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Abstract

This work presents subconvex bounds in the q-aspect for automorphic L-functions of GL2×GL1,
GL2, GL2×GL2 type over Q and some of their consequences. The results were published earlier in
[BlHa08a, BHM07b, HM06], but there are some benefits of collecting them in one place. First, the
proofs are interrelated at several levels, which justifies a joint introduction and uniform notation for
them. Second, subsequent developments allow for additional remarks and numerical improvements.
In particular, the main application for Heegner points and closed geodesics (Corollary 1.4) appears
in stronger form than before.
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Chapter 1

Introduction

1.1 L-functions

This dissertation deals with L-functions, a key unifying concept of number theory. The distinguished
role L-functions play in mathematics is reflected by the fact that they are subject of 2 among the 7
Millennium Prize Problems of the Clay Mathematics Institute. In order to exploit the information
encoded in these objects it is crucial to investigate their analytic properties such as analytic contin-
uation, functional equation, distribution of poles and zeros, or bounds for their size. According to
the Langlands philosophy, all L-functions in arithmetic can be built up from (principal) automorphic
L-functions. For automorphic L-functions, some of the required analytic properties are readily avail-
able, while others have been identified as particularly deep. Current research in the field is based to a
large extent on the idea that L-functions are not isolated objects but occur in natural families. Even
a single L-function is regarded as a family of L-values in the modern point of view.

It has been realized recently that certain plausible analytic properties of L-functions in natural
families provide the key to the solution of deep Diophantine problems. As such they also provide links
to diverse fields including algebraic geometry, combinatorics, representation theory, ergodic theory,
dynamical systems, scattering theory, random matrix theory, and mathematical physics. Two central
issues, not independent of each other, are vanishing and size of L-functions in families. The former
problem arises in connection with the rank of abelian varieties (conjecture of Birch and Swinnerton-
Dyer), the theta correspondence, and the deformation theory of hyperbolic surfaces. The latter
problem can be applied in various equidistribution problems such as Linnik’s problems (equidistribu-
tion of lattice points on ellipsoids, or Heegner points and closed geodesics on arithmetic hyperbolic
surfaces), their refinements and generalizations related to the André–Oort conjecture (equidistribu-
tion of incomplete Galois orbits of special subvarieties on Shimura varieties), Hilbert’s 11th problem
(equidistribution of representations by quadratic forms in a given genus), and Quantum Unique Er-
godicity (equidistribution of mass on arithmetic hyperbolic surfaces). Excellent descriptions of these
and other exciting developments can be found in [Fr95, KS99, IS00, Sa03, MV06, Mi07].

In this dissertation we discuss subconvex bounds for classical automorphic L-functions and some
of their applications.

1.2 The subconvexity problem

A completed principal automorphic L-function Λ(π, s) of degree n over a number field F is associated
to an irreducible cuspidal automorphic representation π of the group GLn over F with unitary central
character. It is a meromorphic function in the complex variable s (with possible simple poles on the
lines <s = 0 and <s = 1 which occur if and only if n = 1 and π = |det |it), and by the cuspidality of π it
is not a product of completed L-functions of smaller degree. The representation π itself can be realized
as an irreducible subspace of the space of all cusp forms on the adelic quotient GLn(F )\GLn(AF ),
endowed with commuting right actions of GLn(Fv) at non-archimedean places v of F and the Lie
algebra of GLn(Fv) at archimedean places v. This harmonizes with Flath’s theorem that π can be
written as a restricted tensor product ⊗vπv, where πv is an irreducible admissible representation of
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GLn(Fv) for each place v of F . Accordingly, we have a product decomposition Λ(π, s) =
∏
v L(πv, s)

which is absolutely convergent for <s > 1. The completed L-function is bounded in vertical strips
(away from the possible poles) and a simple functional equation relates Λ(π, s) to Λ(π̃, 1− s), where
π̃ is the contragradient representation of π satisfying L(π̃v, s) = L(πv, s).

The finer analytic behavior of Λ(π, s) becomes transparent when the archimedean local factors
L(πv, s) are detached from it. Indeed, in vertical strips the archimedean factors decay exponentially
while the non-archimedean factors remain bounded away from zero. The product of non-archimedean
factors is the finite L-function L(π, s). Its size, the central theme of this dissertation, is measured
relative to the analytic conductor C(π, s) which captures the “local ramification data” at all places
of F , see [IS00]. Combining the Phragmén–Lindelöf convexity principle with the functional equation

for Λ(π, s) one can deduce the convexity bound L(π, s)�ε,n,F C(π, s)
1
4 +ε on the critical line <s = 1

2 .
Here and later ε denotes an arbitrary positive number, and the symbol�ε,n,F abbreviates “in absolute
value less than a constant depending on ε, n, F times”. In fact these L-values can be uniformly
recovered, up to arbitrary precision, by truncating the Dirichlet series for L(π, s) and L(π̃, 1−s) after

about C(π, s)
1
2 +ε terms, see [Ha02]. The Generalized Riemann Hypothesis states that all zeros of

Λ(π, s) lie on the line <s = 1
2 . It would imply that the exponent 1

4 + ε in the convexity bound can
be replaced by ε. This dream estimate (not proven in a single instance) is the Generalized Lindelöf
Hypothesis. A more realistic goal is to establish, for special families (or conjectural families) of

representations π the existence of some δ = δ(n, F ) > 0 such that L(π, s) �δ,n,F C(π, s)
1
4−δ on the

line <s = 1
2 . This is the subconvexity problem for automorphic L-functions.

A serious motivation for deriving subconvex bounds for automorphic L-functions comes from
the fact that in several equidistribution problems the error term can be expressed (by deep explicit
formulae) from special values of these L-functions. Usually, the convexity bound just falls short of
establishing equidistribution, while any nontrivial improvement δ > 0 is sufficient. In other words,
arithmetic becomes “visible” exactly when a subconvex bound is achieved for the family of L-functions
at hand. There are situations where the quality of the subconvex exponent is critical. For example,
[Hu72] needs some δ > 1

12 for ζ( 1
2 + it), while [CCU09] utilizes the range δ < 1

32 for a certain family
of GL2×GL1 type.

Depending on various parameters involved in the analytic conductor C(π, s) we can talk about the
s-aspect, the ∞-aspect (or eigenvalue-aspect) and the q-aspect (or level-aspect) of the subconvexity
problem. In this dissertation we focus on the q-aspect for families of GL2×GL1, GL2, GL2×GL2

type over Q, therefore we mention only briefly some recent developments in other directions: [Bl11,
BlHa10, BR05, JM05, JM06, LLY06, Li11, MV10, Ve10].

1.3 Summary of results

An irreducible cuspidal automorphic representation of GL2 over Q can be identified (modulo a simple
equivalence) with a classical modular form on the upper half-plane H: a primitive holomorphic cusp
form integral weight k > 1, or a primitive Maass cusp form of weight κ ∈ {0, 1}. Such an automorphic
form g shares three fundamental properties (appropriately defined):

• symmetric with respect to a congruence subgroup Γ of SL2(Z);

• square-integrable modulo Γ;

• simultaneous eigenfunction of the Laplace and Hecke operators.

We denote the Laplacian eigenvalue by 1
4 +t2g and call µg := 1+ |tg| the spectral parameter of g (hence

µg =
kg+1

2 when g is holomorphic of weight kg). We denote the eigenvalue of the n-th Hecke operator
by λg(n): these complex numbers are of central importance for us as they give rise to the various
L-functions in this dissertation. The following hypothesis is very useful in analytic investigations.

Hypothesis Hθ. If g is a primitive Maass cusp form of weight 0 or 1, then λg(n)�ε n
θ+ε. If g is

a primitive Maass cusp form of weight 0, then 1
4 + t2g >

1
4 − θ

2.

We note that for holomorphic cusp forms g the estimate λg(n) �ε n
ε was proved by Deligne

[De74], while in the case of weight 1 Maass cusp forms 1
4 + t2g > 1

4 follows from the representation

theory of SL2(R). For θ = 0 Hypothesis Hθ is the Ramanujan–Selberg conjectures, while any θ < 1
2

2



is nontrivial. Currently θ = 7
64 is known to be admissible by the deep work of Kim–Shahidi, Kim and

Kim–Sarnak [KiSh02, Ki03, KiSa03].
The first family we consider consists of twisted forms f ⊗ χ with a fixed primitive cusp form f

and a primitive Dirichlet character χ that varies. The associated (finite) L-functions are essentially
defined as Dirichlet series

L(f ⊗ χ, s) ≈
∞∑
n=1

λf (n)χ(n)

ns
, <s > 1, (1.1)

where ≈ means that the ratio of the two sides is negligible for our analytic purposes. These L-
functions have similar features as Riemann’s zeta function and Dirichlet’s L-functions, namely each
of them

• decomposes as an infinite Euler product over the prime numbers;

• extends to an entire function which exhibits a symmetry with respect to s←→ 1− s.

In particular, denoting by q the conductor of χ and by N the level of f , we have the following (simple)
convexity bound1 on the critical line <s = 1

2 :

L(f ⊗ χ, s)�ε (|s|µfNq)ε |s|
1
2µ

1
2

fN
1
4 q

1
2 . (1.2)

The Generalized Lindelöf Hypothesis predicts that all the exponents in (1.2) can be replaced by ε,
and the subconvexity problem aims at reducing (some of) these exponents. Our first result concerns
the q-aspect of this problem, i.e. we are primarily interested in reducing the exponent 1

2 of q in (1.2),
but we also try to keep the other 3 exponents moderate. Historically, this special case was examined
first (after the classical work of Burgess [Bu63] about the GL1 analogue, see (1.3) below), and it
served as the starting point of the systematic study of the general subconvexity problem.

The initial breakthrough was achieved in 1993 by Duke, Friedlander, Iwaniec [DFI93] who im-
proved the exponent of q to 1

2 − δ with δ = 1
22 when f is a holomorphic cusp form of full level

(N = 1). Their proof introduced many of the basic tools for the subconvexity problem, such as the
amplification method (a technique based on estimating weighted second moments of the family) and
the application of various summation formulae for the Hecke eigenvalues. Subsequent progress in this
problem can be summarized as follows2: δ = 1

8 for f holomorphic of trivial nebentypus by Bykovskĭı

[By96], δ = 1
54 for f arbitrary3 by Harcos [Ha03a, Ha03b], δ = 1

22 by Michel [Mi04], δ = 1−2θ
10+4θ by

Blomer [Bl04], δ = 1−2θ
8 by Blomer–Harcos–Michel [BHM07a]. In the last two results θ is such that

Hypothesis Hθ holds (hence θ = 7
64 is admissible), and the results depend on this parameter for a

good reason. Namely, the papers [Bl04, BHM07a] proceed along the lines of [DFI93] where ampli-
fication is carried out over the characters χ. After the averaging the χ(n)’s from (1.1) disappear,
but the λf (n)’s survive in products of pairs. These pairs of Hecke eigenvalues are grouped in shifted
convolution sums which are then analyzed by elaborate techniques of harmonic analysis. Still, some
factors of type λf (q) turn out to be very “robust”, and this yields an unwanted factor qθ in the
relevant estimates. It is for this reason that Bykovskĭı’s method is remarkable as it produces δ = 1

8
without any θ. Note that this is the true analogue of Burgess’ famous bound [Bu63]

L(χ, s)�ε (|s|q)ε |s| 14 q 1
4−

1
16 , (1.3)

because L(f ⊗ χ, s) is closely related to the products L(χ1, s)L(χ2, s) with χ1χ2 = χ2. It is all
the more interesting that [BHM07a] falls short of this result only by the presence of θ, although it
imposes no restriction on the nebentypus or the type of f . Bykovskĭı’s key idea was to amplify over
the forms f in the spectrum of level [N, q]. In this averaging the λf (n)’s from (1.1) disappear, and
only the χ(n)’s survive which are trivially bounded by 1. Of course this description is very vague,
but hopefully it motivates well the overall discussion.

The first result in this dissertation is joint work with Valentin Blomer [BlHa08a] which pushes
the method of Bykovskĭı [By96] to its limit.

1In fact the convexity bound is a slightly stronger statement, we displayed the version in which the various parameters
appear separated.

2We list results proved for all χ, hence we omit [CI00].
3In the case of Maass forms we assumed that the weight is 0 as the case of weight 1 is almost identical. The same

is true of later developments.
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Theorem 1.1. Let f be a primitive (holomorphic or Maass) cusp form of level N and trivial neben-
typus, and let χ be a primitive character modulo q. Then for <s = 1

2 and for any ε > 0 one has

L(f ⊗ χ, s)�ε (|s|µfNq)ε
(
|s| 14µ

1
2

fN
1
4 q

3
8 + |s| 12µfN

1
2 (N, q)

1
4 q

1
4

)
if f is holomorphic, and

L(f ⊗ χ, s)�ε (|s|µfNq)ε
(
|s| 14µ3

fN
1
4 q

3
8 + |s| 12µ

7
2

fN
1
2 (N, q)

1
4 q

1
4

)
otherwise.

The novelty of this theorem is that it covers Maass forms and achieves good uniformity in the
secondary parameters (e.g. it is as strong as the convexity bound in the s-aspect). In applications it
is easier to handle a single term on the right hand side, hence we formulate

Corollary 1.1. Let f be a primitive (holomorphic or Maass) cusp form of level N and trivial neben-
typus, and let χ be a primitive character modulo q. Then for <s = 1

2 and for any ε > 0 one has

L(f ⊗ χ, s)�ε (|s|µfNq)ε |s|
1
2µ3

fN
1
2 q

3
8 . (1.4)

Moreover, for q > (µfN)4 one has

L(f ⊗ χ, s)�ε (|s|µfNq)ε |s|
1
2µ3

fN
1
4 q

3
8 . (1.5)

This corollary along with the ones below are deduced from the theorems in the next section.
An important consequence of Theorem 1.1 is an improved bound for the Fourier coefficients of half-
integral weight cusp forms (see [BlHa08a, Corollary 2] and [BM10, Theorem 1.5]), which in turn can
be applied to various distribution problems on ellipsoids and hyperbolic surfaces [Du88, DuSP90],
and representations by ternary quadratic forms with restricted variables [Bl08]. Another application
is the following hybrid subconvexity bound on the critical line [BlHa08a, Theorem 1]:

L(f ⊗ χ, s)�ε (N |s|q)εN 4
5 (|s|q) 1

2−
1
40 .

Finally, Theorem 1.1 is an important ingredient in the proofs of Theorems 1.2 and 1.3 below.
The second family we consider consists of primitive cusp forms f of level q, for which the convexity

bound reads
L(f, s)�ε (|s|µfq)ε |s|

1
2µ

1
2

f q
1
4 .

The aim is to prove a similar bound with q-exponent 1
4 − δ (where δ > 0 is fixed) and with an implied

constant depending continuously on s and µf . History in brief is as follows: δ = 1
192 for f holomorphic

of trivial nebentypus by Duke–Friedlander–Iwaniec [DFI94b], δ = 1
262144 for f holomorphic of square-

free level q and primitive nebentypus [DFI01], δ = 1
23041 for f of primitive nebentypus [DFI02].

The second result in this dissertation is joint work with Valentin Blomer and Philippe Michel
[BHM07b] which establishes a stronger and more general subconvexity estimate for modular L-
functions with a different method.

Theorem 1.2. Let f be a primitive (holomorphic or Maass) cusp form of level q and nontrivial
nebentypus. Then for <s = 1

2 one has

L(f, s)� (|s|µf )A q
1
4−

1
1889 , (1.6)

where A > 0 is an absolute constant.

The novelty of this theorem is that it only requires the nebentypus to be nontrivial4 instead of
primitive, and the subconvexity exponent is stronger. Including non-primitive nebentypus is crucial
in the following corollaries which have arithmetic applications.

4In fact, with slightly more work we could also have covered the trivial nebentypus case, see Remark 4.2.
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Corollary 1.2. Let K be a quadratic number field and O ⊂ K an order in K of discriminant dO.
Let χ denote a primitive character of Pic(O). Then for <s = 1

2 one has

L(χ, s)� |s|A |dO|
1
4−

1
1889 ,

where A > 0 is an absolute constant.

Corollary 1.3. Let K be a cubic number field of discriminant dK . Then for <s = 1
2 the Dedekind

L-function of K satisfies
ζK(s)� |s|A |dK |

1
4−

1
1889 , (1.7)

where A > 0 is an absolute constant.

Corollary 1.3 is an essential ingredient in the deep work of Einsiedler–Lindenstrauss–Michel–
Venkatesh [ELMV11] which establishes a higher rank generalization of Duke’s equidistribution theo-
rem for closed geodesics on the modular surface [Du88, Theorem 1].

The third family we consider consists of Rankin–Selberg convolutions f ⊗ g with a fixed primitive
cusp form g and a primitive cusp form f that varies. The associated (finite) L-functions are essentially
defined as Dirichlet series

L(f ⊗ g, s) ≈
∞∑
n=1

λf (n)λg(n)

ns
, <s > 1,

where again ≈ means that the ratio is negligible for our analytic purposes. These L-functions have
similar features as the ones already mentioned (Euler product, analytic continuation, symmetry),
hence denoting by q the level of f and by D the level of g, we have the following convexity bound on
the critical line <s = 1

2 :

L(f ⊗ g, s)�ε (|s|µfµgDq)ε |s|µfµgD
1
2 q

1
2 .

The aim is to prove a similar bound with q-exponent 1
2 − δ (where δ > 0 is fixed) and with an implied

constant depending continuously on the other parameters. This problem was solved by Kowalski–
Michel–Vanderkam [KMV02] when f is holomorphic and the conductor of χfχg (where χf and χg
are the nebentypus characters of f and g) is at most q

1
2−η for some η > 0, the corresponding savings

δ then depending on η. The second condition (which is the more serious) was essentially removed by
Michel [Mi04] under the assumptions that g is holomorphic and χfχg is nontrivial.

The third result in this dissertation is joint work with Philippe Michel [HM06] which solves the
subconvexity problem for Rankin–Selberg L-functions in even greater generality.

Theorem 1.3. Let f and g be two primitive (holomorphic or Maass) cusp forms of level q, D and
nebentypus χf , χg, respectively. Assume that χfχg is not trivial. Then for <s = 1

2 one has

L(f ⊗ g, s)� (|s|µfµgD)A q
1
2−

1
1413 , (1.8)

where A > 0 is an absolute constant.

The novelty of this theorem is that it contains no restriction on the type of the cusp forms involved,
and the dependence on the secondary parameters is polynomial. To be precise, in [HM06] we proved
the result with q-exponent 1

2 −
1

2648 , because at that time only a weaker version of Theorem 1.1 was
available. Here we take the opportunity to update the exponents in [HM06], and indicate to some
extent how the exponent of q in (1.8) depends on θ and the exponents in (1.4), see Proposition 5.1.

The above subconvexity results can be used to reprove and refine Duke’s equidistribution theorem
[Du88] which we discuss now briefly. For a fundamental discriminant d < 0 (resp. d > 0) denote by Λd
the set of Heegner points (resp. closed geodesics) of discriminant d on the modular surface SL2(Z)\H.
As shown in Section 6.1, there is a natural bijection between Λd and the narrow ideal class group Hd

of Q(
√
d), in particular Hd acts on Λd in a natural fashion. The total volume of Λd is |d|1/2+o(1) by

Siegel’s theorem (cf. (6.9)), hence it is natural to ask if Λd becomes equidistributed in SL2(Z)\H as
|d| → ∞. Linnik [Li68], using his pioneering ergodic method, could establish equidistribution under

the condition that
(
d
p

)
= 1 for any fixed odd prime p. The congruence restriction was removed by

Duke [Du88] using quite different techniques. Duke exploited a correspondence of Maass to relate

5



the Weyl sums arising in this equidistribution problem to Fourier coefficients of half-integral weight
Maass forms, and then he proved directly nontrivial bounds for them using a technique introduced
by Iwaniec [Iw87]. The connection with subconvexity comes from the work of Waldspurger [Wa81]
on the Shimura correspondence, which shows that nontrivial bounds for these Fourier coefficients are
in fact equivalent to subconvexity bounds for the central twisted values L

(
f ⊗ (d· ),

1
2

)
as f ranges

over the Hecke–Maass cusp forms and Eisenstein series on SL2(Z)\H. The necessary bounds follow
from (1.3) and (1.4) above.

In combination with the special formulae of Zhang [Zh01] for d < 0 and Popa [Po06] for d > 0,
Theorems 1.2 and 1.3 imply the equidistribution of substantially smaller subsets of Λd, as |d| → ∞.

Corollary 1.4. Let dµ(z) (resp. ds(z)) denote the hyperbolic probability measure (resp. hyperbolic
arc length) on SL2(Z)\H. Let g : SL2(Z)\H → C be a smooth function of compact support.

