stabbings define a tournament on the pij ’s. It has a transitive
subtournament of size C ′′ ≈ log(C ′).

By Erdős-Szekeres Theorem on cups/caps there are > C ′′′

pij ’s such that their supporting lines form a cap or cup.

Order these pij ’s according to the transitive subtournament.

By Erdős-Szekeres Theorem on monotone subsequences there
is > C ′′′′ = 7 pij ’s such that their slopes are monotone
increasing or decreasing.
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The remaining ≥ 7 sides must have this structure:

Again a case analysis of the hooking pairs leads to
contradiction.
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Thank you for your attention


