COLORFUL HELLY THEOREM FOR PIERCING BOXES WITH TWO POINTS

Abstract. For any natural number n, a family \mathcal{F} of subsets of a space \mathbf{X} is said to be n-pierceable, if there exists $A \subseteq \mathbf{X}$ with $|A| \leq n$ such that for any $F \in \mathcal{F}, F \cap A \neq \emptyset$.

Helly's theorem, one of the fundamental results in discrete geometry, says that for any finite family \mathcal{F} of convex sets in \mathbb{R}^{d}, if every $(d+1)$-tuple from \mathcal{F} is 1 -pierceable, then the whole family \mathcal{F} is 1 -pierceable. Unfortunately, for $n \geq 2$, a similar statement about the n-pierceable sets is not valid for general convex sets. Danzer and Grünbaum proved the first and one of the most important Helly type results on multi-pierceable families; viz. famlies of axis parallel boxes.

One important generalization of Helly's theorem is Colorful Helly's Theorem. In this talk, we shall prove a colorful version of Danzer and Grünbaum's 2-pierceability result for families of axis parallel boxes.

This work was jointly done with Sourav Chakraborty and Arijit Ghosh.