• If d < 0 is a negative fundamental discriminant, H 6 Hd is a subgroup of the narrow ideal class
group of Q(

√
d), and z0 ∈ Λd is a Heegner point of discriminant d, then∑

σ∈H g(zσ0 )∑
σ∈H 1

=

∫
SL2(Z)\H

g(z) dµ(z) +Og

(
[Hd : H]|d|− 1

2827

)
. (1.9)

• If d > 0 is a positive fundamental discriminant, H 6 Hd is a subgroup of the narrow ideal class
group of Q(

√
d), and G0 ∈ Λd is a closed geodesic of discriminant d, then∑
σ∈H

∫
Gσ0

g(z) ds(z)∑
σ∈H

∫
Gσ0

1 ds(z)
=

∫
SL2(Z)\H

g(z) dµ(z) +Og

(
[Hd : H]|d|− 1

2827

)
. (1.10)

In particular, every H-orbit in Λd becomes equidistributed on SL2(Z)\H under [Hd : H] 6 |d| 1
2828 and

|d| → ∞. In the above bounds the implied constant is a Sobolev norm of g.

This corollary strengthens the numerical values in [HM06, Theorem 2] and [Po06, Theorem 6.5.1].
On the other hand, [HM06] and [Po06] discuss the analogous results on more general arithmetic
hyperbolic surfaces, which we omit here for simplicity.

We conclude this summary by mentioning that the subconvex bounds (1.4), (1.6), (1.8) were
successfully applied in a number of other situations, see [MV07, Sa07, FM11, KMY11, Ma11, MY11].

1.4 Proof of the corollaries

Proof of Corollary 1.1. By Theorem 1.1 we have

L(f ⊗ χ, s)�ε (|s|µfNq)ε
(
|s| 12µ3

fN
1
2 q

3
8 + |s| 12µ

7
2

fN
3
4 q

1
4

)
.

If the first term dominates inside the big parentheses, then (1.4) is clear. Else we have

|s| 12µ3
fN

1
2 q

3
8 < |s| 12µ

7
2

fN
3
4 q

1
4 =⇒ q

1
8 < µ

1
2

fN
1
4 .

Combining this with the convexity bound (1.2) we arrive at (1.4) again:

L(f ⊗ χ, s)�ε (|s|µfNq)ε |s|
1
2µ

1
2

fN
1
4 q

1
8 q

3
8 < (|s|µfNq)ε |s|

1
2µfN

1
2 q

3
8 .

As for (1.5) we note that by Theorem 1.1 we have

L(f ⊗ χ, s)�ε (|s|µfNq)ε
(
|s| 12µ3

fN
1
4 q

3
8 + |s| 12µ

7
2

fN
3
4 q

1
4

)
.

If the first term dominates inside the big parentheses, then (1.5) is clear. Else we have

|s| 12µ3
fN

1
4 q

3
8 < |s| 12µ

7
2

fN
3
4 q

1
4 =⇒ q

1
8 < µ

1
2

fN
1
2 =⇒ q < (µfN)4.
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Proof of Corollary 1.2. As in [DFI02] we only need to remark that depending on whether K is real
or imaginary, L(χ, s) is the L-function of a Maass form of weight κ ∈ {0, 1}, level d and nebentypus
χK (the quadratic character associated with K). This follows from theorems of Hecke and Maass.
One difference with Theorem 2.7 of [DFI02] is that we do not require the character χ to be associated
with the maximal order OK . Now the bound follows from Theorem 1.2.

Proof of Corollary 1.3. If K is abelian, then dK = d2 is a square and ζK(s) = ζ(s)L(χ, s)L(χ, s),
where χ is a Dirichlet character of order 3 and conductor d. In that case the bound (1.7) follows
from Burgess’s subconvex bound [Bu63]. If K is not abelian, let L denote the Galois closure of K
(which is of degree 6 with Galois group isomorphic to S3) and let F/Q denote the unique quadratic
field contained in L, then ζK(s) = ζ(s)L(χ, s), where χ is a ring class character of F of order 3 and
conductor d satisfying NF/Q(d) = |dK |. The bound (1.7) now follows from Corollary 1.2.

Proof of Corollary 1.4. The spectral expansion (2.1) is compatible with taking partial derivatives on
both sides, therefore it suffices to prove the statement when g is a Hecke–Maass cusp form of full
level with 〈g, g〉 = 1 or a standard Eisenstein series E∞(·, 1

2 + it). More precisely, it suffices to show

for such g that the left hand sides of (1.9)–(1.10) are � [Hd : H](1 + |t|)A|d|− 1
2827 , where A > 0 is an

absolute constant and t = tg is the spectral parameter of g as in (2.4). By (6.9) the denominators in

(1.9)–(1.10) are [Hd : H]−1|d| 12 +o(1), hence it suffices to show that the numerators satisfy∑
σ∈H

. . . � (1 + |t|)A|d| 12− 1
2826 .

Using characters of the abelian group Hd we can rewrite this as

1

[Hd : H]

∑
ψ∈Ĥd
ψ|H≡1

∑
σ∈Hd

ψ(σ) . . . � (1 + |t|)A|d| 12− 1
2826 .

The number of ψ’s here is precisely [Hd : H], hence it suffices to show that for any ψ ∈ Ĥd and for
any g as above we have ∑

σ∈Hd

ψ(σ)g(zσ0 )� (1 + |t|)A |d| 12− 1
2826 , d < 0,

∑
σ∈Hd

ψ(σ)

∫
Gσ0

g(z) ds(z)� (1 + |t|)A |d| 12− 1
2826 , d > 0.

(1.11)

The twisted sums in (1.11) can be related to central automorphic L-values. The formula (which
generalizes special cases by Dirichlet, Hecke, Maass, Gross–Kohnen–Zagier and others) is based on
the deep work of Waldspurger [Wa81] and was carefully derived by Zhang [Zh01] for d < 0 and by
Popa [Po06] for d > 0: ∣∣∣∣∣ ∑

σ∈Hd

ψ(σ) . . .

∣∣∣∣∣
2

= cd |d|
1
2 |ρg(1)|2 Λ

(
fψ ⊗ g, 1

2

)
. (1.12)

Here cd is positive and takes only finitely many different values, ρg(1) is the first Fourier coefficient
of g as in (2.2)–(2.3), Λ(π, s) denotes the completed L-function, and fψ is the automorphic induction

of ψ from GL1 over Q(
√
d) to GL2 over Q such that Λ(fψ, s) = Λ(ψ, s). The modular form fψ was

discovered by Hecke [He37] and Maass [Ma49] in this special case, it is of level |d| and nebentypus(
d
·
)
. In particular, when g is an Eisenstein series E∞(·, 1

2 + it) the identity (1.12) follows from [Si80,
pp. 70 and 88] and [Iw02, (3.25)].

Observe that in (1.12) we have |ρg(1)|2 �ε (1 + |t|)εeπ|t| by [HL94] and [Iw02, (3.25)], while
the archimedean part of Λ

(
fψ ⊗ g, 1

2

)
is a product of exponential and gamma factors which is �

(1 + |t|)e−π|t| by Stirling’s approximation. Therefore (1.11) reduces to a subconvex bound (with a
different A > 0)

L
(
fψ ⊗ g, 1

2

)
� (1 + |t|)A |d| 12− 1

1413 . (1.13)
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If the character ψ : Hd → C× is real-valued, then it is one of the genus characters discovered by Gauss
[Ga86]. In this case L(fψ ⊗ g, s) = L(g⊗ (d1· ), s)L(g⊗ (d2· ), s), where d = d1d2 is a factorization of d
into fundamental discriminants d1 and d2 (cf. [Si80, p. 62]), therefore (1.13) follows from (1.3) when
g is an Eisenstein series and from (1.4) when g is a cusp form. If the character ψ : Hd → C× is not
real-valued, then fψ is a cusp form of level |d| and nebentypus

(
d
·
)
, therefore (1.13) follows from (1.6)

when g is an Eisenstein series and from (1.8) when g is a cusp form.

1.5 About the proof of the main theorems

In this section we summarize briefly the main ideas in the proof of Theorems 1.1, 1.2, 1.3. The expert
reader will notice that the ancestors to the proof are the papers [By96, KMV00, DFI02, Mi04]. Using
the notation

• L(f) := L(f ⊗ χ, s) in the case of Theorem 1.1;

• L(f) := L(f, s)2 in the case of Theorem 1.2;

• L(f) := L(f ⊗ g, s) in the case of Theorem 1.3;

the goal is to find a particular δ > 0 such that L(f) � q
1
2−δ with an implied constant depending

polynomially on the secondary parameters. We achieve this by estimating the amplified second
moment

1

q

∫
φ

|M(φ)|2|L(φ)|2 dµ(φ) (1.14)

over the spectrum of the Laplacian acting on automorphic functions of level ≈ q (in the case of
Theorem 1.1 the level equals 3[N, q]) and given nebentypus, so that one of the terms corresponds
to a cusp form φ ≈ f . Here M(φ) is a suitable amplifier, and φ runs through Maass cusp forms,
holomorphic cusp forms, and Eisenstein series with respect to a certain spectral measure dµ(φ)
designed for Kuznetsov’s trace formula. The amplifier is given by M(φ) :=

∑
` x(`)λφ(`), where

(x(`)) is a finite sequence of complex numbers depending only on f . Opening the square and using
multiplicativity of Hecke eigenvalues, we are left with bounding a normalized average

Q(`) :=
1

q

∫
φ

λφ(`)|L(φ)|2 dµ(φ)

for ` less than a small power of q. We win once we can show Q(`)� `−δ for a suitable δ > 0.
By Kuznetsov’s trace formula, the spectral sum Q(`) can be transformed into a weighted sum

of (twisted) Kloosterman sums, the weights being of the form χ(m)χ(n), τ(m)τ(n), λg(m)λg(n)
in the cases of Theorems 1.1, 1.2, 1.3, respectively. The set of weights χ(m)χ(n) is considerably
simpler which is mainly responsible for the better value of δ. Here we follow the original treatment
of Bykovskĭı [By96] which expresses the sum in terms of the Hurwitz ζ-function. By applying the
functional equation for these ζ-function, the problem reduces to cancellation in certain complete
character sums, which is then established by Weil’s theorem. The set of weights τ(m)τ(n) can be
regarded as a special case of λg(m)λg(n) upon defining

g(z) :=
∂

∂s
E∞(z, s)|s= 1

2
= 2
√
y log(eγy/4π) + 4

√
y
∑
n>1

τ(n) cos(2πnx)K0(2πny). (1.15)

Note, however, that this g is not square-integrable, which causes technical complications and neces-
sitates a separate treatment. At any rate, the next step in the proof of Theorems 1.2 and 1.3 is an
application of Voronoi summation which turns the Kloosterman sums into simpler Gauss sums (plus
a negligible term in the case of (1.15)). Opening the Gauss sums, we are left with sums roughly of
the type

1

q3/2

∑
h

χfχg(h)
∑

`1m−`2n=h

λg(m)λg(n)W`1,`2(m,n). (1.16)

Here the sizes of h, m, n are ≈ q, the weight function W`1,`2 is nice and depends mildly on `1, `2.
The innermost sum in (1.16) is a shifted convolution sum which at best exhibits square-root

cancellation, hence we need to exploit oscillation in the h-parameter. To understand the h-dependence
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we analyze the shifted convolution sum by Kloosterman’s refinement of the circle method. This
approach is very appropriate: it worked efficiently in earlier related contexts [DFI93, DFI94a, Ju99,
KMV02], and in fact a special case of Kloosterman’s original application [Kl26] can be regarded as
a special case of the problem at hand. More precisely, for technical reasons, we employ the variants
of the circle method developed by Meurman [Me01] and Jutila [Ju92, Ju96]. As a result, the shifted
convolution sum equals (up to negligible error) a main term plus a weighted c-sum of (untwisted)
Kloosterman sums S(h, h′; c). The weights are defined in terms of the coefficients λg(n), but in the
end we only need that these are small in L2-mean. The main term is present only for (1.15), we
return to it later below. For the sum of Kloosterman sums we apply Kuznetsov’s trace formula in
the other direction in order to separate the h and h′ variables. Now we encounter expressions of the
type ∫

ψ

∑
h

χ(h)ρψ(h) dµ̃(ψ), (1.17)

where the h-sum is smooth of length≈ q, and ψ runs through modular forms of levels≈ `1`2 and trivial
nebentypus with respect to another spectral measure dµ̃(ψ). Cancellation in the h-sum is therefore
equivalent to subconvexity of twisted automorphic L-functions for which we need Theorem 1.1. Some
difficulties arise from the fact that (1.16) may be “ill-posed”: if the support of W`1,`2 is such that m is
much smaller than n, we have to solve an unbalanced shifted convolution problem which is reflected
by the fact that the ψ-integral in (1.17) is “long”. In this case the saving comes from the spectral
large sieve inequalities of Deshouillers–Iwaniec [DI82].

In the case of (1.15), i.e. when λg(n) = τ(n), an extra term appears in the analysis of (1.16),
namely the contribution of the main term of the shifted convolution sums. This extra term equals (up
to admissible error) the contribution of the Eisenstein spectrum in (1.14) which is generally too large
and is included only to make (1.14) spectrally complete. In [DFI02] the analogue of this observation is
justified rigorously: the two large contributions are proved to be equal, so one can forget about both
of them. In the proof of Theorem 1.2 we take a shortcut instead. We arrange the weight functions in
the approximate functional equation and in Kuznetsov’s trace formula in such a way that the extra
term becomes negligible: in the analysis this manifests as destroying a certain pole by creating a zero
artificially. In fact, our choice of the approximate functional equation can be explained as by forcing
the Eisenstein contribution in (1.16) to be small, see Remark 4.1.

Finally we remark that there is a more direct and more powerful method resulting in a similar
spectral expansion of shifted convolution sums, see [BlHa08b, BlHa10] and the references therein.
This method avoids the double application of Kuznetsov’s trace formula, but at the time of working
on these projects it was limited to special situations such as holomorphic g or unbalanced shifted
convolution sums (i.e. when the sizes of h, m, n are not approximately equal).
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Chapter 2

Review of automorphic forms

2.1 Maass forms

Let k and D be positive integers, and χ be a character of modulus D such that χ(−1) = (−1)k. An
automorphic function of weight k, level D and nebentypus χ is a function g : H → C satisfying, for

any γ =

(
a b
c d

)
in the congruence subgroup Γ0(D), the automorphy relation

g|kγ(z) := jγ(z)−kg(γz) = χ(d)g(z),

where

γz :=
az + b

cz + d
and jγ(z) :=

cz + d

|cz + d|
= exp

(
i arg(cz + d)

)
.

We denote by Lk(D,χ) the L2-space of automorphic functions of weight k with respect to the Pe-
tersson inner product

〈g1, g2〉 :=

∫
Γ0(D)\H

g1(z)g2(z)
dxdy

y2
.

By the theory of Maass and Selberg, Lk(D,χ) admits a spectral decomposition into eigenspaces of
the Laplacian of weight k

∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

∂

∂x
.

The spectrum of ∆k has two components: the discrete spectrum spanned by the square-integrable
smooth eigenfunctions of ∆k (the Maass cusp forms), and the continuous spectrum spanned by the
Eisenstein series {Ea(z, s)}{a, s with <s = 1

2}
: any g ∈ Lk(D,χ) decomposes as

g(z) =
∑
j>0

〈g, uj〉uj(z) +
∑
a

1

4πi

∫
<s= 1

2

〈g,Ea(∗, s)〉Ea(z, s) ds, (2.1)

where u0(z) is a constant function of Petersson norm 1, Bk(D,χ) = {uj}j>1 denotes an orthonormal
basis of Maass cusp forms and {a} ranges over the singular cusps of Γ0(D) relative to χ. The
Eisenstein series Ea(z, s) (which for <s = 1

2 are defined by analytic continuation) are eigenfunctions
of ∆k with eigenvalue λ(s) = s(1− s).

A Maass cusp form g decays exponentially near the cusps. It admits a Fourier expansion for
each cusp with its zero-th Fourier coefficient vanishing; in particular, for the cusp at ∞, the Fourier
expansion takes the form

g(z) =

+∞∑
n=−∞
n 6=0

ρg(n)W n
|n|

k
2 ,it

(4π|n|y)e(nx), (2.2)
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where Wα,β(y) is the Whittaker function, and
(

1
2 + it

)(
1
2 − it

)
is the eigenvalue of g. The Eisenstein

series has a similar Fourier expansion

Ea

(
z, 1

2 + it
)

= δa=∞y
1
2 +it + φa

(
1
2 + it

)
y

1
2−it +

+∞∑
n=−∞
n 6=0

ρa(n, t)W n
|n|

k
2 ,it

(4π|n|y)e(nx), (2.3)

where φa
(

1
2 + it

)
is the entry (∞, a) of the scattering matrix.

2.2 Holomorphic forms

Let Sk(D,χ) denote the space of holomorphic cusp forms of weight k, level D and nebentypus χ, that
is, the space of holomorphic functions g : H → C satisfying

g(γz) = χ(γ)(cz + d)kg(z)

for every γ =

(
a b
c d

)
∈ Γ0(D) and vanishing at every cusp. Such a form has a Fourier expansion at

∞ of the form
g(z) =

∑
n>1

ρg(n)(4πn)
k
2 e(nz).

We recall that the cuspidal spectrum of Lk(D,χ) is composed of the constant functions (if k = 0,
χ is trivial), Maass cusp forms with Laplacian eigenvalues λg = ( 1

2 + itg)(
1
2 − itg) > 0 (if k is odd,

one has λg > 1
4 ) which are obtained from the Maass cusp forms of weight κ ∈ {0, 1}, κ ≡ k (2) by

k−κ
2 applications of the Maass weight raising operator, and of Maass cusp forms with eigenvalues

λ = l
2 (1 − l

2 ) 6 0, 0 < l 6 k, l ≡ k (2) which are obtained by k−l
2 applications of the Maass weight

raising operator to weight l Maass cusp forms given by yl/2g(z) for g ∈ Sl(D,χ). In particular, if
g ∈ Sk(D,χ), then yk/2g(z) is a Maass form of weight k and eigenvalue k

2 (1− k
2 ). Moreover, we note

that our two definitions of the Fourier coefficients agree:

ρg(n) = ρyk/2g(n).

We denote by Bhk (D,χ) an orthonormal basis of the space of holomorphic cusp forms of weight k > 1,
level D and nebentypus χ.

In the sequel, we set

µg := 1 + |tg|; tg :=

{√
λg − 1/4 when g is a Maass cusp form of eigenvalue λg;

i(kg − 1)/2 when g is a holomorphic cusp form of weight kg.
(2.4)

2.3 Hecke operators and Hecke eigenbases

We recall that Lk(D,χ) (and its subspace generated by Maass cusp forms) is acted on by the (com-
mutative) algebra T generated by the Hecke operators {Tn}n>1 which satisfy the multiplicativity
relation

TmTn =
∑

d|(m,n)

χ(d)Tmn
d2
.

We denote by T(D) the subalgebra generated by {Tn}(n,D)=1 and call a Maass cusp form which is

an eigenform for T(D) a Hecke–Maass cusp form. The elements of T(D) are normal with respect
to the Petersson inner product, therefore we can choose Bk(D,χ) and Bhk (D,χ) to consist of Hecke
eigenforms. Then, by Atkin–Lehner theory, these orthogonal bases contain a unique scalar multiple
of any primitive form.

The adelic reformulation of the theory of modular forms provides a natural alternate spectral
expansion of the Eisenstein spectrum Ek(D,χ) ⊂ Lk(D,χ). In this expansion, the basis is indexed
by a set of parameters of the form1

{(χ1, χ2, f) | χ1χ2 = χ, f ∈ Bk(χ1, χ2)}, (2.5)

1We suppress here the independent spectral parameters 1
2

+ it with t ∈ R.
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where (χ1, χ2) ranges over the pairs of characters of modulus D such that χ1χ2 = χ and Bk(χ1, χ2)
is some finite set depending on (χ1, χ2). Specifically, Bk(χ1, χ2) corresponds to an orthonormal basis
in the induced representation constructed out of the pair (χ1, χ2), see [GJ79] for more details. For
g ∈ Ek(D,χ) one has

g(z) =
∑∑
χ1χ2=χ

f∈Bk(χ1,χ2)

1

4πi

∫
<s= 1

2

〈g,Eχ1,χ2,f (∗, s)〉Eχ1,χ2,f (z, s) ds. (2.6)

An important feature of this basis is that it consists of Hecke eigenforms for T(D): for (n,D) = 1 one
has

TnEχ1,χ2,f

(
z, 1

2 + it
)

= λχ1,χ2(n, t)Eχ1,χ2,f

(
z, 1

2 + it
)

with
λχ1,χ2

(n, t) =
∑
ab=n

χ1(a)aitχ2(b)b−it. (2.7)

We shall abbreviate Eχ1,χ2,f

(
∗, 1

2 + it
)

by Eχ1,χ2,f,t, and denote its Fourier coefficients by ρf (n, t).

