Combinatorics and Graph Theory 2.

Recitation 5, October 4.

List coloring

Things to know:

G is a graph and there is a list of colors $L(v)$ assigned to every vertex v of G. G is L colorable if there is a proper coloring of G such that for every vertex v its color $c(v) \in L(v)$.

The list coloring number of $G, \operatorname{ch}(G)$ is the smallest k with the property that whenever $|L(v)|=k$ for every v, then G is L colorable.

For every $G, \chi(G) \leq \operatorname{ch}(G)$, and for every k there is a graph G with $\chi(G)=2$ de $\operatorname{ch}(G)>k$.
For every $G, \operatorname{ch}(G) \leq \Delta(G)+1$.
List coloring conjecture: If G is a line graph, then $\chi(G)=\operatorname{ch}(G)$.
Galvin theorem: If G is the line graph of a bipartite graph, then $\chi(G)=\operatorname{ch}(G)$.
Thomassen 94: If G is a planar graph, then $\operatorname{ch}(G) \leq 5$.
Voigt 93: There is a G planar graph for which $\operatorname{ch}(G)=5$.

1. Determine $\operatorname{ch}\left(K_{2,4}\right)$. ($\operatorname{ch}\left(K_{2,4}\right)$ is a complete bipartite graph with 2 and 4 vertices in the classes.)
2. Is it true that if $\chi(G)=\operatorname{ch}(G)$, then $\chi(\bar{G})=\operatorname{ch}(\bar{G})$?
3. There is a list of colors on each vertex of G. Each list has length at least $\operatorname{ch}(G)$. Is it true that for a proper ordering of the vertices it can be colored in a greedy way from the list? That is, we color in the given order and always choose the smallest possible color from the list.
4. Let $K_{2,2, \ldots, 2}$ a graph of $2 n$ vertices whose complement is n independent edges. Determine $c h\left(K_{2,2, \ldots, 2}\right)$.
5. Show a graph which is not a line graph.
6. Show that if G is a line graph, then $\operatorname{ch}(G) \leq 2 \chi(G)-1$.
7. Suppose that for a graph G and lists $L,|L(v)|>d(v)$ holds for every vertex v. Prove that G is L-colorable.
8. Show that for any tree T (of at least 2 vertices) $\operatorname{ch}(T)=2$.
9. Prove that if C is an odd cycle, then $\operatorname{ch}(C)=3$.
10. For an arbitrary graph G, let $3 G$ be the following graph. We take three disjoint copies of G and connect the corresponding vertices in the three copies. Prove that if G is planar, then $\operatorname{ch}(3 G) \leq 7$.
11. G is drawn in the plane with just one edge crossing (where exactly two edges cross) Prove that
a. $\operatorname{ch}(G) \leq 6$,
b. $\operatorname{ch}(G) \leq 5$.
12. G is a planar graph with at least 4 vertices. We have 7 colors, $\{1,2, \ldots, 7\}$, we want to color G with these colors. But somebody already colored 4 vertices that span a K_{4} with colors $1,2,3,4$ Prove that we can finish the coloring, that is, we can color the rest of the vertices with colors $\{1,2, \ldots, 7\}$ (so that neighboring vertices get different colors)
13. If we remove any 4 edges from G, we get a planar graph. Prove that $\operatorname{ch}(G) \leq 6$.
14. G is a planar graph. There is a list of five colors at each vertex, except one vertex where we have a list of one color. Prove that G can be colored from the lists.

Homework

1. Prove that $\operatorname{ch}\left(K_{n, n^{n}}\right)=n+1$ for every $n>0$.
2. Prove that if C is an even cycle then $\operatorname{ch}(C)=2$.
