CEU LECTURE NOTES: A SET OF REPRESENTATIVES FOR $\Gamma_0(q)\backslash \mathrm{SL}_2(\mathbb{Z})$

GERGELY HARCOS

Let *q* be a positive integer and $q = dd'$ a decomposition. For any residue class *c*' mod *d'* satisfying $(c', d, d') = 1$ there is some $c \in \mathbb{Z}$ such that $(c, d) = 1$ and $c \equiv c' \pmod{d'}$. Indeed, by the Chinese remainder theorem, there exists $c \in \mathbb{Z}$ such that $c \equiv 1 \pmod{p}$ for any prime $p \mid d$ with $p \nmid d'$ and also $c \equiv c' \pmod{d'}$. We only need to verify that for any prime *p* | *d* with *p* | *d'* we have *p* \nmid *c*, but this follows from *p* \nmid *c'* and *c* \equiv *c'* (mod *p*).

Theorem. *For any d* | *q take a set of integers c coprime with d which represent all residue classes c'* mod *d' satisfying* $(c', d, d') = 1$ *. Extend each such pair* (c, d) *to some matrix* $\begin{pmatrix} * & * \ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ *. The resulting matrices will represent* $\Gamma_0(q) \backslash SL_2(\mathbb{Z})$ *.*

Proof. We need to show that for any $\begin{pmatrix} * & * \\ C & D \end{pmatrix} \in SL_2(\mathbb{Z})$ there is a unique $\begin{pmatrix} * & * \\ c & d \end{pmatrix}$ in our

set of matrices such that $\begin{pmatrix} * & * \\ C & D \end{pmatrix} \begin{pmatrix} * & * \\ c & d \end{pmatrix}^{-1} \in \Gamma_0(q)$. The condition can be rewritten as $cD \equiv Cd \pmod{q}$. In particular, it is necessary that $(d,q) = (D,q)$, hence by $d | q$, we must in fact take $d := (D, q)$. Writing $d' := q/d$ and $D' := D/d$, it remains to show that there is a unique *c* in our construction which satisfies $cD' \equiv C \pmod{d'}$. As $(D', d') =$ $(D,q)/d = 1$, the previous congruence is equivalent to $c \equiv c' \pmod{d'}$, where *c'* mod *d'* denotes the congruence class $\overline{CD'}$ mod d' with $\overline{D'}$ the inverse of D' mod d' . We clearly have $(c', d, d') = 1$ by $(C, D) = 1$ and $(\overline{D'}, d') = 1$, hence there is a unique $c \equiv c' \pmod{d'}$ in our construction with the required properties. \Box

Corollary. *The index of* $\Gamma_0(q)$ *in* $SL_2(\mathbb{Z})$ *equals*

$$
[\operatorname{SL}_2(\mathbb{Z}) : \Gamma_0(q)] = q \prod_{p|q} (1 + p^{-1}).
$$

Proof. The set of representatives in the Theorem has cardinality

$$
\sum_{dd' = q} \sum_{\substack{c' \bmod d' \\ (c',d,d') = 1}} 1 = \sum_{dd' = q} \sum_{c' \bmod d'} \sum_{r | (c',d,d')} \mu(r) = \sum_{r^2 ee' = q} \mu(r) \sum_{f' \bmod e'} 1 = \sum_{r^2 | q} \mu(r) \sigma\left(\frac{q}{r^2}\right),
$$

where $\sigma(n)$ is the sum of divisors of *n*, and we used the notation $d = re$, $d' = re'$, $c' = rf'$. The sum on the right-hand side is multiplicative in *q*, and for a prime power $q = p^{\alpha}$ it equals $q(1+p^{-1})$ as can be seen by inspecting the cases $\alpha = 1$ and $\alpha \ge 2$ separately. The result follows. □

ALFRÉD RÉNYI INSTITUTE OF MATHEMATICS, HUNGARIAN ACADEMY OF SCIENCES, POB 127, BUDAPEST H-1364, HUNGARY

Email address: gharcos@renyi.hu