2.4 Hecke eigenvalues and Fourier coefficients

Let g be any Hecke eigenform with eigenvalue λg(n) for Tn, then one has

λg(m)λg(n) =
∑

d|(m,n)

ψ(d)λg(mn/d
2) for (mn,D) = 1, (2.8)

λg(n) = ψ(n)λg(n) for (n,D) = 1.

In particular, it follows that

λg(m)λg(n) = ψ(n)
∑

d|(m,n)

ψ(d)λg(mn/d
2) for (mn,D) = 1. (2.9)

There is a close relationship between the Fourier coefficients ρg(n) and the Hecke eigenvalues λg(n):

√
nρg(±n) = ρg(±1)λg(n) for (n,D) = 1, (2.10)

√
mρg(m)λg(n) =

∑
d|(m,n)

χ(d)ρg

(m
d

n

d

)√mn

d2
for (n,D) = 1, (2.11)

√
mnρg(mn) =

∑
d|(m,n)

χ(d)µ(d)ρg

(m
d

)√m

d
λg

(n
d

)
for (n,D) = 1. (2.12)

The primitive forms are defined to be the Hecke–Maass cusp forms orthogonal to the subspace of old
forms. By Atkin–Lehner theory, these are automatically eigenforms for T and the relations (2.10)
and (2.11) hold for any n. Moreover, if g is a Maass form not coming from a holomorphic form (i.e.,
if itg is not of the form ± l−1

2 for 1 6 l 6 k, l ≡ k (2)), then g is also an eigenform for the involution
Q 1

2 +itg,k of [DFI02, (4.65)], and one has the following relation between the positive and negative
Fourier coefficients:

ρg(−n) = εgρg(n) for n > 1 (2.13)

with

εg = ±
Γ
(

1
2 + itg + k

2

)
Γ
(

1
2 + itg − k

2

) (2.14)

(cf. [DFI02, (4.70)]).
A primitive form g is arithmetically normalized if ρg(1) = 1.
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2.5 Spectral summation formulae

The following spectral summation formulae form an important tool for the analytic theory of modular
forms. Let χ(−1) = (−1)κ with κ ∈ {0, 1}, and recall that Bk(D,χ) (resp. Bhk (D,χ)) denotes
an orthonormal Hecke eigenbasis of the space of Maass (resp. holomorphic) cusp forms of weight
k ≡ κ (2), level D and nebentypus χ. The first formula is due to Petersson (cf. Theorem 9.6 in
[Iw02]):

Proposition 2.1. For any positive integers m,n, one has

4πΓ(k − 1)
√
mn

∑
f∈Bhk (D,χ)

ρf (m)ρf (n) = δm,n + 2πi−k
∑

c≡0 (D)

Sχ(m,n; c)

c
Jk−1

(
4π
√
mn

c

)
. (2.15)

Here Sχ(m,n; c) is the twisted Kloosterman sum

Sχ(m,n; c) :=
∑
x(c)

(x,c)=1

χ(x)e

(
mx+ nx

c

)
.

Let Bk(D,χ) = {uj}j>1 with uj of Laplacian eigenvalue λj = 1
4 +t2j and Fourier coefficients ρj(n).

The following result is a combination of [DFI02, Proposition 5.2], a slight refinement of [DFI02, (14.7)],
[DFI02, Proposition 17.1], and [DFI02, Lemma 17.2].

Proposition 2.2. For any integer k > 0 and any A > 0, there exist functions H(t) : R∪ iR→ (0,∞)
and I(x) : (0,∞)→ R ∪ iR depending on k and A such that

H(t)� (1 + |t|)k−16e−π|t|; (2.16)

for any integer j > 0,

xjI(j)(x)�A,j

(
x

1 + x

)A+1

(1 + x)1+j ; (2.17)

and for any positive integers m,n,

√
mn

∑
j>1

H(tj)ρj(m)ρj(n) +
√
mn

∑
a

1

4π

∫ +∞

−∞
H(t)ρa(m, t)ρa(n, t) dt

= cAδm,n +
∑

c≡0 (D)

Sχ(m,n; c)

c
I
(

4π
√
mn

c

)
.

Here cA > 0 depends only on A.

It will be useful to have an even more general form of the summation formulae above, namely
when I(x) is replaced by an arbitrary test function. This is one of Kuznetsov’s main results (in the
case of full level). His formula was generalized in various ways, mainly by Deshouillers–Iwaniec [DI82]
(to arbitrary levels) and by Proskurin [Pr05] (to arbitrary integral and half-integral weights). See
[Iw02, Theorems 9.4–9.8]2, and also [CoPS90] for an illuminating discussion from the representation
theoretic point of view. In order to state Kuznetsov’s sum formula, we define the following Bessel
transforms for ϕ ∈ C∞(R+):

ϕ̇(k) : = ik
∫ ∞

0

Jk−1(x)ϕ(x)
dx

x
; (2.18)

ϕ̂(t) : =
πitκ

2 sinh(πt)

∫ ∞
0

{
J2it(x)− (−1)κJ−2it(x)

}
ϕ(x)

dx

x
; (2.19)

ϕ̌(t) : = 2 cosh(πt)

∫ ∞
0

K2it(x)φ(x)
dx

x
. (2.20)

2Note that in [Iw02] a few misprints occur: (9.15) should have the normalization factor 2
π

instead of 4
π

, and in
(B.49) a factor 4 is missing.
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Theorem 2.1. Let m,n,D be positive integers and ϕ ∈ C∞(R+) such that ϕ(0) = ϕ′(0) = 0 and
ϕ(j)(x)�ε (1 + x)−2−ε for 0 6 j 6 3. Then for κ ∈ {0, 1} one has

1

4
√
mn

∑
c≡0 (D)

Sχ(m,n; c)

c
ϕ

(
4π
√
mn

c

)
=

∑
k≡κ (2)
k>κ

Γ(k)ϕ̇(k)
∑

f∈Bhk (D,χ)

ρf (m)ρf (n)

+
∑
j>1

ϕ̂(tj)

cosh(πtj)
ρj(m)ρj(n) +

1

4π

∑
a

∫ +∞

−∞

ϕ̂(t)

cosh(πt)
ρa(m, t)ρa(n, t) dt. (2.21)

In addition, for κ = 0 one has

1

4
√
mn

∑
c≡0 (D)

Sχ(m,−n; c)

c
ϕ

(
4π
√
mn

c

)
=

∑
j>1

ϕ̌(tj)

cosh(πtj)
ρj(m)ρj(−n) +

1

4π

∑
a

∫ +∞

−∞

ϕ̌(t)

cosh(πt)
ρa(m, t)ρa(−n, t) dt. (2.22)

In both identities the (a, t)-integral is over the Eisenstein spectrum Ek(D,χ) ⊂ Lk(D,χ).

Remark 2.1. In (2.21) and (2.22) the sum over the singular cusps a can be replaced by a sum over
the parameters (2.5), then accordingly ρa(∗, t) need to be replaced by ρf (∗, t). The proof is identical,
except that the sum in (2.6) plays the role of the second sum in (2.1).

It will be useful to have bounds for the Bessel transforms occurring in Theorem 2.1.

Lemma 2.1. Let ϕ(r) be a smooth function, compactly supported in (R, 18R), satisfying

ϕ(j)(r)�j (W/R)j

for some W > 1 and for any j ∈ N0. Then, for t > 0 and for any k > 1, one has

ϕ̂(it), ϕ̌(it)� 1 + (R/W )−2t

1 +R/W
for 0 6 t <

1

4
; (2.23)

ϕ̇(t), ϕ̂(t), ϕ̌(t)� 1 + | log(R/W )|
1 +R/W

for t > 0; (2.24)

ϕ̇(t), ϕ̂(t), ϕ̌(t)�
(
W

t

)(
1

t1/2
+
R

t

)
for t > 1; (2.25)

ϕ̇(t), ϕ̂(t), ϕ̌(t)�k

(
W

t

)k (
1

t1/2
+
R

t

)
for t > max(10R, 1). (2.26)

Proof. The inequalities (2.23), (2.24), (2.25) can be proved exactly as (7.1), (7.2) and (7.3) in [DI82].
The last inequality (2.26) is an extension of (7.4) in [DI82], but we only claim it in the restricted
range t > max(10R, 1). On the one hand, we were unable to reconstruct the proof of (7.4) in [DI82]
for the entire range t > 1; on the other hand, [DI82] only utilizes this inequality for t� max(R,W )
(cf. page 268 there, and note also that for t � W the bound (2.25) is stronger). For this reason we
include a detailed proof of (2.26) in the case of ϕ̌(t). For ϕ̂(t) and ϕ̇(t) the proof is very similar.

We may assume that k = 2j + 1 is a positive odd integer. The Bessel differential equation

r2K
′′

2it(r) + rK
′

2it(r) = (r2 − 4t2)K2it(r)

gives an identity
ϕ̌(t) = (Dtϕ)∨(t), (2.27)

where

Dtϕ(r) := r

(
rϕ(r)

r2 − 4t2

)′′
+ r

(
ϕ(r)

r2 − 4t2

)′
.

14



This transform Dtϕ is smooth and compactly supported in (R, 18R), and it is straightforward to
check that

‖(Dtϕ)(i)‖∞ �i (W/t)2(W/R)i for t > max(10R, 1).

By iterating (2.27) it follows that
ϕ̌(t) = (Dj

tϕ)∨(t),

where Dj
tϕ is a smooth function, compactly supported in (R, 18R), satisfying

‖(Dj
tϕ)(i)‖∞ �j,i (W/t)2j(W/R)i for t > max(10R, 1).

We bound (Dj
tϕ)∨(t) by (2.25) and obtain

ϕ̌(t)�j

(
W

t

)2j+1(
1

t1/2
+
R

t

)
for t > max(10R, 1).

Lemma 2.2. a) Let ϕ(x) be a smooth function supported on x � X such that ϕ(j)(x) �j X
−j for

all j ∈ N0. For t ∈ R we have

ϕ̇(t), ϕ̂(t), ϕ̌(t)�C
1 + |logX|

1 +X

(
1 +X

1 + |t|

)C
for any constant C > 0. Here the Bessel transform ϕ̂ is taken with respect to κ = 0.

b) Let ϕ(x) be a smooth function supported on x � X such that ϕ(j)(x) �j (X/Z)−j for all
j ∈ N0. For t ∈ (−i/4, i/4) we have

ϕ̂(t), ϕ̌(t)� 1 + (X/Z)−2|=t|

1 +X/Z
.

Here the Bessel transform ϕ̂ is taken with respect to κ = 0.
c) Assume that ϕ(x) = eiaxψ(x) for some constant a and some smooth function ψ(x) supported

on x � X such that ψ(j)(x)� X−j for all j ∈ N0. Assume aX > 1, t ∈ R, and assume t ∈ N in the
case of ϕ̇. Then

ϕ̇(t), ϕ̂(t), ϕ̌(t)�C,ε
1

F 1−ε

(
F

1 + |t|

)C
for any C > 0, ε > 0 and some F = F (X, a) < (a+ 1)X.

Proof. Parts a) and b) are covered by Lemma 2.1. Part c) is [Ju99, pp. 43–45].

Using [GR07, 8.403.1] we can express the kernel kt(x) := J2it(x)− (−1)κJ−2it(x) in (2.19) as

J2it(x)− J−2it(x) = i tanh(πt)
{
Y2it(x) + Y−2it(x)

}
J2it(x) + J−2it(x) = i coth(πt)

{
Y2it(x)− Y−2it(x)

}
.

For future reference we shall recast ϕ̂ as follows. By [GR07, 6.561.14] the Mellin transform of the
kernel equals

k̃t(s) =

∫ ∞
0

kt(x)xs−1dx

=
2s−1

π
Γ
(s

2
+ it

)
Γ
(s

2
− it

){
sin
(
π
(s

2
− it

))
− (−1)κ sin

(
π
(s

2
+ it

))}
.

Let
ϕ∗(u) := ϕ̃(−1− 2u)21+2u. (2.28)

Then by Plancherel’s formula

ϕ̂(t) =
πitκ

2 sinh(πt)

1

2πi

∫
(σ)

ϕ∗(u)k̃t(1 + 2u)2−2u du (2.29)

=
1

π

{
1
it coth(πt)

}
1

2πi

∫
(σ)

ϕ∗(u)Γ

(
1

2
+ u+ it

)
Γ

(
1

2
+ u− it

){
− sin(πu)
+ cos(πu)

}
du,

where − 1
2 + |=t| < σ < 0, and the upper (resp. lower) line refers to κ = 0 (resp. κ = 1).
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2.6 Voronoi summation formulae

The modular properties of a cusp form g ∈ Lk(D,χ) translate into various functional equations for
Dirichlet series

D(g, x, s) :=
∑
n>1

√
nρg(n)e(nx)n−s

attached to additive twists of the Fourier coefficients ρg(n). When x = a
c is a rational number in

lowest terms with denominator c divisible by the level D, the functional equation is particularly
simple.

If g is induced from a holomorphic form of weight l, then by Appendix A.3 of [KMV02] (see also
[DI90]),

D
(
g,
a

c
, s
)

= ilχ(a)
( c

2π

)1−2s Γ
(
1− s+ l−1

2

)
Γ
(
s+ l−1

2

) D

(
g,−a

c
, 1− s

)
.

If g is not induced from a holomorphic form, then

D
(
g,
a

c
, s
)

= ikχ(a)
( c
π

)1−2s
{

Ψ+
k,it(s)D

(
g,−a

c
, 1− s

)
+ Ψ−k,it(s)D

(
Qg,

a

c
, 1− s

)}
, (2.30)

where Ψ±k,it(s) are meromorphic functions depending at most on k and it, 1
4 + t2 is the Laplacian

eigenvalue of g, and Q = Q 1
2 +it,k is the involution given in (4.65) of [DFI02]. In fact, we can assume

that Qg = εg for some ε = ±1, and reduce the above to

D
(
g,
a

c
, s
)

= ikχ(a)
( c
π

)1−2s
{

Ψ+
k,it(s)D

(
g,−a

c
, 1− s

)
+ εΨ−k,it(s)D

(
g,
a

c
, 1− s

)}
. (2.31)

For k = 0, Ψ±k,it(s) are determined in Appendix A.4 of [KMV02] (see also [Me88]):

Ψ±0,it(s) =
Γ
(

1−s+it
2

)
Γ
(

1−s−it
2

)
Γ
(
s−it

2

)
Γ
(
s+it

2

) ∓
Γ
(

2−s+it
2

)
Γ
(

2−s−it
2

)
Γ
(

1+s−it
2

)
Γ
(

1+s+it
2

) . (2.32)

For k 6= 0, we will express Ψ±k,it(s) in terms of the functions Φ±k (s, it) defined by (8.25) of [DFI02]:

Φ±1
k (s, it) :=

√
π

4

∫ ∞
0

{
W k

2 ,it
(4y)±

Γ
(

1
2 + it+ k

2

)
Γ
(

1
2 + it− k

2

)W− k2 ,it(4y)

}
ys−

1
2
dy

y
. (2.33)

Our starting point for establishing the functional equation is the identity

πs

4

∫ ∞
0

g(x+ iy)ys−
1
2
dy

y
= Φεk(s, it)D+1(g, x, s) + Φ−εk (s, it)D−1(g, x, s), (2.34)

where
2D±1(g, x, s) = D(g, x, s)±D(g,−x, s).

In deriving this identity we use (2.2), (2.13), and (2.14) with the sign ε = ±1. The modularity of g
implies, for any y > 0,

g

(
a

c
+
iy

c

)
= ikχ(a)g

(
−a
c

+
i

cy

)
.

We integrate both sides against ys−
1
2
dy
y to obtain, by (2.34),

∑
±

Φ±εk (s, it)D±1
(
g,
a

c
, s
)

= ikχ(a)
( c
π

)1−2s∑
±

Φ±εk (1− s, it)D±1

(
g,−a

c
, 1− s

)
.

The analogous equation holds when a is replaced by −a:∑
±

Φ±εk (s, it)D±1
(
g,−a

c
, s
)

= ikχ(−a)
( c
π

)1−2s∑
±

Φ±εk (1− s, it)D±1

(
g,
a

c
, 1− s

)
.

16



Using that D±1(g,−x, s) = ±D±1(g, x, s), and also that χ(−1) = (−1)k, we can infer that

Φ±εk (s, it)D±1
(
g,
a

c
, s
)

= ikχ(a)
( c
π

)1−2s

Φ
±ε(−1)k

k (1− s, it)D±(−1)k
(
g,−a

c
, 1− s

)
.

It is important to note that the functions Φ±εk (s, it) are not identically zero by k 6= 0 and Lemma 8.2
of [DFI02] (cf. (8.32) and (8.33) of [DFI02]). Therefore we can conclude that

D
(
g,
a

c
, s
)

=
∑
±
D±1

(
g,
a

c
, s
)

= ikχ(a)
( c
π

)1−2s∑
±

Φ
±ε(−1)k

k (1− s, it)
Φ±εk (s, it)

D±(−1)k
(
g,−a

c
, 1− s

)
.

Combining this equation with

2D±1

(
g,−a

c
, 1− s

)
= D

(
g,−a

c
, 1− s

)
±D

(
g,
a

c
, 1− s

)
,

we find that (2.31) indeed holds with the following definition of Ψ±k,it(s):

Ψ±k,it(s) =
Φ1
k(1− s, it)

Φ
(−1)k

k (s, it)
±

Φ−1
k (1− s, it)

Φ
−(−1)k

k (s, it)
.

This formula works for k 6= 0 and complements (2.32) which corresponds to k = 0.
Using the calculations of [DFI02] we can express Ψ±k,it(s) in more explicit terms. First, we use

(8.34) of [DFI02] to see that

Ψ±k,it(s) =
Φ1
k(1− s, it)
Φ1
k(s,−it)

±
Φ−1
k (1− s, it)
Φ−1
k (s,−it)

.

Then we refer to Lemma 8.2 of [DFI02], the functional equation (8.36) of [DFI02], and the deter-
mination of the constant ν = νεk = ±1 in that functional equation (p.534 of [DFI02]) to derive
that

Ψ±k,it(s) = ik
Γ
(

1−s+it
2

)
Γ
(

1−s−it
2

)
Γ
(
s−it

2

)
Γ
(
s+it

2

) ∓ ik
Γ
(

2−s+it
2

)
Γ
(

2−s−it
2

)
Γ
(

1+s−it
2

)
Γ
(

1+s+it
2

) , k even;

Ψ±k,it(s) = ik−1 Γ
(

1−s+it
2

)
Γ
(

2−s−it
2

)
Γ
(
s−it

2

)
Γ
(

1+s+it
2

) ± ik−1 Γ
(

2−s+it
2

)
Γ
(

1−s−it
2

)
Γ
(

1+s−it
2

)
Γ
(
s+it

2

) , k odd.

Note that by (2.32) this formula is also valid for k = 0.
We can simplify the above expressions for Ψ±k,it(s) using the functional equation and the duplica-

tion formula for Γ:

Γ(s)Γ(1− s) =
π

sin(πs)
, Γ(s)Γ( 1

2 + s) =
√
π21−2sΓ(2s).

For even k, we obtain

Ψ+
k,it(s) = ikπ−122sΓ(1− s+ it)Γ(1− s− it)

{
− cos(πs)

}
;

Ψ−k,it(s) = ikπ−122sΓ(1− s+ it)Γ(1− s− it)
{

cos(πit)
}
.

(2.35)

For odd k, we obtain

Ψ+
k,it(s) = ik−1π−122sΓ(1− s+ it)Γ(1− s− it)

{
sin(πs)

}
;

Ψ−k,it(s) = ik−1π−122sΓ(1− s+ it)Γ(1− s− it)
{
− sin(πit)

}
.

