COLORFUL HELLY THEOREM FOR PIERCING BOXES WITH TWO POINTS

ABSTRACT. For any natural number *n*, a family \mathcal{F} of subsets of a space **X** is said to be *n*-pierceable, if there exists $A \subseteq \mathbf{X}$ with $|A| \leq n$ such that for any $F \in \mathcal{F}$, $F \cap A \neq \emptyset$.

Helly's theorem, one of the fundamental results in discrete geometry, says that for any finite family \mathcal{F} of convex sets in \mathbb{R}^d , if every (d + 1)-tuple from \mathcal{F} is 1-pierceable, then the whole family \mathcal{F} is 1-pierceable. Unfortunately, for $n \ge 2$, a similar statement about the *n*-pierceable sets is not valid for general convex sets. Danzer and Grünbaum proved the first and one of the most important Helly type results on multi-pierceable families; viz. families of axis parallel boxes.

One important generalization of Helly's theorem is *Colorful Helly's Theorem*. In this talk, we shall prove a colorful version of Danzer and Grünbaum's 2-pierceability result for families of axis parallel boxes.

This work was jointly done with Sourav Chakraborty and Arijit Ghosh.