Combinatorics and Graph Theory 2.

Recitation 5, October 4.

List coloring

Things to know:

G is a graph and there is a list of colors L(v) assigned to every vertex v of G. G is L colorable if there is a proper coloring of G such that for every vertex v its color $c(v) \in L(v)$.

The list coloring number of G, ch(G) is the smallest k with the property that whenever |L(v)| = k for every v, then G is L colorable.

For every G, $\chi(G) \leq ch(G)$, and for every k there is a graph G with $\chi(G) = 2$ de ch(G) > k.

For every G, $ch(G) \le \Delta(G) + 1$.

List coloring conjecture: If G is a line graph, then $\chi(G) = ch(G)$.

Galvin theorem: If G is the line graph of a bipartite graph, then $\chi(G) = ch(G)$.

Thomassen 94: If G is a planar graph, then $ch(G) \leq 5$.

- Voigt 93: There is a G planar graph for which ch(G) = 5.
- 1. Determine $ch(K_{2,4})$. $(ch(K_{2,4}))$ is a complete bipartite graph with 2 and 4 vertices in the classes.)
- 2. Is it true that if $\chi(G) = ch(G)$, then $\chi(\overline{G}) = ch(\overline{G})$?
- 3. There is a list of colors on each vertex of G. Each list has length at least ch(G). Is it true that for a proper ordering of the vertices it can be colored in a greedy way from the list? That is, we color in the given order and always choose the smallest possible color from the list.
- 4. Let $K_{2,2,\ldots,2}$ a graph of 2n vertices whose complement is n independent edges. Determine $ch(K_{2,2,\ldots,2})$.
- 5. Show a graph which is not a line graph.
- 6. Show that if G is a line graph, then $ch(G) \leq 2\chi(G) 1$.
- 7. Suppose that for a graph G and lists L, |L(v)| > d(v) holds for every vertex v. Prove that G is L-colorable.
- 8. Show that for any tree T (of at least 2 vertices) ch(T) = 2.
- 9. Prove that if C is an odd cycle, then ch(C) = 3.
- 10. For an arbitrary graph G, let 3G be the following graph. We take three disjoint copies of G and connect the corresponding vertices in the three copies. Prove that if G is planar, then $ch(3G) \leq 7$.
- 11. G is drawn in the plane with just one edge crossing (where exactly two edges cross) Prove that
 - a. $ch(G) \leq 6$,
 - b. $ch(G) \leq 5$.
- 12. G is a planar graph with at least 4 vertices. We have 7 colors, $\{1, 2, ..., 7\}$, we want to color G with these colors. But somebody already colored 4 vertices that span a K_4 with colors 1, 2, 3, 4 Prove that we can finish the coloring, that is, we can color the rest of the vertices with colors $\{1, 2, ..., 7\}$ (so that neighboring vertices get different colors)
- 13. If we remove any 4 edges from G, we get a planar graph. Prove that $ch(G) \leq 6$.
- 14. G is a planar graph. There is a list of five colors at each vertex, except one vertex where we have a list of one color. Prove that G can be colored from the lists.

Homework

- 1. Prove that $ch(K_{n,n^n}) = n+1$ for every n > 0.
- 2. Prove that if C is an even cycle then ch(C) = 2.