(2.36)

These identities enable us to derive a general Voronoi-type summation formula for the coefficients
ρg(n) of an arbitrary cusp form g ∈ Lk(D,χ). Special cases of this formula already appeared in
[Me88, DI90, KMV02].
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Proposition 2.3. Let D be a positive integer, χ be a character of modulus D, and g ∈ Lk(D,χ)
be a cusp form with spectral parameter t = tg. Let c ≡ 0 (D) and a be an integer coprime to c. If
F ∈ C∞(R+) is a Schwartz class function vanishing in a neighborhood of zero, then∑

n>1

√
nρg(n)e

(
n
a

c

)
F (n) =

χ(a)

c

∑
±

∑
n>1

√
nρ±g (n)e

(
∓na

c

)
F±
( n
c2

)
. (2.37)

In this formula,

ρ+
g (n) := ρg(n), ρ−g (n) := ρQg(n) =

Γ
(

1
2 + it− k

2

)
Γ
(

1
2 + it+ k

2

)ρg(−n),

and

F±(y) :=

∫ ∞
0

F (x)J±g
(
4π
√
xy
)
dx, (2.38)

where

•
J+
g (x) := 2πilJl−1(x), J−g (x) := 0,

if g is induced from a holomorphic form of weight l;

•
J+
g (x) :=

−π
cosh(πt)

{
Y2it(x) + Y−2it(x)

}
, J−g (x) := 4 cosh(πt)K2it(x),

if k is even, and g is not induced from a holomorphic form;

•
J+
g (x) :=

π

sinh(πt)

{
Y2it(x)− Y−2it(x)

}
, J−g (x) := −4i sinh(πt)K2it(x),

if k is odd, and g is not induced from a holomorphic form.

We outline the proof for non-holomorphic forms g. We represent the left hand side of (2.37) as
an inverse Mellin transform∑

n>1

√
nρg(n)e

(
n
a

c

)
F (n) =

1

2πi

∫
(2)

F̃ (s)D
(
g,
a

c
, s
)
ds.

By the functional equation (2.30), the right hand side can be rewritten as

ikχ(a)
1

2πi

∫
(2)

F̃ (s)
( c
π

)1−2s

Ψ+
k,it(s)D

(
g,−a

c
, 1− s

)
ds

+ikχ(a)
1

2πi

∫
(2)

F̃ (s)
( c
π

)1−2s

Ψ−k,it(s)D

(
Qg,

a

c
, 1− s

)
ds.

By changing s to 1− s
2 and shifting the contour, we see that this is the same as

ikχ(a)
1

2πi

∫
(2)

F̃
(

1− s

2

)( c
π

)s−1

Ψ+
k,it

(
1− s

2

)
D

(
g,−a

c
,
s

2

)
ds

2

+ikχ(a)
1

2πi

∫
(2)

F̃
(

1− s

2

)( c
π

)s−1

Ψ−k,it

(
1− s

2

)
D

(
Qg,

a

c
,
s

2

)
ds

2
.

(2.39)

Using (2.35) and (2.36) it is straightforward to check that

ikΨ±k,it

(
1− s

2

)
=

2

π
J̃±g (4x)(s),

so that
F̃
(

1− s

2

)
ikΨ±k,it

(
1− s

2

)
= 2πs−1F̃±(y)

(s
2

)
= 2πs−1F̃±(y2)(s),

where F± is the Hankel-type transform of F given by (2.38). In particular,

ik
1

2πi

∫
(2)

F̃
(

1− s

2

)( c
π

)s−1

Ψ±k,it

(
1− s

2

)
n−

s
2
ds

2
=

1

c
F±
( n
c2

)
,

and this shows that (2.39) is equal to the right hand side of (2.37). But (2.39) is also equal to the
left hand side of (2.37), therefore the proof is complete.
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2.7 Bounds for the Fourier coefficients of cusp forms

In this section we recall several (now) standard bounds for the Fourier coefficients of cusp forms;
references to proofs can be found in Section 2.5 of [Mi04].

If g is an L2-normalized primitive Maass cusp form of level D, weight κ ∈ {0, 1} and eigenvalue
1
4 + t2g, then from [DFI02] and [HL94] we have for any ε > 0 (cf. (2.4)),

(Dµg)
−ε
(

cosh(πtg)

Dµκg

)1/2

�ε |ρg(1)| �ε (Dµg)
ε

(
cosh(πtg)

Dµκg

)1/2

. (2.40)

If g ∈ Sk(D,χ) is an L2-normalized primitive holomorphic cusp form, then

(Dk)−ε

(DΓ(k))1/2
�ε |ρg(1)| �ε

(Dk)ε

(DΓ(k))1/2
. (2.41)

For Hecke eigenvalues, Hypothesis Hθ gives in general the individual bound

|λg(n)| 6 τ(n)nθ. (2.42)

Note that θ = 7
64 is admissible by the work of Kim–Shahidi, Kim and Kim–Sarnak [KiSh02, Ki03,

KiSa03], and (2.42) holds even when n is divisible by ramified primes. Moreover, if g is holomorphic,
it follows from Deligne’s proof of the Ramanujan–Petersson conjecture that (2.42) holds with θ = 0.
Hence for all n > 1 and for any ε > 0 we have by (2.10)

√
nρg(n)�ε


(nDµg)

ε

(
cosh(πtg)

Dµκg

)1/2

nθ for g ∈ Lκ(D,χ), κ ∈ {0, 1};

(nDk)ε

(DΓ(k))1/2
for g ∈ Sk(D,χ).

(2.43)

The implied constant depends at most on ε and is effective. In fact, for a Maass cusp form g of weight
κ ∈ {0, 1}, Rankin–Selberg theory implies that the Ramanujan–Petersson bound holds on average:
one has, for all X > 1 and all ε > 0,∑

n6X

|λg(n)|2 �ε (DµgX)εX. (2.44)

In several occasions, we will need a substitute for (2.43) when g is an L2-normalized but not
necessarily primitive Hecke–Maass cusp form. This estimate can be achieved on average over an
orthonormal basis, and this is sufficient for our application. By a straightforward generalization of
[Mi04, Lemma 2.3] we have

Lemma 2.3. Assume Hypothesis Hθ. For k > 1 let Bhk (D,χ) ⊂ Sk(D,χ) and for κ ∈ {0, 1} let
Bκ(D,χ) ⊂ Lκ(D,χ) denote orthonormal Hecke eigenbases. Then for n,X > 1, one has

∑
k≡κ (2)
26k6X

Γ(k)
∑

g∈Bhk (D,χ)

n|ρg(n)|2 +
∑

g∈Bκ(D,χ)
|tg|6X

n|ρg(n)|2

cosh(πtj)
� (nDX)εX2n2θ, (2.45)

where the implied constants depend at most on ε.

Finally we state the large sieve inequalities [DI82, Theorem 2] for modular forms of level D and
trivial nebentypus.

Proposition 2.4. Let Bhk (D, 1) ⊂ Sk(D, 1) and Bκ(D, 1) ⊂ Lκ(D, 1) denote orthonormal bases. Let
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N,X > 1 and let (an) be an arbitrary sequence of complex numbers. Then

∑
k≡0 (2)
26k6X

Γ(k)
∑

f∈Bk(D,1)

∣∣∣∣∣∣
∑

N6n<2N

an
√
nρf (n)

∣∣∣∣∣∣
2

∑
f∈Bκ(D,1)
|tf |6X

1

cosh(πtf )

∣∣∣∣∣∣
∑

N6n<2N

an
√
nρf (n)

∣∣∣∣∣∣
2

∑
a

∫ X

−X

1

cosh(πt)

∣∣∣∣∣∣
∑

N6n<2N

an
√
nρa(n, t)

∣∣∣∣∣∣
2

dt



�
(
X2 +

N1+ε

D

) ∑
N6n<2N

|an|2, (2.46)

where the (a, t)-integral is over the Eisenstein spectrum E0(D, 1) ⊂ L0(D, 1). The implied constant
depends at most on ε.

2.8 Bounds for exponential sums associated to cusp forms

In this section we prove uniform bounds for exponential sums

Sg(α,X) :=
∑
n6X

λg(n)e(nα) (2.47)

associated to a primitive cusp form g. Our goal is to arrive at

Proposition 2.5. Let g be a primitive Maass cusp form of level D, weight κ ∈ {0, 1} and Laplacian
eigenvalue 1

4 + t2g. Then we have, uniformly for X > 1 and α ∈ R,∑
n6X

λg(n)e(nα)� (DµgX)εDµ2
gX

1/2,

where the implied constant depends at most on ε.

Remark 2.2. This bound is a classical estimate and due to Wilton in the case of holomorphic forms
of full level. However, we have not found it in this generality in the existing literature. One of our
goals here is to achieve a polynomial control in the parameters of g (the level or the weight or the
eigenvalue). The latter will prove necessary in order to achieve polynomial control in the remaining
parameters in the subconvexity problem. Note that the exponents we provide here for D and µg are
not optimal: with more work, one could replace the factor Dµ2

gX
1/2 above by (Dµ2

gX)1/2, and in the
D and µg aspects it should be possible to go even further by using the amplification method. See
[BlHo10, T10, HT11] for recent developments in the case of square-free D.

First we derive uniform bounds for g(x+ iy).
If g is an L2-normalized primitive Maass cusp form of level D, weight κ ∈ {0, 1} and spectral

parameter it = itg, then we have the Fourier expansion

g(x+ iy) =
∑
n>1

ρg(n)
{
Wκ

2 ,it
(4πny)e(nx) + εgW−κ2 ,it(4πny)e(−nx)

}
, (2.48)

where εg = ±(it)κ is the constant in (2.14). The Whittaker functions here can be expressed explicitly
from K-Bessel functions:

W0,it(4y) =
2y1/2

√
π
Kit(2y);

W 1
2 ,it

(4y) =
2y√
π

{
K 1

2 +it(2y) +K 1
2−it

(2y)
}

;

itW− 1
2 ,it

(4y) =
2y√
π

{
K 1

2 +it(2y)−K 1
2−it

(2y)
}
.

(2.49)
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By the Cauchy–Schwarz inequality, we have

y2ε|g(x+ iy)|2 �
∑
m>1

|ρg(m)|2

m2ε

∑
n>1

(4πny)2ε
{
|Wκ

2 ,it
(4πny)|2 + |εgW−κ2 ,it(4πny)|2

}
.

Combining this estimate with (2.10), (2.40), (2.44), (2.49) and the uniform bounds of Proposition 6.2,
we can conclude that

yεg(x+ iy)�ε (Dµg)
2εD−1/2µgy

−1/2. (2.50)

For small values of y, we improve upon this bound by a variant of the same argument. Namely,

we know that every z = x+ iy can be represented as βv, where β ∈ SL2(Z) and =v >
√

3
2 . If y <

√
3

2 ,
as we shall from now on assume, β does not fix the cusp ∞, hence the explicit knowledge of the

cusps of Γ0(D) tells us that it factors as β = γδ, where γ ∈ Γ0(D) and δ =

(
a ∗
c ∗

)
∈ SL2(Z) with

c 6= 0 and c | D. We further factor δ as σaτ , where σa is a scaling matrix for the cusp a = a/c (see
Section 2.1 of [Iw02]) and τ fixes ∞. An explicit choice for σa is given by (2.3) of [DI82]:

σa :=

(
a
√

[c2, D] 0√
[c2, D] 1/a

√
[c2, D]

)
.

This also implies that

τ =

(
c/
√

[c2, D] ∗
0

√
[c2, D]/c

)
,

therefore the point w := τv has imaginary part

=w � c2/[c2, D]. (2.51)

Observe that
|g(z)| = |g(δv)| = |g(σaw)| = |h(w)|, (2.52)

where h := g|κσa
is a cusp form for the congruence subgroup σ−1

a Γ0(D)σa of level D, weight κ and
spectral parameter ith = itg. We argue now for h exactly as we did for g, except that in place of
(2.10), (2.40), (2.44) we use the uniform bound∑

16n6X

n|ρh(n)|2 � µ1−κ
h cosh(πth)X.

This bound follows exactly as Lemma 19.33 in [DFI02] upon noting that ca for the cusp a = a/c (see
Section 2.6 of [Iw02]) is at least [c,D/c] > 1 (cf. Lemma 2.4 of [DI82]). The analogue of (2.50) that
we can derive this way is

(=w)εh(w)�ε µ
3/2+2ε
h (=w)−1/2.

By (2.51) and (2.52), this implies that

g(x+ iy)�ε (Dµg)
εD1/2µ3/2

g . (2.53)

Note that this estimate was derived for y <
√

3
2 , but it also holds for all other values of y in the light

of (2.50).
With the uniform bounds (2.50) and (2.53) at hand we proceed to estimate the exponential sums

Sg(α,X). By applying Fourier inversion to (2.48), we obtain, for any α ∈ R,

ρg(n)

{
Wκ

2 ,it
(4πny) +

Γ
(

1
2 + it+ κ

2

)
Γ
(

1
2 + it− κ

2

)W−κ2 ,it(4πny)

}
e(nα) =∫ 1

0

{
g(α+ β + iy)± g(−α− β + iy)

}
e(−nβ) dβ,

3In this lemma, |sj | should really be |sj |1−k. In fact, this is the dependence that follows from Lemma 19.2 of
[DFI02]. We also note that the proof of the latter lemma is not entirely correct. Namely, (19.12) in [DFI02] does not
follow from the bound preceding it. Nevertheless, it does follow from the exponential decay of the Whittaker functions
(cf. our (2.49) and Proposition 6.2).
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where the ± on the right hand side matches the one in (2.14). Then we integrate both sides against
(πy)ε dyy to see that

λg(n)e(nα)

n1/2+ε
=

∫ 1

0

Gα(β)e(−nβ) dβ, (2.54)

where

Gα(β) :=
π1/2+ε

4ρg(1)Φ1
κ

(
1
2 + ε, itg

) ∫ ∞
0

{
g(α+ β + iy)± g(−α− β + iy)

}
yε
dy

y
. (2.55)

The function Φ1
κ(s, it) is defined in (2.33), and is determined explicitly by Lemma 8.2 of [DFI02]. For

κ ∈ {0, 1}, this result can be seen more directly from the explicit formulae (2.49). At any rate,

Φ1
κ

(
1
2 + ε, itg

)
� K̃κ

2 +itg

(
1+κ

2 + ε
)
� µ(κ−1)/2+ε

g cosh−1/2(πtg),

so that by (2.40) we also have

ρg(1)Φ1
κ

(
1
2 + ε, itg

)
�ε (Dµg)

−1/2−ε.

The integral in (2.55) is convergent by (2.50) and (2.53). Moreover,∫ ∞
0

{
g(α+ β + iy)± g(−α− β + iy)

}
yε
dy

y
�ε (Dµg)

2εD1/2µ3/2
g .

Altogether we have obtained the uniform bound

Gα(β)�ε (Dµg)
εDµ2

g, α ∈ R. (2.56)

For X > 1, we introduce the modified Dirichlet kernel

D(β,X) :=
∑

16n6X

e(−nβ).

It follows from (2.54) that ∑
n6X

λg(n)e(nα)

n1/2+ε
=

∫ 1

0

Gα(β)D(β,X) dβ.

Combining (2.56) with the fact that the L1-norm of D(β,X) is � log(2X), we can conclude that∑
n6X

λg(n)e(nα)

n1/2+ε
�ε (DµgX)εDµ2

g.

Finally, by partial summation we arrive to Proposition 2.5.
For completeness, we display the analogous result for holomorphic forms that can be proved along

the same lines.

Proposition 2.6. Let g be a primitive holomorphic cusp form of level D and weight k. Then we
have, uniformly for X > 1 and α ∈ R,∑

n6X

λg(n)e(nα)� (DkX)εDk3/2X1/2,

where the implied constant depends at most on ε.

These estimates are useful to derive bounds for shifted convolution sums on average which will be
used later on: the following lemma is a variant of Lemma 3 of [Ju96] (see also Lemma 3.2 of [Bl04]).

Lemma 2.4. Let g be a primitive (either Maass or holomorphic) cusp form of level D. For any
X,Y > 1, for any nonzero integers `1, `2, and for any ε > 0, one has

∑
h∈Z

∣∣∣∣∣∣∣∣
∑

m6X, n6Y
`1m±`2n=h

λg(m)λg(n)

∣∣∣∣∣∣∣∣
2

�ε (DµgXY )εD2µ4
gXY.
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Proof. The estimate follows by combining Propositions 2.5–2.6 with the Parseval identity and the
Rankin–Selberg bound (2.44):

∑
h∈Z

∣∣∣∣∣∣∣∣
∑

m6X, n6Y
`1m±`2n=h

λg(m)λg(n)

∣∣∣∣∣∣∣∣
2

=

∫ 1

0

∣∣Sg(−`1α,X)Sg(±`2α, Y )
∣∣2 dα

�ε (DµgX)εD2µ4
gX

∫ 1

0

∣∣Sg(±`2α, Y )
∣∣2 dα

= (DµgX)εD2µ4
gX

∑
n6Y

|λg(n)|2

�ε (DµgXY )2εD2µ4
gXY.
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Chapter 3

Twisted L-functions

3.1 Amplification

In the next three sections we give a proof of Theorem 1.1. The method is based on a paper by
Bykovskĭı [By96]. Let f0 be a primitive (holomorphic or Maass) cusp form of Hecke eigenvalues λ(n),
archimedean parameter µ, level N and trivial nebentypus, and let χ be a primitive character modulo
q for which we want to prove Theorem 1.1. We shall embed f0 into the spectrum of Γ0(D) with
trivial nebentypus, where D is an integer satisfying [N, q] | D and D > 2q; we take

D := 3[N, q]. (3.1)

More precisely, we shall choose the bases Bhk (D, 1) and B0(D, 1) described in Chapter 2 in such a way
that one of them contains the L2-normalized version of f0(z):

f1(z) :=
f0(z)

〈f0, f0〉D
=

f0(z)

[Γ0(q) : Γ0(D)] 〈f0, f0〉q
.

Then (2.40) and (2.41)—applied for q in place of D—shows that

|ρf1(1)|2 �ε

{
(Γ(k)D)−1(kD)−ε, for f1 ∈ Bhk (D, 1),

cosh(πµ)D−1(µD)−ε, for f1 ∈ B0(D, 1),
(3.2)

We shall consider an amplified square mean of the “fake” twisted L-functions1

L(f ⊗ χ, s) :=

∞∑
n=1

√
nρf (n)χ(n)n−s

for f either in Bhk (D, 1) or B0(D, 1) and

L(Eψ,ψ̄,f,t ⊗ χ, s) :=

∞∑
n=1

√
nρf (n, t)χ(n)n−s

for ψ any character modulo D, f ∈ B0(ψ, ψ̄) and t ∈ R. The justification comes from (2.10): apart
from invertible Euler factors at primes dividing D,

L(f0 ⊗ χ, s) ≈
∞∑
n=1

λ(n)χ(n)n−s,

hence for <s = 1
2 we have

|L(f1 ⊗ χ, s)| �ε D
−ε|ρf1(1)||L(f0 ⊗ χ, s)|. (3.3)

1[By96] considers true L-functions over the whole spectrum which is, technically speaking, incorrect as the spec-
trum includes old forms. Similarly, the “normalized orthonormal basis” considered at the bottom of [By96, p.925] is
problematic as the first Fourier coefficient vanishes for old forms. We avoid these troubles by a more careful setup here
and in Sections 2.3–2.4.
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For integers 0 6 b < a let us define

ϕa,b(x) := ib−aJa(x)x−b. (3.4)

In order to satisfy the decay conditions for Kuznetsov’s trace formula, we assume b > 2. Let κ ∈ {0, 1}
such that a − b ≡ κ (mod 2). It is straightforward to verify, using [GR07, 6.574.2], that depending
on κ we have

ϕ̇a,b(k) =
b!

2b+1π

b∏
j=0

{(
(1− k)i

2

)2

+

(
a+ b

2
− j
)2
}−1

�a,b ± k−2b−2,

ϕ̂a,b(t) =
b!

2b+1

{
1
t coth(πt)

} b∏
j=0

{
t2 +

(
a+ b

2
− j
)2
}−1

�a,b (1 + |t|)κ−2b−2

(3.5)

with ϕ̇ as in (2.18) and ϕ̂ as in (2.19). In particular,

ϕ̇a,b(k) > 0 for 2 6 k 6 a− b,
ϕ̂a,b(t) > 0 for all possible spectral parameters t,

(3.6)

since |=t| < 1
2 when κ = 0, and t ∈ R when κ = 1.

