Combinatorics and graph theory 2.

Recitation 12, December 4 2023.

Homogeneous linear recursions, generator functions

Fibonacci numbers: $F_0 = 0$, $F_1 = 1$ and for every n > 1, $F_{n+1} = F_n + F_{n-1}$. Then

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right).$$

- 1. Solve the recursion $a_0 = 1, a_1 = 0$ $a_n = 5a_{n-1} 6a_{n-2}$.
- 2. Solve the recursion $a_0 = 3, a_1 = -3$ $a_n = -6a_{n-1} 9a_{n-2}$.
- 3. Solve the recursion $a_0 = 3, a_1 = 6, a_2 = 0$ $a_n = 2a_{n-1} + a_{n-2} 2a_{n-3}$.
- 4. How many different ways can we go up a stairway of n stairs if each step is of 1 or 2 stairs?
- 5. How many ways can you cover a $2 \times n$ table with 1×2 and 2×2 dominoes?
- 6. Solve the following non-homogeneous linear resursion. $a_0 = 0$, $a_1 = 0$, $a_n = a_{n-1} + a_{n-2} + 1$.
- 7. Suppose that for some K, a_n = 2Ka_{n-1} K²a_{n-2}.
 a. a₀ = 1, a₁ = K. Show that a_n = Kⁿ.
 b. a₀ = 0, a₁ = K. Show that a_n = nKⁿ.
- 8. Give c_n with a linear recursion if $c_n = \frac{1}{2} \left(\frac{\sqrt{17}-3}{2}\right)^n + \frac{1}{3} \left(\frac{-\sqrt{17}-3}{2}\right)^n$.
- 9. Let $a_1 = 0$ and for $n \ge 1$, $a_{n+1} = \frac{n+1}{n}a_n + n^2 1$. Give a_n in closed form. The same for $a_1 = -1$ és $a_{n+1} = 2a_n + n + 1$.
- 10. Solve the recursion $a_0 = 1$, $a_n = 8a_{n-1} + 10^{n-1}$.
- 11. Let $g_0 = 1$ and $g_n = g_{n-1} + 2g_{n-2} + \ldots + (n-1)g_1 + ng_0$. Give g_n in closed form.
- 12. What is the generator function of the sequences
 - $\begin{array}{l} 1,1,1,\ldots;\\ 1,2,4,8,\ldots;\\ 1,2,3,4,\ldots;\\ 1,0,1,0,1,\ldots?\end{array}$
- 13. Express the sequence c_n with a_n and b_n if we have C(x) = A(x)B(x) for their generator functions.
- 14. Let g(n) be the number of non-selfcrossing walks of length n from the origin, where each step is by one unit to the East, West, or North.Give g(n) in closed form.
- 15. For the sequence a_0, a_1, \ldots we have $a_n = 4a_{n-1} 4a_{n-2}, a_0 = 1, a_1 = x$. For what values of x does $\lim_{n \to \infty} a_n = -\infty$ hold?
- 16. Prove that $F_{n+1}F_{n-1} F_n^2 = (-1)^n$, and that $F_1 + \ldots + F_n = F_{n+2} 1$. (F_n is the *n*-th Fibonacci number.)
- 17. Prove that $F_1^2 + F_2^2 + \dots + F_n^2 = F_n F_{n+1}$.