
Combinatorics and Graph Theory II

Midterm 2, November 27, 2023, 10.15-11.45

Grading guide

It is a very rough grading guide. A statement, scored in the guide, does not get the points automatically, only if it is

used properly. Solutions, different from the presented one, are also scored similarly.

1. Prove that there is a graph G with ch(G) = 4 and χ(G) = 3.

We know that ch(Kn,nn) = n+ 1. 3 points
So ch(K3,27) = 4. 2 points
The only problem is that χ(K3,27) = 2. So, add a triangle, disjoint from the K3,27. For the triangle,

ch = χ = 3. 3 points
So, for the disjoint union G, we have ch(G) = 4 and χ(G) = 3. 2 points

2. Prove that R(3, 3, 3) ≤ R(4, 6).

Let G be a complete graph of R(4, 6) vertices. We have to prove that in any 3-coloring of its edges, there is
a monochromatic triangle. 2 points

Take an arbitrary red-white-green coloring. From that we define another coloring, where red edges remain
red, but white and green edges are colored blue. (so we merge the colors white and green). By the definition of
R(4, 6), we either have a complete subgraph of 4 vertices, all of whose edges are red, or a complete subgraph of
6 vertices, all of whose edges are blue. 3 points

In the first case we are done immediately: then there is also a a complete subgraph of 4 vertices, all of whose
edges are red in the original coloring, so there is also a red triangle. 2 points

In the second case there is a complete subgraph of 6 vertices, all of whose edges are blue. So in the original
coloring, there is a complete subgraph of 6 vertices, all of whose edges are white or green. But we know that in
any two-coloring of the complete subgraph of 6 vertices there is a monochromatic triangle. So there is a white
or green triangle in the original coloring. 3 points

3. The graph H has n vertices (n ≥ 3) and if we remove ANY edge of it, the remaining graph does
not contain a triangle. What is the maximum possible number of edges of such a graph (in terms of
n)?

We distinguish two cases. 1. H does not contain a triangle. In this case by Mantel’s theorem the maximum
number of edges is ⌈n/2⌉ · ⌊n/2⌋. 4 points

2. H does contain a triangle. But then, by the assumption, H cannot have any other edge. Therefore, H
has exactly 3 edges. 4 points

Clearly, any graph which does not contain a triangle, satisfies the conditions of the problem. Therefore, the
maximum number of edges of such a graph is exactly ⌈n/2⌉ · ⌊n/2⌋. 2 points

4. Prove that for any r there is an N(r) with the following property. For any r-coloring of the
numbers 1, 2, . . . , N(r), there are three numbers, a, b, c, of the same color such that a+ b = c and a is
a multiple of 2023.

According to the Schur theorem, for any r there is a K(r) with the property that for any r-coloring of the
numbers 1, 2, . . . ,K(r), there are three numbers, a, b, c, of the same color such that a+ b = c. 2 points

Color the numbers 1, 2, . . . , 2023 ·K(r) with r colors. Consider only the multiples of 2023. The coloring of
these numbers induce a coloring of the numbers 1, 2, . . . ,K(r): color number k in the new coloring to the color
of 2023 · k in the original coloring. 3 points



By Schur’s theorem, in the new coloring there are three numbers, a, b, c, of the same color such that a+b = c.
2 points

But then the numbers 2023 · a, 2023 · b, 2023 · c satisfy the conditions. They are monochromatic, multiple of
2023, and 2023 · a+ 2023 · b = 2023 · c 3 points

5. Suppose that F ⊆ 2[10] is a simple set system (one subset can appear at most once), any two
of the sets have a nonempty intersection, but three different sets always have an empty intersection.
Prove that |F| ≤ 5.

It follows from the conditions, that for any two sets A,B ∈ F , there is an element i ∈ [10] such that i ∈ A∩B.
3 points

Moreover, for any two different pairs, (A,B) and (A′, B′) the common elements, i and i′, are different since
three sets have an empty intersection. 3 points

Therefore, 10 ≥
(

|F|
2

)

, and the it follows that |F| ≤ 5. 4 points

6. Suppose that F ⊆ 2[n] is a simple set system (one subset can appear at most once). We know
that if A,B ∈ F and A ⊂ B, then |A| = 1. Prove that

|F| ≤

(

n

⌊n/2⌋

)

+ n.

Divide F into two parts, F = F1 ∪ F2. Let F1 contain the 1-element subsets of F , and let F2 contain the
other sets. 3 points

Clearly, |F1| ≤ n. 2 points
On the other hand, in F2 there are no two sets A and B with A ⊂ B, so it is a Sperner system. Therefore,

by Sperner’s theorem, |F2| ≤
(

n
⌊n/2⌋

)

. 3 points

Summing up,

|F| = |F1|+ |F2| ≤

(

n

⌊n/2⌋

)

+ n.

2 points