We choose
ϕ := ϕ20,2,

and for
τ ∈ R, u ∈ C, k ∈ {2, 4, 6, . . .}, (`,D) = 1

we define the quantities

Qholo
k (`) :=2ikΓ(k − 1)

∑
f∈Bhk (D,1)

λf (`)L(f ⊗ χ, u+ iτ)L(f ⊗ χ, u+ iτ),

Q(`) :=
∑

k>2 even

ϕ̇(k)2(k − 1)i−kQholo
k (`)

+
∑

f∈B0(D,1)

ϕ̂(tf )
4

cosh(πtf )
λf (`)L(f ⊗ χ, u+ iτ)L(f ⊗ χ, u+ iτ)

+
∑∑
ψ mod D
f∈B0(ψ,ψ̄)

∫ ∞
−∞

ϕ̂(t)
1

π cosh(πt)
λψ,ψ̄(`, t)L(Eψ,ψ̄,f,t ⊗ χ, u+ iτ)L(Eψ,ψ̄,f,t ⊗ χ, u+ iτ) dt,

with the notation (2.7) and (2.18)–(2.19).
For u = 1

2 + ε and k > 4 we shall show in the next section

Qholo
k (`)�ε

(
1√
`

+

(
`

1
4 (N, q)

q
1
2N

1
2

+
`

1
2 (N, q)

3
2

q
1
2N

)(
1 + |τ |
k

+ 1

))
((1 + |τ |)D`)ε,

Q(`)�ε

(
1√
`

+

(
`

1
4 (N, q)

q
1
2N

1
2

+
`

1
2 (N, q)

3
2

q
1
2N

)
(1 + |τ |)

)
((1 + |τ |)D`)ε,

(3.7)

with implied constants depending only on ε. Theorem 1.1 then follows by standard amplification: let
us define the amplifier

x(`) :=

{
λ(`) for L 6 ` 6 2L, (`,D) = 1,

0 else,
(3.8)

where L is some parameter to be chosen in a moment. Let ω be a smooth cut-off function supported
on [1/2, 3]. Then ∑

(`,D)=1
`∼L

|λ(`)|2 �ω
1

2πi

∫
(2)

L(D)(f0 ⊗ f0, s)ω̂(s)Lsds

�ε L(qµD)−ε +Oε

(
qε(LµN)

1
2 +ε
)
,
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where the superscript (D) indicates that the Euler factors of the Rankin–Selberg L-function at the
primes dividing D have been omitted. The lower bound for the residue follows from [HL94], while
the error term uses the standard (convexity) bounds for the symmetric square L-function on the line
<s = 1

2 + ε. Therefore, ∑
`

x(`)λ(`) =
∑

(`,D)=1
`∼L

|λ(`)|2 �ε L(LD)−ε, (3.9)

provided L > qε(µN)1+ε. Assume first that f0 is a Maass cusp form of weight zero or a holomorphic
cusp form of weight 2. Then by (3.3), (3.2), (3.5) with b = 2, (3.6) and (3.9), we obtain

L2(LD)−ε

µ6+εD

∣∣∣∣L(f0 ⊗ χ,
1

2
+ ε+ iτ

)∣∣∣∣2 �ε

∑∑
k>2 even
f∈Bhk (D,1)

|ϕ̇(k)|4Γ(k)

∣∣∣∣∣∑
`

x(`)λf (`)

∣∣∣∣∣
2 ∣∣∣∣L(f ⊗ χ, 1

2
+ ε+ iτ

)∣∣∣∣2

+
∑

f∈B0(D,1)

ϕ̂(tf )
4

cosh(πtf )

∣∣∣∣∣∑
`

x(`)λf (`)

∣∣∣∣∣
2 ∣∣∣∣L(f ⊗ χ, 1

2
+ ε+ iτ

)∣∣∣∣2

+
∑∑
ψ mod D
f∈B0(ψ,ψ̄)

∫ ∞
−∞

ϕ̂(t)
1

π cosh(πt)

∣∣∣∣∣∑
`

x(`)λψ,ψ̄(`, t)

∣∣∣∣∣
2 ∣∣∣∣L(Eψ,ψ̄,f,t ⊗ χ, 1

2
+ ε+ iτ

)∣∣∣∣2 dt,
so that by (2.9) and (3.6)

L2(LD)−ε

µ6+εD

∣∣∣∣L(f0 ⊗ χ,
1

2
+ ε+ iτ

)∣∣∣∣2 �ε

∑
`1,`2

∣∣x(`1)x(`2)
∣∣ ∑
d|(l1,l2)


∣∣∣∣Q(`1`2d2

)∣∣∣∣+
∑

k>20 even

4k
∣∣ϕ̇0(k)

∣∣ ∣∣∣∣Qholo
k

(
`1`2
d2

)∣∣∣∣
 .

Now we substitute (3.7). Note that the k-sum converges by (3.5). Changing the order of summation,
we get the bound

�ε ((1 + |τ |)LD)ε

∑
d

∑
`1,`2

(`1`2)−
1
2 |x(d`1)x(d`2)|

+
(1 + |τ |)(N, q)

q
1
2N

1
2

∑
d

∑
`1,`2

(`1`2)
1
4 |x(d`1)x(d`2)|

+
(1 + |τ |)(N, q) 3

2

q
1
2N

∑
d

∑
`1,`2

(`1`2)
1
2 |x(d`1)x(d`2)|

 .

In each term we have, by Cauchy–Schwarz (a ∈ R),

∑
d

∑
`1,`2

(`1`2)a|x(d`1)x(d`2)| =
∑
d

(∑
`

`a|x(d`)|

)2

6
∑
d

∑
`62L

`2a

(∑
`

|x(d`)|2
)

=

∑
`62L

`2a

∑
`

τ(`)|x(`)|2 �a (1 + L2a+1)
∑
`

τ(`)|x(`)|2,
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so that

L2(LD)−ε

µ6+εD

∣∣∣∣L(f0 ⊗ χ,
1

2
+ ε+ iτ

)∣∣∣∣2 �ε

((1 + |τ |)LD)ε

(
1 +

L
3
2 (N, q)

q
1
2N

1
2

(1 + |τ |) +
L2(N, q)

3
2

q
1
2N

(1 + |τ |)

)∑
`

τ(`)|x(`)|2,

This yields, by (3.1), (3.8) and (2.44),∣∣∣∣L(f0 ⊗ χ,
1

2
+ ε+ iτ

)∣∣∣∣2 �ε

µ6

(
qN

L(N, q)
+ L

1
2 q

1
2N

1
2 (1 + |τ |) + Lq

1
2 (N, q)

1
2 (1 + |τ |)

)
((1 + |τ |+ µ)Nq)ε,

provided L > qε(µN)1+ε. For such L, the second term in the parenthesis is dominated by the third
one which motivates our choice

L :=
q

1
4N

1
2

(N, q)
3
4 (1 + |τ |) 1

2

+ qε(Nµ)1+ε.

We obtain

L

(
f0 ⊗ χ,

1

2
+ ε+ iτ

)
�ε

µ3
(

(1 + |τ |) 1
4N

1
4 q

3
8 (N, q)−

1
8 + (1 + |τ |) 1

2µ
1
2N

1
2 (N, q)

1
4 q

1
4

)
((1 + |τ |+ µ)Nq)ε.

By the functional equation and the Phragmén–Lindelöf convexity principle, we obtain Theorem 1.1
in the non-holomorphic case as well as in the case when f0 is holomorphic of weight 2. Analogously,
if f0 is holomorphic of (even) weight k > 4, we get

L2(kLD)−ε

kD

∣∣∣∣L(f0 ⊗ χ,
1

2
+ ε+ iτ

)∣∣∣∣2 �ε

∑
`1,`2

∣∣x(`1)x(`2)
∣∣ ∑
d|(l1,l2)

∣∣∣∣Qholo
k

(
`1`2
d2

)∣∣∣∣
�ε ((1 + |τ |)LD)ε

(
1 +

L
3
2 (N, q)

q
1
2N

1
2

(
1 + |τ |
k

+ 1

)
+
L2(N, q)

3
2

q
1
2N

(
1 + |τ |
k

+ 1

))∑
`

τ(`)|x(`)|2,

provided L > qε(kN)1+ε. Choosing

L :=
q

1
4N

1
2 k

1
2

(N, q)
3
4 (1 + |τ |+ k)

1
2

+ qε(kN)1+ε

and using (3.1), (3.8) and (2.44), we obtain

L

(
f0 ⊗ χ,

1

2
+ ε+ iτ

)
�ε

k
1
2

(
(|τ |+ k)

1
4 k−

1
4N

1
4 q

3
8 (N, q)−

1
8 + (|τ |+ k)

1
2N

1
2 (N, q)

1
4 q

1
4

)
((1 + |τ |)kNq)ε.

This completes the proof of Theorem 1.1.

3.2 Variations on a theme of Bykovskĭı

In order to show (3.7), we perform the following steps, cf. [By96, Section 5].
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Step 0. For later purposes let us define, for u, s ∈ C, τ, x ∈ R, η1,2 ∈ {±1} and ϕa,b as in (3.4),

Eη1,η2u,τ (s) :=

{
− exp(η1πi(s/2 + u)), for η1 = η2,

exp(η1πτ), for η1 6= η2,

and

Ξη1,η2u,τ (x) :=
1

2πi

∫
(σ)

Eη1,η2u,τ (s)Γ
(

1− s

2
− u− iτ

)
Γ
(

1− s

2
− u+ iτ

)
ϕ̃a,b(s)2

1−sx−
s
2 ds. (3.10)

The Mellin transform of ϕa,b equals [GR07, 6.561.14]

ϕ̃a,b(s) = ib−a2s−b−1Γ

(
a− b+ s

2

)(
Γ

(
2 + a+ b− s

2

))−1

. (3.11)

Thus the integrand in (3.10) is holomorphic and by Stirling’s formula the integral converges absolutely
if

b− a < σ < 2− 2<u < 1 + b. (3.12)

Moreover, in this range we have, uniformly in a, τ , and =u,

Ξη1,η2u,τ (x)�b,σ,<u

x−
σ
2

∫ ∞
−∞

(a+ |t|)σ−1−b
{(

1 +

∣∣∣∣ t2 + =(u+ iτ)

∣∣∣∣)(1 +

∣∣∣∣ t2 + =(u− iτ)

∣∣∣∣)} 1
2−

σ
2−<u

dt.

Breaking the integration into |t| 6 4(1 + |=u| + |τ |) and |t| > 4(1 + |=u| + |τ |) we find, for integers
0 6 b 6 2 < a and σ satisfying (3.12),

Ξη1,η2u,τ (x)�σ,<u

x−
σ
2

{
aσ−1−b(1 + |=u|+ |τ |)2−σ−2<u + (1 + |=u|+ |τ |)1−2<u−b, for σ < 1 + b,

aσ−b(1 + |=u|+ |τ |)1−σ−2<u + (1 + |=u|+ |τ |)1−2<u−b, for σ < 1− 2<u.

In particular, for u = 1/2 + ε we obtain

Ξη1,η2u,τ (x)�ε x
− 1

2 +2ε(1 + |τ |)2ε, (3.13)

Ξη1,η2u,τ (x)�ε x
1
2 +ε

(
1 + |τ |
a

+ 1

)
, (3.14)

upon choosing σ = 1− 4ε and σ = −1− 2ε, respectively, while for 1/2 < <u < (a− b+ 1)/2− ε we
have

Ξη1,η2u,τ (x)�a,τ,<u,ε x
a−b
2 −ε (3.15)

upon choosing σ = b− a+ 2ε. For α ∈ R let

ζ(α)(s) :=
∑

n+α>0

(n+ α)−s

be the Hurwitz zeta-function. It satisfies a functional equation

ζ(α)(s) = (2π)s−1Γ(1− s)
{
−ie

(s
4

)
ζ(α)(1− s) + ie

(
−s

4

)
ζ(−α)(1− s)

}
, (3.16)

where

ζ(α)(s) :=

∞∑
n=1

e(αn)n−s.
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Step 1. Let us first assume 5/4 < <u < 3/2. By combining (2.11) with Petersson’s (resp. Kuznetsov’s)
trace formula (2.15) (resp. (2.21) and Remark 2.1) we obtain the following expressions for Qholo

k (`)
(resp. Q(`)), cf. (2.7) and [By96, (5.3)]:

λχ,χ̄(`,−τ)

2πi−k`u

∏
p|q

(
1− 1

p2u

)
ζ(2u)

+
∑
D|c

1

c

∑
m1,m2

S(m1,m2,−`; c)
mu+iτ

1 mu−iτ
2

χ(m1)χ(m2)ϕ

(
4π
√
m1m2`

c

)
,

(3.17)

where

S(m1,m2,m3; c) :=
1

c

∑
a1,a2,a3 (c)

e

(
a1a2a3 +m1a1 +m2a2 +m3a3

c

)
and

ϕ :=

{
Jk−1 = ϕk−1,0 if f is holomorphic of weight k > 4;

ϕ20,2 otherwise.
(3.18)

The diagonal term in the first line of (3.17) only appears in the holomorphic case. The sum in the
second line converges absolutely once <u > 5/4. In the following we transform the off-diagonal term
further.

Step 2. We open ϕ and write it as an inverse Mellin transform

ϕ

(
4π
√
m1m2`

c

)
=

1

2πi

∫
(σ)

ϕ̃(s)

(
c

4π
√
m1m2`

)s
ds.

By (3.11) the integrand is holomorphic and the integral converges absolutely if −3 < σ = <s < 0
in both the holomorphic (note k > 4) and the non-holomorphic case; the m1,m2-sum converges
absolutely if <u+σ/2 > 1, and the c-sum converges absolutely if σ < −1/2 (Weil’s bound, cf. [By96,
Lemmata 1 and 3]). If we impose 2 − 2<u < σ < −1/2, we can interchange the s-integration and
the m1,m2-sum. Now splitting into residue classes modulo c, we write the m1,m2-sum as a linear
combination of a product of two Hurwitz ζ-functions getting∑

D|c

1

c2u+1

1

2πi

∫
(σ)

ϕ̃(s)(4π
√
`)−s

∑
b1,b2 (c)

S(b1, b2,−`; c)χ(b1)χ(b2)

× ζ
(
b1
c )

(s
2

+ u+ iτ
)
ζ
(
b2
c )

(s
2

+ u− iτ
)
ds.

By standard bounds for the Hurwitz ζ-function the s-integral and the c-sum converge absolutely if
<u > 5/4 and −3 < σ < 0.

Step 3. We shift the integration to any line −3 < σ < −2<u. By [By96, Lemma 6] if τ 6= 0 and by
[By96, Lemma 2] if τ = 0, we pick up poles only if c

q | `. Since (`,D) = 1, D | c and D
q > 1, this

does not happen2. Now we apply the functional equation (3.16) for the two Hurwitz ζ-functions3,
and write them as Dirichlet series getting (cf. [By96, (5.8)])∑
D|c

(2π)2u−2

2c2u+1

∑
m1,m2∈Z\{0}

|m1|u−1+iτ |m2|u−1−iτ
∑

b1,b2(c)

S(b1, b2,−`; c)χ(b1)χ(b2)e

(
m1b1 +m2b2

c

)

× Ξsgn(m1),sgn(m2)
u,τ

(
`

|m1m2|

)
,

where Ξ
sgn(m1),sgn(m2)
u,τ with ϕ as in (3.18) was defined in (3.10). This expression converges absolutely

if <u > 5/4. Note that when we apply (3.13)–(3.15) in the following, we have (a, b) = (k− 1, 0) with
k > 4 or (a, b) = (20, 2).

2It can be shown [By96, (5.10)] that the residues in the case c
q
| ` would be harmless.

3i.e., we apply Poisson summation to both m1 and m2 in (3.17)
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Step 4. We transform the b1, b2-sum by [By96, Lemma 2] obtaining

∑
D|c

(2π)2u−2

2c2u−1q

∑
m1m2 6=0

m1m2≡` (c/q)

|m1|u−1+iτ |m2|u−1−iτ
∑∗

d (q)

χ̄

(
m1 +

c

q
d̄

)
χ

(
m2 +

m1m2 − `
c/q

d

)

× Ξsgn(m1),sgn(m2)
u,τ

(
`

|m1m2|

)
.

We will see in a moment that this term can be analytically continued to <u > 1/2. Let us start with
the terms m1m2 6= `. Their contribution equals

1

4πq

(
2π

q

)2u−1 ∑
m1m2−n1n2=`
m1m2n1n2 6=0

D/q|n1

X

|m1m2|1/2

∣∣∣∣m1m2

n2
1

∣∣∣∣u−1/2 ∣∣∣∣m1

m2

∣∣∣∣iτ Ξsgn(m1),sgn(m2)
u,τ

(
`

|m1m2|

)
, (3.19)

where
X :=

∑∗

d (q)

χ̄(m1 + n1d̄)χ(m2 + n2d)�ε q
1/2+ε(m1,m2, q)

1/2(n1n2, q)
1/2. (3.20)

This estimate strengthens [By96, Lemma 4] and follows essentially from the Riemann Hypothesis
over finite fields. We provide a detailed proof in the next section, see Proposition 3.1. The condition
(`, q) = 1 is crucial here and in the sequel. By (3.15), the term (3.19) is holomorphic in 1/2 < <u <
3/2. Let us take u := 1/2 + ε. We split the sum in (3.19) into two parts: |m1m2| > `, |m1m2| < `.
Notice that m1m2 = −` cannot happen, since m1m2 ≡ ` (mod D/q) and (3.1) would then imply
(2`,D) > D/q > 2 which contradicts (`,D) = 1.

Using (3.14), the terms |m1m2| > ` contribute at most

�ε (`q)ε
(
`

q

) 1
2
(

1 + |τ |
a

+ 1

) ∑
d1,d2|q

(d1,d2)=1

(d1d2)
1
2

∑
m>`

m≡0 (d21)
m≡±` ([d2,D/q])

1

m1+ε
,

where a := 20 in the non-holomorphic case and a := k− 1 in the holomorphic case. The smallest ele-
ment in the arithmetic progression given by the inner sum is at least max(`, d2

1,
1
2 [d2, D/q]), therefore

the above is at most

�ε (`q)ε
(
`

q

) 1
2
(

1 + |τ |
a

+ 1

)∑
d|q

d
1
2

[d,D/q]
+
∑
d1,d2|q

(d1d2)
1
2

`
1
4 d

1
2
1 [d2, D/q]

1
2


�ε (`q)ε

(
`

q

) 1
2
(

1 + |τ |
a

+ 1

)(
(N, q)

3
2

N
+

(N, q)

`
1
4N

1
2

)
.

(3.21)

In the last step we used the definition of D (cf. (3.1)).
By (3.13), the terms |m1m2| < ` contribute at most

�ε
(`q(1 + |τ |))ε

(`q)
1
2

∑
d1,d2|q

(d1,d2)=1

(d1d2)
1
2

∑
0<m<`
m≡0 (d21)

m≡±` ([d2,D/q])

1

�ε
(`q(1 + |τ |))ε

(`q)
1
2

∑
d1,d2|q

(d1,d2)=1

(d1d2)
1
2

(
`

[d2
1d2, D/q]

+ 1

)

�ε (`q(1 + |τ |))ε
((

`

q

) 1
2 (N, q)

3
2

N
+

1√
`

)
.

(3.22)

30



Finally the contribution of the terms m1m2 = ` is

∑
D|c

(2π)2u−2

2c2u−1q`1−u

∑
m1m2=`

χ(m2)

∣∣∣∣m1

m2

∣∣∣∣iτ ∑∗

a (q)

χ̄

(
m1 +

c

q
ā

)(
Ξ1,1
u,τ (1) + Ξ−1,−1

u,τ (1)
)

=
(2π)2u−2

(
Ξ1,1
u,τ (1) + Ξ−1,−1

u,τ (1)
)

2D2u−1q`1−u

∑
m1m2=`

χ(m2)

∣∣∣∣m1

m2

∣∣∣∣iτ∑
c

1

c2u−1

∑∗

a (q)

χ̄

(
m1 +

D

q
āc

)
.

(3.23)

We write r := (D/q, q). Then the c, a-sum equals(q
r

)1−2u ∑
b (q/r)

∑∗

a (q)

χ̄(m1 + rāb)ζ( b
q/r

)(2u− 1)

which is holomorphic for C \ {1/2}. By the functional equation (3.16), this is for <u > 1/2

−i
(q
r

)1−2u

(2π)2u−2Γ(2− 2u)e

(
2u− 1

4

)∑
n

1

n2−2u

∑
b (q/r)

∑∗

a (q)

χ̄(m1 + rāb)e(brn/q)

+i
(q
r

)1−2u

(2π)2u−2Γ(2− 2u)e

(
1− 2u

4

)∑
n

1

n2−2u

∑
b (q/r)

∑∗

a (q)

χ̄(m1 + rāb)e(−brn/q).

The a, b-sum decomposes into Ramanujan sums,∑
b

∑
a

. . . =
∑
d (q)
r|d

χ̄(m1 + d)
∑∗

a (q)

e

(
±adn

q

)
=
∑
d (q)
r|d

χ̄(m1 + d)
∑

s|(dn,q)

sµ
(q
s

)
,

showing that both n-sums equal∑
d (q)
r|d

χ̄(m1 + d)
∑
s|q

sµ
(q
s

) ∑
s

(d,s)
|n

1

n2−2u
= ζ(2− 2u)

∑
d (q)
r|d

χ̄(m1 + d)
∑
s|q

µ
(q
s

) (d, s)2−2u

s1−2u
.

