Combinatorics and graph theory 2.

Recitation 12, December 42023.

Homogeneous linear recursions, generator functions

Fibonacci numbers: $F_{0}=0, F_{1}=1$ and for every $n>1, F_{n+1}=F_{n}+F_{n-1}$. Then

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

1. Solve the recursion $a_{0}=1, a_{1}=0 \quad a_{n}=5 a_{n-1}-6 a_{n-2}$.
2. Solve the recursion $a_{0}=3, a_{1}=-3 \quad a_{n}=-6 a_{n-1}-9 a_{n-2}$.
3. Solve the recursion $a_{0}=3, a_{1}=6, a_{2}=0 \quad a_{n}=2 a_{n-1}+a_{n-2}-2 a_{n-3}$.
4. How many different ways can we go up a stairway of n stairs if each step is of 1 or 2 stairs?
5. How many ways can you cover a $2 \times n$ table with 1×2 and 2×2 dominoes?
6. Solve the following non-homogeneous linear resursion. $a_{0}=0, a_{1}=0, a_{n}=a_{n-1}+a_{n-2}+1$.
7. Suppose that for some $K, a_{n}=2 K a_{n-1}-K^{2} a_{n-2}$.
a. $a_{0}=1, a_{1}=K$. Show that $a_{n}=K^{n}$.
b. $a_{0}=0, a_{1}=K$. Show that $a_{n}=n K^{n}$.
8. Give c_{n} with a linear recursion if $c_{n}=\frac{1}{2}\left(\frac{\sqrt{17}-3}{2}\right)^{n}+\frac{1}{3}\left(\frac{-\sqrt{17}-3}{2}\right)^{n}$.
9. Let $a_{1}=0$ and for $n \geq 1, a_{n+1}=\frac{n+1}{n} a_{n}+n^{2}-1$. Give a_{n} in closed form.

The same for $a_{1}=-1$ és $a_{n+1}=2 a_{n}+n+1$.
10. Solve the recursion $a_{0}=1, a_{n}=8 a_{n-1}+10^{n-1}$.
11. Let $g_{0}=1$ and $g_{n}=g_{n-1}+2 g_{n-2}+\ldots+(n-1) g_{1}+n g_{0}$. Give g_{n} in closed form.
12. What is the generator function of the sequences
$1,1,1, \ldots$;
$1,2,4,8, \ldots$;
$1,2,3,4, \ldots$;
$1,0,1,0,1, \ldots$?
13. Express the sequence c_{n} with a_{n} and b_{n} if we have $C(x)=A(x) B(x)$ for their generator functions.
14. Let $g(n)$ be the number of non-selfcrossing walks of length n from the origin, where each step is by one unit to the East, West, or North.
Give $g(n)$ in closed form.
15. For the sequence a_{0}, a_{1}, \ldots we have $a_{n}=4 a_{n-1}-4 a_{n-2}, a_{0}=1, a_{1}=x$. For what values of x does $\lim _{n \rightarrow \infty} a_{n}=-\infty$ hold?
16. Prove that $F_{n+1} F_{n-1}-F_{n}^{2}=(-1)^{n}$, and that $F_{1}+\ldots+F_{n}=F_{n+2}-1$. (F_{n} is the n-th Fibonacci number.)
17. Prove that $F_{1}^{2}+F_{2}^{2}+\cdots+F_{n}^{2}=F_{n} F_{n+1}$.

