Combinatorics and graph theory 2.

Recitation 9+10, november 13, 20, 2023.

Hypergraphs: Erdős-Ko-Rado, Fischer, Sperner, LYM, Erdős-de Bruijn

Erdős-Ko-Rado theorem. (1961) $\mathcal{F} \subseteq 2^{[n]} k$ -uniform hypergraph $(k \leq n/2)$ with the property that if $A, B \in \mathcal{F}$ -re $A \cap B \neq \emptyset$, then $|\mathcal{F}| \leq {n-1 \choose k-1}$ and this bound is sharp.

Fischer inequality. (1940) $\mathcal{F} = \{A_1, A_2, \dots, A_m\} \subseteq 2^{[n]}$ such that for every $i \neq j$ we have $|A_i \cap A_j| = \lambda > 0$. Then $m \leq n$.

Ray-Chaudhuri-Wilson theorem. (1975) Let $L = \{l_1, l_2, \dots, l_s\}$ and let $\mathcal{F} = \{A_1, A_2, \dots, A_m\} \subseteq 2^{[n]}$ such that for every $i \neq j$ we have $|A_i \cap A_j| \in L$. Then we have $m \leq \sum_{i=0}^s \binom{n}{i}$.

Sperner theorem. (1928) $\mathcal{F} \subset 2^{[n]}$ and for any $A, B \in \mathcal{F}, A \not\subset B$ and $B \not\subset A$. Then $|\mathcal{F}| \leq \binom{n}{\lfloor n/2 \rfloor}$. In case of equality \mathcal{F} is exactly the family of all $\lfloor n/2 \rfloor$ -subsets or all $\lceil n/2 \rceil$ -subsets of $\lceil n \rceil$.

Erdős – **De Bruijn theorem.** (1948) $\mathcal{F} \subset 2^{[n]}$, for every $A \in \mathcal{F} |A| \ge 2$, and for every $1 \le i < j \le n$ there is exactly one $A \in \mathcal{F}$ such that $i, j \in A$. Then $|\mathcal{F}| = 1$ or $|\mathcal{F}| \ge n$.

- 1. Let $n = p_1 p_2 \cdots p_k$, where every $p_i > 1$ and p_i prime. At most how many divisors of n can we take so that no two divisors are relative primes?
- 2. King Arthur sends n knights for reconnaissance trips. Every day k knights go. The same group can not go twice, and for safety reasons, any two groups have a common member. For how many days can he send out reconnaissance groups?
- 3. There are m lines on the plane, not all of them go through the same point and no two of them are parallel. Show that these lines determine at least m intersection points.
- 4. For a sophisticated agricultural experiment we need the following. We have m different plants, n different areas. On each area we have k different plants, each plant is on r different areas. Moreover, any two plants are together on l different areas, l > r. Prove that $n \ge m$.
- 5. We have some k-element sets, any two intersect in l elements. Prove that some element is contained in at most k sets.
- 6. Our base set has 100 elements. We take some 20- and some 80-element subsets such that any two subsets intersect. What is the maximum number of subsets with this condition?
- 7. The hypergraph $\mathcal{F} \subseteq 2^{[n]}$ has 2^{n-1} hyperedges and no two are disjoint. Show that there are $F_1, F_2 \in \mathcal{F}$ with exactly one common element.
- 8. We have a bipartite graph, the two classes are A and B. Any two vertices in A have exactly 97 common neighbors in B and any two vertices in B have exactly 111 common neighbors. a. Show such a graph. b. Show that there is no such graph with |A| = |B| = 1000.
- 9. Suppose that k < n/2 and $\mathcal{F} \subseteq {\binom{[n]}{k}}$ is an intersecting set system such that $|\mathcal{F}| = {\binom{n-1}{k-1}}$. Prove that there is an element in [n], i, which is contained in all sets in \mathcal{F} . (The Erdős-Ko-Rado theorem, case of equality.)
- 10. Construct a set system $\mathcal{F} \subseteq 2^{[n]}$ such that any two sets in \mathcal{F} intersect in at least two elements and $|\mathcal{F}| = 2^{n-2}$. Is there a larger set system with this property? Good to know: $\binom{2k}{k} \leq 2^{2k-1}$. (Moreover, $\leq 2^{2k}/\sqrt{k}$ if n is large enough.)
- 11. a. Let F be a tree of n vertices. At most how many *connected* subgraphs can we take such that none of them is a subgraph of another? b. At most how many *induced* subgraphs can we take such that none of them is a subgraph of another?
- 12. Let \mathcal{F} be a set system which does not contain a chain of length s + 1 (that is, sets $A_1 \subset A_2 \subset \cdots \subset A_{s+1}$) Prove that $\sum_{k=0}^{n} \frac{f_k}{\binom{n}{k}} \leq s$, where f_k is the number of sets of size k.

- 13. Let $\mathcal{F} \subseteq 2^{[2n]}$ be an intersecting set system such that all sets have an even number of elements. Prove that if n is also even then \mathcal{F} contains at most 2^{2n-2} sets.
- 14. Suppose that any two edges of the hypergraph $\mathcal{H} = (V, \mathcal{E})$ are either disjoint or one contains the other. What is the maximum number of edges of \mathcal{H} ?
- 15. At most how many clubs are possible in MOD-3-VILLAGE, which has n residents? Condition: if A_i is the set of members of the *i*-th club, then $|A_i| \neq 0 \pmod{3}$ and if $i \neq j$ then $|A_i \cap A_j| \equiv 0 \pmod{3}$. (*)
- 16. Suppose that the hypergraph $\mathcal{H} = (V, \mathcal{E})$ does not contain a cycle. That is, there is no sequence of different vertices and edges $x_1, E_1, x_2, E_2, \ldots x_k, E_k, x_{k+1} = x_1$ such that E_i contains x_i and x_{i+1} . Suppose also that \emptyset is not in \mathcal{H} , and that \mathcal{H} is connected, that is, the vertex set V can not be divided into two nonempty parts, V_1 and V_2 such that all edges are in V_1 or V_2 .

Prove that in this case $\sum \{|E| - 1 : E \in \mathcal{E}\} = |V| - 1.$

17. Suppose that k < n/3 and $\mathcal{F} \subseteq {\binom{[n]}{k}}$ is a k-uniform set system with no three pairwise disjoint sets. Prove that $|\mathcal{F}| \le 4 {\binom{n-1}{k-1}}$.

Homework

1. Suppose that the set system $\mathcal{F} \subseteq 2^{[n]}$ has no two disjoint members. Show that there is an intersecting set system $\mathcal{F}' \subseteq 2^{[n]}$ which contains \mathcal{F} , and $|\mathcal{F}'| = 2^{n-1}$.

2. For any $k \ge 1$ show a k-uniform set system which is isomorphic to its dual.