We substitute this back into (3.23), and obtain by (3.13) that this term for u = 1/2 + ε is bounded
by

(`q(1 + |τ |))ε

q
√
`

∑
d (q)

(d, q)�ε
(`q(1 + |τ |))ε√

`
. (3.24)

Collecting the first line of (3.17), (3.21), (3.22), and (3.24), we arrive at (3.7) for u = 1/2 + ε.

3.3 A character sum estimate

In this section we state in more precise form the bound (3.20) and provide a detailed proof.

Proposition 3.1. Let χ be a primitive character modulo q and let m1, m2, n1, n2 be arbitrary
integers satisfying (m1m2 − n1n2, q) = 1. Then we have the uniform bound4

X(m1,m2, n1, n2) :=
∑∗

a (q)

χ̄(m1 + n1ā)χ(m2 + n2a)� q1/2τ(q)(m1n
2
1,m2n

2
2, q)

1/2,

where the implied constant is absolute.

By the multiplicative nature of these sums it suffices to show that

|X(m1,m2, n1, n2)| 6 q1/2(m1n
2
1,m2n

2
2, q)

1/2 ×

{
2, q = pβ for a prime p > 2;

25/2 q = pβ for p = 2.
(3.25)

4Note that (m1m2 − n1n2, q) = 1 implies (m1n2
1,m2n2

2, q) = (m1,m2, q)(n2
1, n

2
2, q) | (m1,m2, q)(n1n2, q).
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Case 1. First we discuss the case when β = 1 (that is, when q is prime). We apply [IK04, Theo-
rem 11.23] with the parameters n = 1, F := Fq, and

f(x) := x(m1x+ n1)d−1(m2 + n2x),

where d > 1 is the order of χ. The only thing we have to check is that f is not a d-th power. If d > 2
then f can only be a d-th power if n1 = n2 = 0 in F in which case the displayed bound is trivial.
If d = 2 then f can only be a d-th power if n1 = n2 = 0 or m1 = m2 = 0 in F in which case the
displayed bound (3.25) is again trivial. Otherwise (3.25) follows from [IK04, Theorem 11.23].

Case 2. Now we discuss the case when β > 1 is even, say β = 2α. We apply [IK04, Lemma 12.2] for
the rational functions

f(x) := x
m2 + n2x

m1x+ n1
, g(x) := 0.

Then

f ′(x) =
m1n2x

2 + 2n1n2x+m2n1

(m1x+ n1)2
,

therefore it suffices to show that the congruence

m1n2y
2 + 2n1n2y +m2n1 ≡ 0 (mod pα) (3.26)

under the restriction
y(m2 + n2y)(m1y + n1) 6≡ 0 (mod p) (3.27)

has at most 2(n1, n2, p
α) solutions when p > 2 and at most 4(n1, n2, p

α) solutions when p = 2. We
can clearly assume that (n1, n2, p

α) < pα for otherwise the assertion is trivial. Let us first assume
that p > 2. If p | m1 and p | m2 then the condition (m1m2 − n1n2, q) = 1 shows that (3.26) has
no solution satisfying p - y. Therefore, without loss of generality, we can assume that p - m1. We
multiply both sides of (3.26) by m1 to see that the congruence is equivalent to

n2(m1y + n1)2 ≡ n1(n1n2 −m1m2) (mod pα).

By assumption, the parentheses on both sides are coprime with p, hence a solution can only exist if
pγ ‖ n1 and pγ ‖ n2 for some 0 6 γ 6 α− 1, and then the number of solutions of (3.26) under (3.27)
is at most 2pγ = 2(n1, n2, p

α) by the structure of the group (Z/pα−γ)×. For p = 2 we adjust the
above argument slightly. First of all, we can assume that α > 2 for otherwise (3.26) trivially has at
most 4 solutions. If 4 | m1 and 4 | m2 then the condition (m1m2 − n1n2, q) = 1 shows that (3.26)
has no solution satisfying 2 - y. Therefore, without loss of generality, we can assume that 4 - m1. We
multiply both sides of (3.26) by m1 to see that the congruence is equivalent to

n2(m1y + n1)2 ≡ n1(n1n2 −m1m2) (mod 2α(m1, 2)).

If 2 | n1n2 then 2 - m1m2 and we conclude, similarly as in the case of p > 2, that the number of
solutions of (3.26) under (3.27) is at most 4(n1, n2, 2

α). If 2 - n1n2 then the number of solutions of
the congruence

n2x
2 ≡ n1(n1n2 −m1m2) (mod 2α(m1, 2))

is at most 4 while the map Z/2α → Z/2α(m1, 2) given by y 7→ m1y+n1 is injective, hence the number
of solutions of (3.26) under (3.27) is also at most 4.

Case 3. Finally we discuss the case when β > 1 is odd, say β = 2α+1. We apply [IK04, Lemma 12.3]
for the rational functions

f(x) := x
m2 + n2x

m1x+ n1
, g(x) := 0.

Then

f ′(x) =
m1n2x

2 + 2n1n2x+m2n1

(m1x+ n1)2
, f ′′(x) =

2n1(n1n2 −m1m2)

(m1x+ n1)3
,

hence for p - 2n1 the bound (3.25) follows from the already proven fact that (3.26) under (3.27) has
at most 2 solutions and for p = 2 the bound (3.25) follows from the already proven fact that (3.26)
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under (3.27) has at most 4(n1, n2, p
α) solutions. For p | n1 (p > 2) it suffices to show that in any

complete residue systems modulo pα there are at most 2p−1(n1, n2, p
α+1) solutions of the congruence

m1n2y
2 + 2n1n2y +m2n1 ≡ 0 (mod pα+1) (3.28)

under (3.27). We can clearly assume that (n1, n2, p
α+1) < pα+1 for otherwise the assertion is trivial.

By the condition (m1m2 − n1n2, q) = 1 we have p - m1, hence (3.28) is equivalent to

n2(m1y + n1)2 ≡ n1(n1n2 −m1m2) (mod pα+1).

By assumption, the parentheses on both sides are coprime with p, hence a solution of (3.28) can only
exist if pγ ‖ n1 and pγ ‖ n2 for some 1 6 γ 6 α, and then the number of solutions of (3.28) under
(3.27) is at most 2pγ by the structure of the group (Z/pα+1−γ)×. In particular, n1 and n2 are both
divisible by p and the solutions of (3.28) under (3.27) form 2pγ−1 = 2p−1(n1, n2, p

α+1) complete
residue classes modulo pα. This completes the proof of Proposition 3.1.
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Chapter 4

Modular L-functions

4.1 Preliminaries on divisor sums

Let τ be the divisor function. Exponential sums involving the divisor function can be handled by
Voronoi summation. Let

Lw(x) := log x+ 2γ − 2 logw, (4.1)

where γ is Euler’s constant, and let

J−(x) := −2πY0(4πx), J +(x) := 4K0(4πx)

with the usual Bessel functions. For later purposes we write J± as inverse Mellin transforms using
[GR07, 17.43.17, 17.43.18] or [KMV00, (36)]:

J +(
√
x) =

2

2πi

∫
(1)

(2π)−2uΓ(u)2x−u du,

J−(
√
x) =

2

2πi

∫
(∗)

(2π)−2uΓ(u)2x−u cos(πu) du,

(4.2)

where (∗) is the path <u = −1 except when |=u| < 1 where it curves to hit the real axis at u > 0.
Let (d, c) = 1 and let F ∈ C∞0 ((0,∞)), then

∞∑
m=1

τ(m)e

(
dm

c

)
F (m) =

1

c

∫ ∞
0

Lc(y)F (y) dy

+
1

c

∑
±

∞∑
m=1

τ(m) e

(
±d̄m
c

)∫ ∞
0

J±
(√

my

c

)
F (y) dy.

(4.3)

In order to evaluate additive divisor sums, we use the following method, cf. [Me01, (2.1) and
(2.4)]. Here and later in the proof, we will need smooth cut-off functions. Let henceforth ω denote a
smooth function such that ω(x) = 1 on [0, 1] and ω(x) = 0 on [2,∞). Then we have(

1− ω
(

x√
Q

))(
1− ω

(
y

x
√
Q

))
= 0

for all x, y,Q > 0 such that y 6 Q. Therefore

τ(n) =
∑
δ|n

ω

(
δ√
Q

)(
2− ω

(
n

δ
√
Q

))
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whenever n 6 Q. Let g : [ 1
2 , Q]× [ 1

2 ,M ]→ C be a smooth function. Then

∑
an±m=h

τ(n)τ(m)g(n,m) =

∞∑
n=1

τ(n)τ(±(h− an))g(n,±(h− an))

=

∞∑
δ=1

ω

(
δ√
Q

)∑
δ|n

τ(±(h− an))g(n,±(h− an))

(
2− ω

(
n

δ
√
Q

))

=

∞∑
δ=1

ω

(
δ√
Q

) ∑
m≡±h (aδ)

τ(m)g

(
h∓m
a

,m

)(
2− ω

(
h∓m
aδ
√
Q

))
.

Using additive characters and Voronoi summation (4.3), we get∑
m≡µ (c)

τ(m)F (m) =
1

c

∑
w|c

rw(µ)

w

∫ ∞
0

Lw(y)F (y) dy

+
∑
±

1

c

∑
w|c

1

w

∞∑
m=1

τ(m)S(−µ,±m;w)

∫ ∞
0

J±
(√

my

w

)
F (y) dy

for any compactly supported smooth function F , so that

∑
an±m=h

τ(n)τ(m)g(n,m) =

∞∑
w=1

(a,w)rw(h)

w2

∫ ∞
0

Lw(±(h− ax))K(a,w),w(x)g(x,±(h− ax)) dx

+

∞∑
w=1

(a,w)

w2

∞∑
n=1

τ(n)S (∓h, n;w)

∫ ∞
0

J +

(√
n(±(h− ax))

w

)
K(a,w),w(x)g(x,±(h− ax)) dx

+

∞∑
w=1

(a,w)

w2

∞∑
n=1

τ(n)S (∓h,−n;w)

∫ ∞
0

J−
(√

n(±(h− ax))

w

)
K(a,w),w(x)g(x,±(h− ax)) dx,

(4.4)

where
rw(h) := S(h, 0;w) =

∑
d|(h,w)

dµ(w/d) (4.5)

is the Ramanujan sum and

Kr,w(x) :=

∞∑
δ=1

1

δ
ω

(
wδ

r
√
Q

)(
2− ω

(
rx

δw
√
Q

))
.

For future reference we state some properties of Kr,w(x). A straightforward calculation shows

xiwj
∂i

∂xi
∂j

∂wj
Kr,w(x)�i,j logQ (4.6)

for any i, j > 0, and clearly
Kr,w(x) = 0 if w > 2r

√
Q. (4.7)

4.2 Approximate functional equation

Let f = f0 be a primitive (holomorphic or Maass) cusp form having L2-norm 1, for which we want
to prove Theorem 1.2. Let t0 = tf0 denote its spectral parameter as defined in (2.4). For <s > 1 the
L-function of f0 is defined as a Dirichlet series in the Hecke eigenvalues of f0

L(f0, s) :=

∞∑
n=1

λf0(n)n−s.
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The completed L-function is given by

Λ(f0, s) := qs/2L∞(f0, s)L(f0, s), L∞(f0, s) := π−sΓ

(
s+ µ1

2

)
Γ

(
s+ µ2

2

)
,

where

µ1, µ2 :=


it0, −it0 when f0 is an even Maass form of even weight;
it0, −it0 + 1 when f0 is an even Maass form of odd weight;

it0 + 1, −it0 + 1 when f0 is an odd Maass form of even weight;
it0 + 1, −it0 when f0 is an odd Maass form of odd weight;
−it0, −it0 + 1 when f0 is a holomorphic form.

Observe that Hypothesis Hθ implies

<µ1, <µ2 > −θ. (4.8)

The completed L-function is entire and satisfies the functional equation [DFI02, (8.11)–(8.13), (8.17)–
(8.19)]

Λ(f0, s) = ωΛ(f0, 1− s) (4.9)

for some constant ω = ω(f0) of modulus 1. Relation (2.8) shows that

L(f0, s)
2 = L(2s, χ)

∞∑
n=1

τ(n)λf0(n)n−s, <s > 1. (4.10)

Let us fix a point s on the critical line <s = 1
2 for which we want to prove Theorem 1.2. The

above Dirichlet series no longer converges (absolutely) for s but a similar formula holds which is
traditionally called an approximate functional equation. In order to achieve polynomial dependence
in the spectral parameter t0 we will closely follow the argument in [Ha02] specified for the shifted
L-function u 7→ L

(
f0, s− 1

2 + u
)
. We define the analytic conductor [Ha02, (2.4) and Remark 2.7]

C = C(f0, s) :=
q

(2π)2
|s+ µ1||s+ µ2| (4.11)

and the auxiliary function [Ha02, (1) in Erratum]

F (f0, s;u) :=
1

2
C−u/2qu

L∞(f0, s+ u)L∞(f0, s)

L∞(f0, s− u)L∞(f0, s)
+

1

2
Cu/2.

By (4.8) this function is holomorphic in <u > − 1
4 (say) and satisfies the bound [Ha02, (2) in Erratum]

C−u/2F (f0, s;u)− 1

2
�σ (1 + |u|)2<u

, −1

4
< <u 6 σ (4.12)

with an implied constant independent of s and f0. In addition, we have F (f0, s; 0) = 1, and from the
functional equation (4.9) we can deduce [Ha02, (3.3)]

F (f0, s;u)L(f0, s+ u) = ωλF (f0, s;−u)L(f0, s− u), λ :=
L∞(f0, s)

L∞(f0, s)
.

In particular,
η = η(f0, s) := (ωλ)2

is of modulus 1 and with the notation

G+(u) := F (f0, s;
1
2 − s+ u)2, G−(u) := F (f0, s;

1
2 − s+ u)2

we obtain the functional equation

G+(u)L(f0,
1
2 + u)2 = ηG−(−u)L(f0,

1
2 − u)2. (4.13)

36



Observe that (4.12) implies, for 0 < ε 6 <u 6 σ,

G±(u)�ε,σ C
<u (1 + |=u∓=s|)4<u

. (4.14)

We fix an arbitrary entire function P (u) which decays fast in vertical strips and satisfies P (0) = 1
as well as P (u) = P (−u) = P (ū). The role of this factor is to make the dependence on s in
Theorem 1.2 polynomial. We introduce another even function in order to create zeros that avoid the
matching, as discussed in Section 1.5:

Q(u, t) :=
(
u2 − ( 1

2 − it)
2
)2 (

u2 − ( 1
2 + it)2

)2
=:

4∑
ν=0

αν(t)u2ν (4.15)

for suitable real even polynomials αν ∈ R[T ]. Note that

Q
(
u, i
(

1
2 − u

))
= Q(1,0)

(
u, i
(

1
2 − u

))
= 0. (4.16)

Now we apply the usual contour shift technique to the integral

1

2πi

∫
(1)

L
(
f0,

1
2 + u

)2
G+(u)P (u+ 1

2 − s)
Q(u, t0)

Q(s− 1
2 , t0)

· du

u+ 1
2 − s

.

In combination with (4.10) and (4.13) we obtain

L(f0, s)
2 =

∞∑
n=1

τ(n)λf0(n)V +
t0 (n/q)

n1/2
+ η

∞∑
n=1

τ(n)λf0(n)V −t0 (n/q)

n1/2
, (4.17)

where we define V ±t for any spectral parameter t through its Mellin transform

Ṽ +
t (u) := W̃+(u)Q(u, t) := q−uG+(u)L(1 + 2u, χ)

P (u+ 1
2 − s)

u+ 1
2 − s

· Q(u, t)

Q
(
s− 1

2 , t0
) ,

Ṽ −t (u) := W̃−(u)Q(u, t) := q−uG−(u)L(1 + 2u, χ)
P (u+ s− 1

2 )

u+ s− 1
2

· Q(u, t)

Q
(
s− 1

2 , t0
) . (4.18)

Here we have suppressed the notational dependence of Ṽ ±t and W̃± on s and t0 as these parameters
are kept fixed in the rest of the paper. Since Q

(
s− 1

2 , t0
)

is real for <s = 1
2 and the spectral

parameter t0, we have

W̃−(u) = W̃+(u)

W−(x) = W+(x)
and

Ṽ −t (u) = Ṽ +
t (u)

V −t (x) = V +
t (x).

(4.19)

We can therefore drop the superscripts and write

W := W+ and Vt := V +
t .

Note that by (4.18) and (4.15),

Vt(x) =

4∑
ν=0

αν(t)

(
x
∂

∂x

)2ν

W (x). (4.20)

By (4.14), (4.11), (4.15), (2.4), it follows, for 0 < ε 6 <u 6 σ and for any A > 0,

W̃ (u)�ε,σ,A (|s|+ |t0|)2<u (1 + |=u∓=s|)−A .

Therefore W̃ is rapidly decaying on vertical lines and inverse Mellin transformation shows

xi
∂i

∂xi
W (x)�ε,B,i |s|i+1(|s|+ |t0|)2εx−ε

(
1 +

x

(|s|+ |t0|)2

)−B
, B, i ∈ N0. (4.21)
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With these auxiliary functions we introduce the following family of “fake” L-functions for any cusp
form f either in Bhk (q, χ) or in Bκ(q, χ) and for any Eisenstein series Eχ1,χ2,f,t:

L(f ⊗ E, s) :=

∞∑
n=1

τ(n)
√
nρf (n)Vtf (n/q)

n1/2
,

L(Eχ1,χ2,f,t ⊗ E, s) :=

∞∑
n=1

τ(n)
√
nρf (n, t)Vt(n/q)

n1/2
.

(4.22)

With this notation (4.17) reads for f = f0 (cf. (2.11) and (4.19))

ρf0(1)L(f0, s)
2 = L(f0 ⊗ E, s) + η(f0, s)L(f0 ⊗ E, s). (4.23)

In order to apply the trace formula, we wanted an approximate functional equation that is “as
independent of t0 as possible”; now the information on the spectral parameter is all encoded in the
polynomial Q(u, t). In [DFI02], however, the weight function was the same for all the f ’s which made
the rest of the proof more complicated.

4.3 Amplification

In this section we introduce the amplified second moment whose estimation will lead to the proof of
Theorem 1.2. The analysis relies on Kuznetsov’s trace formula, therefore we use as spectral coefficients
the Bessel transforms (2.18)–(2.19) of a convenient test function ϕ ∈ C∞(R+). The construction is
similar as in Section 3.1 for the proof of Theorem 1.1, but instead of working with a single function
defined in (3.4) we shall use a linear combinations of such functions to gain more flexibility. Namely,
it follows from (3.5) that for any fixed a, b and any even polynomial α ∈ C[T ] of degree 2d 6 2b− 4
there is a linear combination

ϕ(x) =

d∑
ν=0

βνϕa−ν,b−ν(x) (4.24)

with βν depending on a, b and the coefficients of α such that

ϕ̇(k) = ϕ̇a,b(k)α
(

(1−k)i
2

)
and ϕ̂(t) = ϕ̂a,b(t)α(t). (4.25)

That is, we can introduce any given polynomial factor in the spectral coefficients once b is sufficiently
large. Note that for b > 2 the function ϕa,b ∈ C∞(R+) also satisfies the decay conditions for
Kuznetsov’s trace formula, and by [GR07, 6.561.14] its transform (2.28) satisfies

ϕ∗a,b(u) = ib−a2−b−1 Γ ((a− b− 1− 2u)/2)

Γ ((3 + a+ b+ 2u)/2)
�a,b (1 + |=u|)−b−2−2<u, |<u| 6 a− b− 2

2
. (4.26)

We now specify
ϕ0(x) := ϕA,10(x) = i10−AJA(x)x−10 (4.27)

for some very large A of parity κ, and for (`, q) = 1 we define

Qholo
k (`) :=2ikΓ(k − 1)

∑
f∈Bhk (q,χ)

λf (`)
∣∣L(f ⊗ E, s)

∣∣2,
Q(`) :=

∑
k≡κ (2)
k>κ

ϕ̇0(k)2(k − 1)i−kQholo
k (`) +

∑
f∈Bκ(q,χ)

ϕ̂0(tf )
4

cosh(πtf )
λf (`)

∣∣L(f ⊗ E, s)
∣∣2

+
∑∑
χ1χ2=χ

f∈Bκ(χ1,χ2)

∫ ∞
−∞

ϕ̂0(t)
1

π cosh(πt)
λχ1,χ2(`, t)

∣∣L(Eχ1,χ2,f,t ⊗ E, s)
∣∣2 dt.

