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We present two proofs of a useful generalization of Bessel’s inequality. The statement
is due to Bombieri [1] who attributes it to Selberg. In the context of zero density estimates,
Bombieri’s inequality is rooted in the work of Halász [3], Halász–Turán [4], and Mont-
gomery [5]. Our exposition follows loosely Davenport [2, §27] and Montgomery [7, §5].
A more direct proof can be found in [6, §1], or in the original source [1].

Theorem 1 (Bombieri [1]). Let ξ , φ1, . . . , φR be vectors in a complex Hilbert space. Then

(1) ∑
r
|⟨ξ ,φr⟩|2 ⩽ ∥ξ∥2 max

s ∑
t
|⟨φs,φt⟩|.

First proof. Let us fix φ1, . . . , φR, and identify the smallest constant B ⩾ 0 such that

(2) ∑
r
|⟨ξ ,φr⟩|2 ⩽ B∥ξ∥2

holds for all ξ . Without loss of generality, ξ is of the form ∑s csφs for some (cs) ∈ CR.
Then (2) says that

∑
s,t

csct ∑
r
⟨φs,φr⟩⟨φr,φt⟩⩽ B∑

s,t
csct⟨φs,φt⟩

holds for all (cs) ∈ CR. In other words, introducing the positive semidefinite matrix

(3) A := (⟨φs,φt⟩)1⩽s,t⩽R,

the constant B ⩾ 0 is such that BA−A2 is positive semidefinite. Diagonalizing A in an
orthogonal basis of CR, we see that the smallest admissible B equals the largest eigenvalue
ρ(A) of A. Therefore, (1) is a consequence of the well-known bound [8, Prop. 7.6]

□(4) ρ(A)⩽ ∥A∥
∞
= max

s ∑
t
|⟨φs,φt⟩|.

Second proof. As in the first proof, we shall identify the smallest constant B ⩾ 0 for (2).
Let (ψn) be an orthonormal basis of the Hilbert space. Then we can write ξ = ∑n anψn,
and (2) says that

∑
r

∣∣∣∣∑
n

an⟨ψn,φr⟩
∣∣∣∣2 ⩽ B∑

n
|an|2, (an) ∈ ℓ2(C).

Equivalently, by the duality principle (which is a consequence of the Cauchy–Schwartz
inequality),

∑
n

∣∣∣∣∑
r

cr⟨ψn,φr⟩
∣∣∣∣2 ⩽ B∑

r
|cr|2, (cr) ∈ CR.

Replacing cr by cr and expanding the left-hand side, we obtain the alternative form

(5) ∑
s,t

csct⟨φs,φt⟩⩽ B∑
s
|cs|2, (cs) ∈ CR.

So with the notation (3), the matrix B · id−A is positive semidefinite. As in the first proof,
we conclude that the smallest admissible B equals ρ(A), and then (1) follows by (4). □

1



2 GERGELY HARCOS

Remark. In the second proof, we could have obtained (1) more directly, without recourse
to eigenvalues. Indeed, we have

∑
s,t

csct⟨φs,φt⟩⩽ ∑
s,t

|cs|2 + |ct |2

2
|⟨φs,φt⟩|= ∑

s
|cs|2 ∑

t
|⟨φs,φt⟩|,

whence (5) holds with
B = max

s ∑
t
|⟨φs,φt⟩|.
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