Combinatorics and graph theory 2.

Recitation $9+10$, november 13, 20, 2023.

Hypergraphs: Erdős-Ko-Rado, Fischer, Sperner, LYM, Erdös-de Bruijn

Erdős-Ko-Rado theorem. (1961) $\mathcal{F} \subseteq 2^{[n]} k$-uniform hypergraph $(k \leq n / 2)$ with the property that if $A, B \in \mathcal{F}$ re $A \cap B \neq \emptyset$, then $|\mathcal{F}| \leq\binom{ n-1}{k-1}$ and this bound is sharp.

Fischer inequality. (1940) $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots, A_{m}\right\} \subseteq 2^{[n]}$ such that for every $i \neq j$ we have $\left|A_{i} \cap A_{j}\right|=\lambda>0$. Then $m \leq n$.

Ray-Chaudhuri-Wilson theorem. (1975) Let $L=\left\{l_{1}, l_{2}, \ldots l_{s}\right\}$ and let $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots, A_{m}\right\} \subseteq 2^{[n]}$ such that for every $i \neq j$ we have $\left|A_{i} \cap A_{j}\right| \in L$. Thenwe have $m \leq \sum_{i=0}^{s}\binom{n}{i}$.

Sperner theorem. (1928) $\mathcal{F} \subset 2^{[n]}$ and for any $A, B \in \mathcal{F}, A \not \subset B$ and $B \not \subset A$. Then $|\mathcal{F}| \leq\binom{ n}{\lfloor n / 2\rfloor}$. In case of equality \mathcal{F} is exactly the family of all $\lfloor n / 2\rfloor$-subsets or all $\lceil n / 2\rceil$-subsets of $[n]$.

Erdős - De Bruijn theorem. (1948) $\mathcal{F} \subset 2^{[n]}$, for every $A \in \mathcal{F}|A| \geq 2$, and for every $1 \leq i<j \leq n$ there is exactly one $A \in \mathcal{F}$ such that $i, j \in A$. Then $|\mathcal{F}|=1$ or $|\mathcal{F}| \geq n$.

1. Let $n=p_{1} p_{2} \cdots p_{k}$, where every $p_{i}>1$ and p_{i} prime. At most how many divisors of n can we take so that no two divisors are relative primes?
2. King Arthur sends n knights for reconnaissance trips. Every day k knights go. The same group can not go twice, and for safety reasons, any two groups have a common member. For how many days can he send out reconnaissance groups?
3. There are m lines on the plane, not all of them go through the same point and no two of them are parallel. Show that these lines determine at least m intersection points.
4. For a sophisticated agricultural experiment we need the following. We have m different plants, n different areas. On each area we have k different plants, each plant is on r different areas. Moreover, any two plants are together on l different areas, $l>r$. Prove that $n \geq m$.
5. We have some k-element sets, any two intersect in l elements. Prove that some element is contained in at most k sets.
6. Our base set has 100 elements. We take some 20 - and some 80 -element subsets such that any two subsets intersect. What is the maximum number of subsets with this condition?
7. The hypergraph $\mathcal{F} \subseteq 2^{[n]}$ has 2^{n-1} hyperedges and no two are disjoint. Show that there are $F_{1}, F_{2} \in \mathcal{F}$ with exactly one common element.
8. We have a bipartite graph, the two classes are A and B. Any two vertices in A have exactly 97 common neighbors in B and any two vertices in B have exactly 111 common neighbors. a. Show such a graph. b. Show that there is no such graph with $|A|=|B|=1000$.
9. Suppose that $k<n / 2$ and $\mathcal{F} \subseteq\binom{[n]}{k}$ is an intersecting set system such that $|\mathcal{F}|=\binom{n-1}{k-1}$. Prove that there is an element in $[n]$, i, which is contained in all sets in \mathcal{F}. (The Erdős-Ko-Rado theorem, case of equality.)
10. Construct a set system $\mathcal{F} \subseteq 2^{[n]}$ such that any two sets in \mathcal{F} intersect in at least two elements and $|\mathcal{F}|=2^{n-2}$. Is there a larger set system with this property?
Good to know: $\binom{2 k}{k} \leq 2^{2 k-1}$. (Moreover, $\leq 2^{2 k} / \sqrt{k}$ if n is large enough.)
11. a. Let F be a tree of n vertices. At most how many connected subgraphs can we take such that none of them is a subgraph of another? b. At most how many induced subgraphs can we take such that none of them is a subgraph of another?
12. Let \mathcal{F} be a set system which does not contain a chain of length $s+1$ (that is, sets $A_{1} \subset A_{2} \subset \cdots \subset A_{s+1}$) Prove that $\sum_{k=0}^{n} \frac{f_{k}}{\binom{n}{k}} \leq s$, where f_{k} is the number of sets of size k.
13. Let $\mathcal{F} \subseteq 2^{[2 n]}$ be an intersecting set system such that all sets have an even number of elements. Prove that if n is also even then \mathcal{F} contains at most $2^{2 n-2}$ sets.
14. Suppose that any two edges of the hypergraph $\mathcal{H}=(V, \mathcal{E})$ are either disjoint or one contains the other. What is the maximum number of edges of \mathcal{H} ?
15. At most how many clubs are possible in MOD-3-VILLAGE, which has n residents? Condition: if A_{i} is the set of members of the i-th club, then $\left|A_{i}\right| \not \equiv 0(\bmod 3)$ and if $i \neq j$ then $\left|A_{i} \cap A_{j}\right| \equiv 0(\bmod 3) .\left({ }^{*}\right)$
16. Suppose that the hypergraph $\mathcal{H}=(V, \mathcal{E})$ does not contain a cycle. That is, there is no sequence of different vertices and edges $x_{1}, E_{1}, x_{2}, E_{2}, \ldots x_{k}, E_{k}, x_{k+1}=x_{1}$ such that E_{i} contains x_{i} and x_{i+1}. Suppose also that \emptyset is not in \mathcal{H}, and that \mathcal{H} is connected, that is, the vertex set V can not be divided into two nonempty parts, V_{1} and V_{2} such that all edges are in V_{1} or V_{2}.
Prove that in this case $\sum\{|E|-1: E \in \mathcal{E}\}=|V|-1$.
17. Suppose that $k<n / 3$ and $\mathcal{F} \subseteq\binom{[n]}{k}$ is a k-uniform set system with no three pairwise disjoint sets. Prove that $|\mathcal{F}| \leq 4\binom{n-1}{k-1}$.

Homework

1. Suppose that the set system $\mathcal{F} \subseteq 2^{[n]}$ has no two disjoint members. Show that there is an intersecting set system $\mathcal{F}^{\prime} \subseteq 2^{[n]}$ which contains \mathcal{F}, and $\left|\mathcal{F}^{\prime}\right|=2^{n-1}$.

2 . For any $k \geq 1$ show a k-uniform set system which is isomorphic to its dual.