(4.28)
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Remark 4.1. Let us explain the reason of our choice for the construction of V ±t . Suppose for
simplicity that q is prime (hence χ being nontrivial is primitive). In that case there are two Eisenstein
series Eχ,1,f,t and E1,χ,f,t (which are the Eisenstein series associated to the cusps a = 0,∞). Their
contribution to the above sum equals∫ ∞

−∞
ϕ̂0(t)

|ρ(1, t)|2

π cosh(πt)
λχ,1(`, t)

∣∣∣∣∣ 1

2πi

∫
(1)

L2(u+ 1
2 − it, χ)ζ2(u+ 1

2 + it)

L(2u+ 1, χ)
Ṽt(u) qu du

∣∣∣∣∣
2

dt. (4.29)

The main contribution comes from the double pole of the inner integrand, and we designed Vt such
that it kills this pole. This is reflected by the vanishing of (4.58) below.

We shall show
k−18

∣∣Qholo
k (`)

∣∣+ |Q(`)| �s,t0,ε q
ε
(
`c1q−c2 + `−1/2

)
(4.30)

for certain positive absolute constants c1 and c2, uniformly in k > A − 10, and with polynomial
dependence on s and t0. This implies Theorem 1.2: Let us choose the standard amplifier

x(`) :=

 λ(p)χ(p) if ` = p, p - q, 1
2

√
L < p 6

√
L;

−χ(p) if ` = p2, p - q, 1
2

√
L < p 6

√
L;

0 else;

for some parameter logL � log q to be chosen in a minute. Using (2.8) with n = m = p, we see∑
`

x(`)λ(`) =
∑
p-q

1
2

√
L<p6

√
L

1� L1/2−ε.

Therefore, by (4.23), (2.40)–(2.41), (4.27), (3.5)–(3.6), we obtain

L

q1+ε

∣∣L(f0, s)
∣∣4 �t0,ε

∑∑
k≡κ (2), k>κ

f∈Bhk (q,χ)

∣∣ϕ̇0(k)
∣∣4Γ(k)

∣∣∣∣∣∑
`

x(`)λf (`)

∣∣∣∣∣
2 ∣∣L(f ⊗ E, s)

∣∣2

+
∑

f∈Bκ(q,χ)

ϕ̂0(tf )
4

cosh(πtf )

∣∣∣∣∣∑
`

x(`)λf (`)

∣∣∣∣∣
2 ∣∣L(f ⊗ E, s)

∣∣2
+

∑∑
χ1χ2=χ

f∈Bκ(χ1,χ2)

∫ ∞
−∞

ϕ̂0(t)
1

π cosh(πt)

∣∣∣∣∣∑
`

x(`)λχ1,χ2
(`, t)

∣∣∣∣∣
2 ∣∣L(Eχ1,χ2,f,t ⊗ E, s)

∣∣2 dt,
so that by (2.9), (3.6) and (4.28) we obtain

L

q1+ε

∣∣L(f0, s)
∣∣4 �t0,ε

∑
`1,`2

∣∣x(`1)x(`2)
∣∣ ∑
d|(l1,l2)


∣∣∣∣Q(`1`2d2

)∣∣∣∣+
∑

k≡κ (2)
k>A−10

4k
∣∣ϕ̇0(k)

∣∣ ∣∣∣∣Qholo
k

(
`1`2
d2

)∣∣∣∣
 .

(4.31)

Substituting (4.30) (note that the k-sum converges by (3.5)) and changing the order of summation,
this is

�s,t0,ε q
ε

q−c2 ∑
d

∑
`1,`2

(`1`2)c1 |x(d`1)x(d`2)|+
∑
d

∑
`1,`2

(`1`2)−1/2|x(d`1)x(d`2)|


�s,t0,ε q

ε
(
L2c1+1/2q−c2 + 1

)∑
`

τ(`)|x(`)|2,
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where we used Cauchy–Schwarz twice. By (2.44), we obtain from the last two displays

|L(f0, s)|4 �s,t0,ε q
1+ε

(
L2c1q−c2 + L−1/2

)
.

Choosing
L := qc2/(2c1+1/2), (4.32)

this gives Theorem 1.2 with

L(f0, s)�s,t0,ε q
1
4−

c2
4(4c1+1)

+ε
. (4.33)

It remains to show (4.30) and calculate the constants c1 and c2. This will be done in the next
three sections.

4.4 Applying the summation formulae

As a first step we substitute (4.22) into the definition (4.28) of Qholo
k (`) and Q(`). Then we apply

(2.8) and the corresponding formula for the divisor function in order to remove the factors λf (`) and
λχ1,χ2(t, `). Applying (2.10), this gives

k−18Qholo
k (`) =

∑
de=`

χ(d)√
d

∑
ab=d

µ(a)τ(b)√
a

∑
m,n

τ(m)τ(n)

(mn)1/2

× k−9V (1−k)i
2

(
m

q

)
k−9V (1−k)i

2

(
adn

q

)
ikΓ(k − 1)

√
maen

2π(4π)k−1

∑
f∈Bhk (q,χ)

ρf (m)ρf (aen)

and

Q(`) =
∑
de=`

χ(d)√
d

∑
ab=d

µ(a)τ(b)√
a

∑
m,n

τ(m)τ(n)

(mn)1/2

×

{ ∑
f∈Bκ(q,χ)

ϕ̂0(tf )Vtf

(
m

q

)
Vtf

(
adn

q

)
4
√
maen

cosh(πtf )
ρf (m)ρf (aen)

+
∑∑
χ1χ2=χ

f∈Bκ(χ1,χ2)

∫ ∞
−∞

ϕ̂0(t)Vt

(
m

q

)
Vt

(
adn

q

) √
maen

π cosh(πt)
ρf (m, t)ρf (aen, t) dt

+
∑∑

k≡κ (2), k>κ

f∈Bhk (q,χ)

ϕ̇0(k)V (1−k)i
2

(
m

q

)
V (1−k)i

2

(
adn

q

)
Γ(k)
√
maen

π(4π)k−1
ρf (m)ρf (aen)

}
.

Substituting (4.20), we get something of the form

Q(`) =

4∑
ν,ξ=0

. . .

{∑
j

ϕ̂0(tf )αν(tf )αξ(tf )

(
x
∂

∂x

)2ν

W

(
m

q

)(
x
∂

∂x

)2ξ

W

(
adn

q

)
. . .

+ Eisenstein contribution + holomorphic contribution

}
.

(4.34)

Now we apply Kuznetsov’s trace formula (2.21) for each term separately. Similarly, we apply Peters-
son’s formula (2.15) for Qholo

k (`). In the latter case we obtain a diagonal term which can be estimated
trivially using (4.20) and (4.21):

ik

2π

∑
de=`

χ(d)√
d

∑
ab=d

µ(a)τ(b)

a
√
e

∑
n

τ(aen)τ(n)

n
k−9V (1−k)i

2

(
aen

q

)
k−9V (1−k)i

2

(
adn

q

)
�ε q

ε`−1/2. (4.35)
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Here and henceforth we suppress the dependence on s and t0 and merely make sure that it is poly-
nomial at most. In either case the off-diagonal term is a linear combination of terms of the form

∑
abe=`

χ(ab)µ(a)τ(b)

a
√
b

∑
q|c

1

c

∑
m,n

τ(m)τ(n)

(mn)1/2
W1

(
m

q

)
W2

(
a2bn

q

)
Sχ(m, aen; c)ϕ

(
4π
√
aemn

c

)
. (4.36)

where ϕ is Jk−1 or a suitable ϕ as in (4.24)–(4.25) (with a := A, b := 10, α := αναξ and d := 8), cf.
(4.27). In particular, by (4.21), (4.24), (3.4), (4.26),

W
(i)
1,2(x)�ε,B,i x

−i−ε(1+x)−B , ϕ(i)(x)�A,i

(
x

1 + x

)A−10−i

, ϕ∗(u)� (1+|=u|)−2−2<u (4.37)

for all i with some very large A, B and for all u in a wide vertical strip symmetric about the origin.
Let us now open the Kloosterman sum and apply Voronoi summation (4.3) to the m-variable. It is

one of the main features of the Voronoi summation here that the twisted Kloosterman sum becomes
a Gauss sum. Let

Gχ(h; c) :=
∑

d (mod c)
(d,c)=1

χ(d)e

(
hd

c

)

denote the Gauss sum, then the term (4.36) decomposes into the sum of a “diagonal” first term∑
abe=`

χ(ab)µ(a)τ(b)

a
√
b

∑
q|c

1

c2

∑
n

τ(n)Gχ(aen; c)

n1/2
W2

(
a2bn

q

)

×
∫ ∞

0

Lc(y)W1

(
y

q

)
ϕ

(
4π
√
aeny

c

)
dy

y1/2
,

(4.38)

and of an “off-diagonal” second term given by∑
±

∑
abe=`

χ(ab)µ(a)τ(b)

a
√
b

∑
q|c

1

c2

∑
h

Gχ(h; c)
∑

aen±m=h

τ(m)τ(n)g±(n,m; c), (4.39)

where

g±(n,m; c) :=
1

n1/2
W2

(
a2bn

q

)∫ ∞
0

J±
(√

my

c

)
W1

(
y

q

)
ϕ

(
4π
√
aeny

c

)
dy

y1/2
(4.40)

for c > q.
Using the weak bound (cf. (4.54))

|Gχ(h; c)| 6 c1/2(c, h)1/2,

the fact that (`, q) = 1 and also the inequalities (4.37) (cf. (4.42)), we obtain that (4.38) is bounded
by

�ε qε
∑
q|c

c6`1/2q1+ε

1

c2

∑
n6q1+ε

c1/2(c, `n)1/2

n1/2−ε q1/2+ε �ε q3ε−1/2, (4.41)

As for the term (4.39), let us attach a smooth factor ψ(m) to g± that is zero for m 6 1/2 and 1
for m > 3/4. This does not affect the sum (4.39). We need this little technicality in order to apply
(4.4) later. It is easy to see that g±(n,m; c) is negligible (i.e., � q−C for any constant C > 0) unless

q1−ε

ae
=: N− 6 n 6 N+ :=

q1+ε

a2b
, c 6

√
eq1+ε

√
ab

, m 6 aenqε. (4.42)

The upper bound on n follows directly from (4.37) by choosing A and B large enough. By (4.37)
we can also assume that cq−ε 6

√
aeny and y 6 q1+ε. Combining these inequalities, we obtain

c2q−3ε 6 qaen which implies the lower bound on n and, in combination with the upper bound on
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n, it implies the upper bound on c as well. Finally, the upper bound on m follows from (6.14) by
choosing a large j there. As a by-product, we can see that the integral in (4.40) is essentially supported
on [q1−εe−1, q1+ε], hence by applying a crude bound for the Bessel functions in that integral (e.g.
Proposition 6.2) we obtain

g±(n,m; c)�ε q
1/2+εn−1/2 for n 6 q1+ε and c > q. (4.43)

Let S(a, b, e, c; q) denote the weighted sum of shifted convolution sums

S(a, b, e, c; q) :=
∑
h

Gχ(h; c)
∑
±

∑
aen±m=h

τ(m)τ(n)g±(n,m; c)ψ(m).

Thus (4.39) equals ∑
abe=`

χ(ab)µ(a)τ(b)

a
√
b

∑
q|c

1

c2
S(a, b, e, c; q). (4.44)

Remark 4.2. Since we have assumed that χ is not trivial, Gχ(0; c) = 0, hence in S(a, b, e, c; q) the
h-sum varies over the h 6= 0. When χ is trivial, the degenerate contribution corresponding to h = 0,

S0(a, b, e, c; q) := ϕ(c)
∑

aen=m

τ(m)τ(n)g−(n,m; c),

yields a main term which can be bounded by �ε q
ε`−1/2. We do not carry out this computation in

this paper and rather refer to [KMV00, Section 3.6].

Applying (4.4) with

Q := N+ =
q1+ε

a2b
(4.45)

to the innermost sum, S(a, b, e, c; q) splits into a main term

SM (a, b, e, c; q) :=
∑
h6=0

Gχ(h; c)
∑
±

∞∑
w=1

(ae, w)rw(h)

w2

×
∫ ∞

0

Lw(±(h− aex))K(ae,w),w(x)g± (x,±(h− aex); c)ψ(±(h− aex)) dx.

(4.46)

and two error terms of the shape

SE,±(a, b, e, c; q) :=
∑
h6=0

Gχ(h; c)
∑
±

∞∑
w=1

(ae, w)

w2

∞∑
n=1

τ(n)S (∓h,±n;w)

×
∫ ∞

0

J±
(√

n(±(h− aex))

w

)
K(ae,w),w(x)g±(x,±(h− aex); c)ψ(±(h− aex)) dx

(4.47)

for various combinations of ±. We postpone the estimation of (4.47) to Section 4.6, and start with
the contribution of (4.46) to S(a, b, e, c; q). At this point, we need to remove the catalyst function
ψ(m) in (4.46) and define

S̃M (a, b, e, c; q) :=
∑
h 6=0

Gχ(h; c)
∑
±

∞∑
w=1

(ae, w)rw(h)

w2

×
∫ ∞

0

Lw(±(h− aex))K(ae,w),w(x)g± (x,±(h− aex); c) dx.

(4.48)

The integrands in the two terms S̃M and SM differ only for x = h/(ae) +O(1/(ae)). Since by (4.42)
(cf. (4.60) below) the h-sum in both terms is essentially over 1 6 |h| 6 eq1+ε/(ab), the contribution
of their difference to (4.44) is at most (cf. (4.1), (4.6), (4.42), (4.43))

�ε q
ε
∑
ae|`

∑
q|c

1

c2

∑
16h6eq1+ε

c1/2(h, c)1/2
∞∑
w=1

(ae, w)(h,w)

w2

( q

aeh

)1/2

�ε q
3ε−1/2. (4.49)
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4.5 The main term

In this section, we will evaluate the contribution of the term (4.48) to (4.44):∑
abe=`

χ(ab)µ(a)τ(b)

a
√
b

∑
w>1

(ae, w)

w2

×
∑
q|c

1

c2

∑
h6=0

rw(h)Gχ(h; c)
∑
±

∫ ∞
0

Lw(±(h− aex))K(ae,w),w(x)g± (x,±(h− aex); c) dx.

(4.50)

More precisely, we shall first evaluate the c- and h-sums above then average trivially over a, b, e, w.
To do so we proceed essentially as in [KMV00, pp. 117–122]. We substitute the definition (4.40)

of g± and make a change of variables

ξ :=
|h|
c2
y, η :=

ae

|h|
x

in order to remove all parameters from the oscillating functions. Secondly, we replace the negative
values of h in (4.50) (which only contribute to the “−” case in

∑
±) by their absolute values. To

simplify the notation, let us write (cf. (4.1))

L(η) := Lw(hη) = log η + 2γ + log

(
h

w2

)
=: log η + Λ,

say. Then the c, h-sum in (4.50) equals

1√
ae

∑
q|c

1

c

∑
h>1

rw(h)Gχ(h; c)

∫ ∞
0

∫ ∞
0

ϕ(4π
√
ξη)

×
{
δη<1L(1− η)J +(

√
(1− η)ξ) + δη>1L(η − 1)J−(

√
(η − 1)ξ) + χ(−1)L(η + 1)J−(

√
(η + 1)ξ)

}
×K(ae,w),w

(
hη

ae

)
W1

(
c2ξ

hq

)
W2

(
abhη

eq

)
dξdη

(ξη)1/2
. (4.51)

Let us also write
Xw(η) := K(ae,w),w

( qη
a2b

)
W2(η).

Its Mellin transform X̃w satisfies essentially the same properties as W̃2. To see this, observe first that
by (4.37), W2 is up to a negligible error supported on [0, qε], so we can replace K(ae,w),w

(
qη/(a2b)

)
by

K∗w(η) := K(ae,w),w

( qη
a2b

)
ω

(
η

qε

)
,

where, as usual, ω is a smooth cut-off function. Then, by (4.6), (4.45), and sufficiently many integra-
tions by parts, we find that

K̃∗w(u) =

∫ ∞
0

K∗w(η)ηu−1 dη �j,<u q
ε|u|−j

for <u > 0 and any j > 0. Finally, by (4.21),

X̃w(u) =
1

2πi

∫
( 1
2<u)

K̃∗w(u− v)W̃2(v) dv �j,ε q
ε|u|−j

for ε 6 <u 6 5, say.
Our next aim is to transform the double integral in (4.51) by several applications of Mellin’s

inversion formula: using (4.2) and (2.28), we write J± and ϕ as inverse Mellin transforms. Then the
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ξ, η-integral in (4.51) equals∫ ∞
0

∫ ∞
0

4

(2πi)2

∫
(0.2)

∫
(∗)
ϕ∗(u1)(2π

√
ξη)1+2u1(2π)−2u2Γ(u2)2ξ−u2

×
(
δη<1L(1− η)

(1− η)u2
+
δη>1L(η − 1) cosπu2

(η − 1)u2
+
χ(−1)L(η + 1) cosπu2

(η + 1)u2

)
du2 du1

×W1

(
c2ξ

hq

)
Xw

(
abhη

eq

)
dξdη

(ξη)1/2
.

(4.52)

Since the u1-, u2- and ξ-integrals are absolutely convergent (using (4.37)), we can pull the ξ-integration

inside and calculate it explicitly in terms of the Mellin transform W̃1 of W1. Then we write Xw as
an inverse Mellin transform getting that (4.52) equals∫ ∞

0

4

(2πi)2

∫
(0.2)

∫
(0.6)

ϕ∗(u1)(2π)1+2u1−2u2η1/2+u1Γ(u2)2

×
(
δη<1L(1− η)

(1− η)u2
+
δη>1L(η − 1) cosπu2

(η − 1)u2
+
χ(−1)L(η + 1) cosπu2

(η + 1)u2

)(
c2

hq

)−1−u1+u2

× W̃1 (1 + u1 − u2) du2 du1
1

2πi

∫
(0.9)

(
abhη

eq

)−u3

X̃w(u3) du3
dη

η1/2
.

Here we shifted the u2-integration to <u2 = 0.6 since W̃1(u) is rapidly decaying on the line <u = 0.6.
Since again all integrals are absolutely convergent, we can pull the η-integration inside and calculate
the three terms explicitly (as in [KMV00, (38)]) using [GR07, 3.191.1, 3.191.2, 3.194.3]. We find∫ ∞

0

(
δη<1L(1− η)

(1− η)u2
+
δη>1L(η − 1) cosπu2

(η − 1)u2
+
χ(−1)L(η + 1) cosπu2

(η + 1)u2

)
η1+u1−u3

dη

η

= cos(πu2)(−∂u2
+ Λ)

Γ(1 + u1 − u3)Γ(−1− u1 + u3 + u2)

Γ(u2)

(
χ(−1) +

sin(π(u3 − u1))

sin(πu2)

)
− (−∂u2 + Λ)

Γ(1 + u1 − u3)Γ(−1− u1 + u3 + u2)

Γ(u2)

sin(π(−u1 + u3 + u2))

sin(πu2)
.

Introducing the new variable u4 := 1 + u1 − u2 as a substitute for u2, we see that (4.52) equals

−4

(2πi)3

∫
(0.2)

∫
(0.6)

∫
(0.9)

ϕ∗(u1)(2π)2u4−1Γ(1 + u1 − u4)2Γ(1 + u1 − u3)

×
(
c2

hq

)−u4

W̃1 (u4)

(
abh

eq

)−u3

X̃w(u3)

×
{

cos(π(u1 − u4))(∂u4 + Λ)
Γ(u3 − u4)

Γ(1 + u1 − u4)

(
χ(−1) +

sin(π(u3 − u1))

sin(π(u4 − u1))

)
−(∂u4

+ Λ)
Γ(u3 − u4)

Γ(1 + u1 − u4)

sin(π(u3 − u4))

sin(π(u4 − u1))

}
du3 du4 du1.

(4.53)

Using the identities

(∂u4 + Λ)
Γ(u3 − u4)

Γ(1 + u1 − u4)
=

Γ(u3 − u4)

Γ(1 + u1 − u4)

(
Γ′

Γ
(1 + u1 − u4)− Γ′

Γ
(u3 − u4) + Λ

)
,

sin(π(u3 − u4))

sin(π(u4 − u1))
= − cos(π(u1 − u3)) + cos(π(u1 − u4))

sin(π(u3 − u1))

sin(π(u4 − u1))
,

it is straightforward to verify that the last two lines in (4.53) can be simplified to

Γ(u3 − u4)

Γ(1 + u1 − u4)

{
−π sin(π(u1 − u3)) +(

cos(π(u1 − u3)) + χ(−1) cos(π(u1 − u4))
)(Γ′

Γ
(1 + u1 − u4)− Γ′

Γ
(u3 − u4) + Λ

)}
.
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In particular, we observe that the triple integral is absolutely convergent (since ϕ∗, W̃1, and X̃w are
sufficiently nice) and the integrand is holomorphic whenever 0 < <u4 < <u3 < 1 + <u1. Let us shift
the u4-contour to <u4 = ε (< 0.1) and the u3-contour to <u3 = 1.1.

