
ON A RESULT OF ANDRÁS BIRÓ

GERGELY HARCOS

We give a short proof of the following result of András Biró, originally proved in [2].

Theorem. There exists 0 < c < 1 with the following property. For every sufficiently large
integer n there are n complex numbers z1, . . . ,zn such that max |zi| = 1 and the n power
sums

sν := zν
1 + · · ·+ zν

n , ν = 1, . . . ,n,

are of modulus at most c.

Remark. The infimum of admissible c lies in (0.5,0.7). The upper bound follows from the
proof below, while the lower bound was established in [1].

Proof. We can relax the condition max |zi|= 1 to max |zi|> 1. Let us use the notation

(z− z1) · · ·(z− zn) = a0zn +a1zn−1 + · · ·+an,

so that a0 = 1. The condition max |zi|> 1 is certainly satisfied when z = 1 is a root of the
left hand side, i.e. when

a0 + · · ·+an = 0.

For 06 m6 n the inverse Newton–Girard formulae tell us that
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where the jν ’s run through nonnegative integers, hence our task is to minimize max |sν |
under
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If we write T := bn/2c and assume that

s1 = · · ·= sT =−w,

then in sT+1, . . . ,sn the condition becomes linear:
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The coefficients can be evaluated explicitly, so that the equation becomes
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After dividing by
(w+n

n

)
we obtain
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which clearly has a solution satisfying

|sT+1|, . . . , |sn|6
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Here of course
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hence a brief argument based on Riemann sums shows that under n→ ∞ the previous
inequality becomes

|sT+1|, . . . , |sn|6 o(1)+
∣∣∣∣1−w
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Altogether we see that for any w in the unit disk, c is admissible as long as

max
{
|w|,

∣∣∣∣1−w
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< c < 1.

For w :=−0.43246−0.54237i the left hand side is approximately 0.693676, hence

c := 0.693677

is admissible. �
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