We now substitute this triple integral back into (4.51) and perform the (absolutely convergent)
sum over c and h. To justify this, we need to evaluate for s = 1 + 2u4, t = u3−u4 the Dirichlet series

Dw,q(χ, s, t) :=
∑
q|c

1

cs

∑
h>1

Gχ(h; c)rw(h)

ht
.

First we need to compute the Gauss sum Gχ(h; c): we denote by q∗ the conductor of χ and,
slightly abusing notation, we write χ also for the primitive character of modulus q∗ underlying χ mod
q. For q | c we consider the unique factorization c = q∗q1q2c1c2 where q = q∗q1q2, c1q1 | (q∗)

∞
and

(c2q2, q
∗) = 1. Then

Gχ(h; c) = χ(c2q2)Gχ(h; q∗q1c1)rc2q2(h)

(with rc2q2(h) being the Ramanujan sum, cf. (4.5)). Moreover, Gχ(h; q∗q1c1) = 0 unless c1q1 | h in
which case

Gχ(h; q∗q1c1) = χ

(
h

c1q1

)
c1q1Gχ(1; q∗).

Summarizing the above computation, one has

Gχ(h; c) = δc1q1|hχ(c2q2)χ

(
h

c1q1

)
c1q1rc2q2(h)Gχ(1; q∗). (4.54)

Therefore

Dw,q(χ, s, t) =
χ(q2)Gχ(1; q∗)

(q∗)
s
qs+t−1
1 qs2

∑
c1|(q∗)∞

1

cs+t−1
1

∑
(c2,q∗)=1

χ(c2)

cs2

∑
h>1

χ(h)rw(c1q1h)rc2q2(h)

ht
.

For σ := <s, and τ := <t sufficiently large the c1, c2, h-sum factors as an Euler product over the
primes: ∑

c1|(q∗)∞

1

cs+t−1
1

∑
(c2,q∗)=1

χ(c2)

cs2

∑
h>1

χ(h)rw(c1q1h)rc2q2(h)

ht
=
∏
p

Πp(χ, s, t), (4.55)

say. We collected some useful properties of the Euler factors Πp(χ, s, t) in Lemma 4.1 at the end of
this section. These properties imply that for <u4 = ε (< 0.1) and <u3 = 1.1 the series Dw,q(χ, s, t)
is absolutely convergent and in the domain σ > 1, τ > 0 it decomposes as

Dw,q(χ, s, t) = ζ(s+ t− 1)L(χ, t)Hw,q(χ, s, t),

where Hw,q(χ, s, t) is a holomorphic function. Moreover, for 0 < ε < 0.1,

<s = 1 + 2ε, ε/2 < <t < 3ε/2,

one has
Hw,q(χ, s, t)�ε q

ε(q1, w)w1−ε/3(q∗)−1/2. (4.56)

Using
Λ = 2γ − log

(
w2
)

+ log(h)

we obtain that (4.51) equals

1√
ae

−4

(2πi)3

∫
(0.2)

∫
(ε)

∫
(1.1)

ϕ∗(u1)(2π)2u4−1Γ(1 + u1 − u4)Γ(1 + u1 − u3)Γ(u3 − u4)

× qu4W̃1 (u4)

(
ab

eq

)−u3

X̃w(u3)


1∑
j=0

∂ju3

(
ζ(u3 + u4)L̃(u3, u4)

)
Fj

 du3 du4 du1,
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where
L̃(u3, u4) := L(χ, u3 − u4)Hw,q(χ, 1 + 2u4, u3 − u4)

and

F0(u1, u3, u4) :=− π sin(π(u1 − u3)) +
(

cos(π(u1 − u3)) + χ(−1) cos(π(u1 − u4))
)

×
(

Γ′

Γ
(1 + u1 − u4)− Γ′

Γ
(u3 − u4) + 2γ − log

(
w2
))

,

F1(u1, u3, u4) :=−
(

cos(π(u1 − u3)) + χ(−1) cos(π(u1 − u4))
)
.

Let us now shift the u3-contour from <u3 = 1.1 to <u3 = 2ε; we will show below that there is no
pole at u3 + u4 = 1. Then <(u3 − u4) = ε, hence

∂ju3
L(χ, u3 − u4)�j,ε (q∗)

1/2

by the functional equation for L(χ, t) with implied constants depending on j, ε and (polynomially)
on |=(u3 − u4)|. In addition, (4.56) combined with Cauchy’s integral formula shows that

∂ju3
Hw,q(χ, 1 + 2u4, u3 − u4)�j,ε q

ε(q1, w)w1−ε/3(q∗)−1/2,

therefore (4.51) summed over abe = ` is bounded by

�ε q
10ε(q1, w) log(w)w1−ε/3

∑
abe=`

(e/ab)<u3

a
√
abe

�ε q
12ε(q1, w)w1−ε/4`−1/2.

Finally, averaging over w the above bound against the weight (ae, w)/w2, we obtain that the main
term (4.50) is bounded by

�ε q
13ε`−1/2. (4.57)

To conclude the analysis of the main term, it remains to show that the pole of the zeta-function
at u3 + u4 = 1 does not contribute anything. Let us only focus on the factors depending on u3:

G(u1, u3, u4) := Γ(1 + u1 − u3)Γ(u3 − u4)

(
ab

eq

)−u3

X̃w(u3)


1∑
j=0

∂ju3

(
ζ(u3 + u4)L̃(u3, u4)

)
Fj

 .

If Rj denotes the contribution of the j-term to the residue of G(u1, u3, u4) at u3 = 1− u4, then

R0 = Γ(u1 + u4)Γ(1− 2u4)

(
ab

eq

)u4−1

X̃w(1− u4)L̃(1− u4, u4)×
{

+ π sin(π(u1 + u4))+{
+2 sin(πu1) sin(πu4)
−2 cos(πu1) cos(πu4)

}(
Γ′

Γ
(1 + u1 − u4)− Γ′

Γ
(1− 2u4) + 2γ − log

(
w2
))}

,

R1 = Γ(u1 + u4)Γ(1− 2u4)

(
ab

eq

)u4−1

X̃w(1− u4)L̃(1− u4, u4)×
{
− π sin(π(u1 + u4))+{

+2 sin(πu1) sin(πu4)
−2 cos(πu1) cos(πu4)

}(
−Γ′

Γ
(u1 + u4) +

Γ′

Γ
(1− 2u4) +

X̃ ′w

X̃w

(1− u4)− log

(
ab

eq

))}
.

Here the upper line corresponds to κ = 0 and the lower line to κ = 1, and we have used χ(−1) = (−1)κ.
Altogether the residual integral equals, after shifting the u1-integration to (−ε/2) and interchanging
the u1- and u4-integration,

8

(2πi)2

∫
(ε)

∫
(−ε/2)

ϕ∗(u1)(2π)2u4−1Γ(1 + u1 − u4)Γ(u1 + u4)Γ(1− 2u4)

× qu4W̃1 (u4)

(
ab

eq

)u4−1

X̃w(1− u4)L̃(1− u4, u4)

×
{
− sin(πu1) sin(πu4)
+ cos(πu1) cos(πu4)

}(
Γ′

Γ
(1 + u1 − u4)− Γ′

Γ
(u1 + u4) + Λ̃(u4)

)
du1 du4,

(4.58)
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where

Λ̃(u4) :=
X̃ ′w

X̃w

(1− u4) + 2γ − log

(
abw2

eq

)
.

We recast the inner integral as

1

2πi

∫
(−ε/2)

ϕ∗(u1)
(

Λ̃(u4)− ∂u4

)
Γ(1 + u1 − u4)Γ(u1 + u4)

{
− sin(πu1)
+ cos(πu1)

}
du1

and use (2.29) to see that (4.58) equals

8q

2πi

∫
( 1
2 )

(2π)2u4−1Γ(1− 2u4)W̃1 (u4)

(
ab

e

)u4−1

X̃w(1− u4)L̃(1− u4, u4)

×
{

sin(πu4)
cos(πu4)

}(
Λ̃(u4)− ∂u4

)
ϕ̂
(
i
(

1
2 − u4

)){ 1
cot(πu4)

i( 1
2−u4)

}
du4.

If ϕ = Jk−1, k ≡ κ (mod 2) then the integral vanishes by ϕ̂ = 0. Otherwise we shift ∂u4
to the other

factors by partial integration. Then we sum over ν as in (4.34) and recall that, by the definition of
ϕ and W1,

W̃1 (u4) = u2ν
4 W̃ (u4) and ϕ̂(t) = ϕ̂0(t)αν(t)αξ(t).

For t ∈ R we have αν(t) ∈ R, hence the sum over ν introduces factors

4∑
ν=0

αν
(
i
(

1
2 − u4

))
u2ν

4 or

4∑
ν=0

αν
(
i
(

1
2 − u4

)) ∂

∂u4
u2ν

4

to each term. By (4.15)–(4.16) these factors vanish, that is, the residual integral (4.58) is zero in all
cases. This completes the analysis of the main term.

Without the additional zeros in the approximate functional equation, we might still succeed at
the cost of much more work. Applying the functional equation of L(s, χ), expressing K(ae,w),w(y)
in terms of L w

(ae,w)
(y) and therefore Xw in terms of W , it should be possible to see that the polar

contribution (4.58) resembles exactly the contribution of the cusps a = 0,∞ of Q(`), see (4.29).
We conclude this section by stating and proving some useful properties for the Euler factors

Πp(χ, s, t) in (4.55).

Lemma 4.1. Let σ = <s > 1 and τ = <t > 0. For a prime p let vp denote the p-adic valuation, and
let ζp (resp. Lp) denote the corresponding Euler factor of the Riemann zeta function (resp. Dirichlet
L-function).

a) For (p, qw) = 1,

Πp(χ, s, t) = ζp(s+ t− 1)
Lp(χ, t)

Lp(χ, s)
.

b) For p | q∗,
|Πp(χ, s, t)| 6 3pmin(vp(q1),vp(w))+(1−τ)vp(w)ζp(σ − 1)ζp(τ).

c) For (p, q∗) = 1, p | qw,

|Πp(χ, s, t)| 6 4pvp(q2)+(1−τ)vp(w)ζp(σ − 1)ζp(τ).

Proof. a) For (p, qw) = 1 we use the notation

α := vp(c2), β := vp(h)
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in the sum (4.55), then

Πp(χ, s, t) =

∞∑
α=0

χ(pα)

pαs

∞∑
β=0

χ(pβ)rpα(pβ)

pβt

=

∞∑
β=0

χ(pβ)

pβt

(
1 +

β∑
α=1

χ(pα)

pαs
(pα − pα−1)− χ(pβ+1)

p(β+1)s
pβ

)

=
1− χ(p)p−s

1− χ(p)p1−s

∞∑
β=0

χ(pβ)

pβt

(
1− χ(pβ+1)

p(β+1)s
pβ+1

)

=
1− χ(p)p−s

1− χ(p)p1−s

(
1

1− χ(p)p−t
− χ(p)p1−s

1− p1−s−t

)
=

1− χ(p)p−s

(1− χ(p)p−t)(1− p1−s−t)
.

b) For p | q∗ we use the notation

α := vp(c1), β := vp(h), γ := vp(q1), δ := vp(w)

in the sum (4.55), then clearly

|Πp(χ, s, t)| 6
∞∑
α=0

1

pα(σ+τ−1)

∞∑
β=0

∣∣rpδ(pα+β+γ)
∣∣

pβτ
.

We distinguish between two cases. For γ > δ we infer

|Πp(χ, s, t)| 6
∞∑
α=0

1

pα(σ+τ−1)

∞∑
β=0

pδ

pβτ
= pδζp(σ + τ − 1)ζp(τ).

For γ < δ we infer

|Πp(χ, s, t)| 6
δ−γ−1∑
α=0

1

pα(σ+τ−1)

 pδ−1

p(δ−γ−1−α)τ
+

∞∑
β=δ−γ−α

pδ

pβτ

+

∞∑
α=δ−γ

1

pα(σ+τ−1)

∞∑
β=0

pδ

pβτ

= pγ
δ−γ−1∑
α=0

1

pα(σ+τ−1)

(
pδ−γ−1

p(δ−γ−1−α)τ
+

pδ−γ

p(δ−γ−α)τ
ζp(τ)

)
+ pδζp(τ)

∞∑
α=δ−γ

1

pα(σ+τ−1)

6 2pγ+(δ−γ)(1−τ)ζp(τ)ζp(σ − 1) + pγ+(δ−γ)(2−σ−τ)ζp(τ)ζp(σ + τ − 1).

In both cases we conclude

|Πp(χ, s, t)| 6 3pmin(γ,δ)+δ(1−τ)ζp(σ − 1)ζp(τ).

c) For (p, q∗) = 1, p | qw, we use the notation

α := vp(c2), β := vp(h), γ := vp(q2), δ := vp(w)

in the sum (4.55), then clearly

|Πp(χ, s, t)| 6
∞∑
α=0

1

pασ

∞∑
β=0

∣∣rpδ(pβ)rpα+γ (pβ)
∣∣

pβτ
.
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We distinguish between two cases. For γ > δ we infer (note that γ > 0 in this case)

|Πp(χ, s, t)| 6
∞∑
α=0

pδ

pασ

 pα+γ−1

p(α+γ−1)τ
+

∞∑
β=α+γ

pα+γ

pβτ


6 pδζp(τ)

∞∑
α=0

1

pασ

(
pα+γ−1

p(α+γ−1)τ
+

pα+γ

p(α+γ)τ

)
6 2pδ+γ(1−τ)ζp(τ)ζp(σ + τ − 1)

6 2pγ+δ(1−τ)ζp(τ)ζp(σ + τ − 1).

For γ < δ we infer

|Πp(χ, s, t)| 6
δ−γ−1∑
α=0

pα+γ

pασ

 pδ−1

p(δ−1)τ
+

∞∑
β=δ

pδ

pβτ

+

∞∑
α=δ−γ

pδ

pασ

 pα+γ−1

p(α+γ−1)τ
+

∞∑
β=α+γ

pα+γ

pβτ


6 2pγ+δ(1−τ)ζp(τ)ζp(σ − 1) + 2pδ+γ(1−τ)ζp(τ)

∞∑
α=δ−γ

1

pα(σ+τ−1)

= 2pγ+δ(1−τ)ζp(τ)ζp(σ − 1) + 2pδ−σ(δ−γ)+δ(1−τ)ζp(τ)ζp(σ + τ − 1).

In both cases we conclude

|Πp(χ, s, t)| 6 4pγ+δ(1−τ)ζp(σ − 1)ζp(τ).

The proof of Lemma 4.1 is complete.

4.6 The error term

Finally we estimate the contribution of (4.47) to (4.44). This time, we fix c and evaluate the h-sum
nontrivially: in other words, we will bound the terms SE,±(a, b, e, c; q) in (4.47) for c satisfying (cf.
(4.42))

q | c, q 6 c 6

√
eq1+ε

√
ab

.

As a first step, we use the identity∑
w>1

F (w, (ae, w)) =
∑
r|ae

∑
(ae,w)=r

F (w, r) =
∑
rs|ae

µ(s)
∑

w≡0 (rs)

F (w, r)

and write (4.47) as

∑
±

∑
rs|ae

rµ(s)
∑

w≡0 (rs)

1

w2

∑
h6=0

Gχ(h; c)

∞∑
n=1

τ(n)S (∓h,±n;w)

×
∫ ∞

0

J±
(√

n(±(h− aex))

w

)
Kr,w(x)g±(x,±(h− aex); c)ψ(±(h− aex)) dx.

We want to apply the trace formulae (2.21) and (2.22) to the w-sum. This needs some preparation.
By (4.42) we can restrict the x-integration to

|h− aex| 6 aexqε 6
eq1+ε

ab
(4.59)

and the h-summation to

|h| 6 eq1+ε

ab
, (4.60)
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up to negligible error. Let ρ be a smooth nonnegative function with bounded derivatives, supported
on [1/2, 2] such that ρ(y)+ρ(2y) = 1 for y ∈ [1/2, 1]. Then

∑
ν∈Z ρ(2νy) = 1 for y > 0. We apply this

smooth partition of unity to all variables and insert (4.40); thus we will bound O(log6 q) terms ((4.62),
(4.64), (4.67) show that each of W , H, N , R, X, Y can be taken from the interval [1/2, `3q1+ε]), of
the shape ∑

rs|ae

rµ(s)
∑

w≡0 (rs)

ρ(w/W )

w2

∑
h

Gχ(h; c)ρ

(
|h|
H

)∑
n

ρ
( n
N

)
τ(n)S(∓h,±n;w)

×
∫ ∞

0

∫ ∞
0

Kr,w(x)ρ

(
±(h− aex)

R

)
ρ
( x
X

)
ρ
( y
Y

)
W1

(
y

q

)
W2

(
a2bx

q

)
× J±

(√
n(±(h− aex))

w

)
J±

(√
±(h− aex)y

c

)
ϕ

(
4π
√
aexy

c

)
dydx

(xy)1/2
.

(4.61)

(More precisely, for 1/2 6 R 6 1 we adjust the first ρ-factor by the function ψ as in the discussion
following (4.41).) In view of (4.59), (4.42), (4.37), (4.7) and (4.45), and the remark following (4.41),
we can assume

1

2
6 R 6 aeXqε,

q1−ε

ae
6 X 6

q1+ε

a2b
,

abq1−ε

e
6 Y 6 q1+ε,

1

2
6W 6

rq1/2+ε

a
√
b
. (4.62)

Now we use (6.14) to integrate the first factor in the third line of (4.61) by parts sufficiently many
times; in order to apply (6.14) we change variables r := ±(h − aex) � R. By (4.6) and (4.37), the
j-th derivative with respect to r of the integrand without the J±(

√
nr/w) factor is

�ε,j q
ε

(
1

R
+

1

Xae
+

√
Y

c
√
R

+

√
Y

c
√
Xae

)j
�ε,j q

ε

(
1

R
+

√
Y

q
√
R

)j
.

This shows, by (6.14), that the integral in (4.61) is negligible unless

W√
N

(
1√
R

+

√
Y

q

)
> q−ε. (4.63)

Note that this implies either
√
RN/W 6 qε or

√
N/W 6 q−1/2+ε (since Y 6 q1+ε), and so in any

case √
RN

W
6
√
eqε. (4.64)

Let us now define

Ψ(h, n; z) :=
zρ(n/N)

4π
√
|h|n

ρ

(
4π
√
|h|n

zW

)∫ ∞
0

∫ ∞
0

K
r,4π
√
|h|n/z(x)

× ρ
(
±(h− aex)

R

)
ρ
( x
X

)
ρ
( y
Y

)
W1

(
y

q

)
W2

(
a2bx

q

)
× J±

(
z

√
±(h− aex)

4π
√
|h|

)
J±

(√
±(h− aex)y

c

)
ϕ

(
4π
√
aexy

c

)
dydx

(xy)1/2
.

(4.65)

Then (4.61) equals

∑
rs|ae

rµ(s)
∑
h

Gχ(h; c)ρ

(
|h|
H

)∑
n

τ(n)
∑

w≡0 (rs)

1

w
S(∓h,±n;w)Ψ

(
h, n;

4π
√
|h|n
w

)
. (4.66)

We are now in a position to apply Kuznetsov’s trace formula (2.21)–(2.22) for

level rs, trivial nebentypus and weight 0.
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The innermost sum in (4.66) equals

∑
f∈B0(rs,1)

Ψ̂(h, n; tf )
4
√
|h|n

cosh(πtf )
ρf (|h|)ρf (n) + two similar terms

corresponding to holomorphic forms and Eisenstein series (or a similar expression with Ψ̌ in place of
Ψ̂). We substitute this into (4.66), and are left with bounding

∑
rs|ae

rµ(s)
∑

f∈B0(rs,1)

∑
h

Gχ(h; c)ρ

(
|h|
H

)√
|h|ρf (|h|)

∑
n

τ(n)
√
nρf (n)

Ψ̂(h, n; tf )

cosh(πtf )

for
1

2
6 H 6

eq1+ε

ab
, (4.67)

cf. (4.60). Finally we split the f ∈ B0(rs, 1)-sum into dyadic pieces depending on the size of tf :
namely, ∑

f∈B0(rs,1)

=
∑
|tf |<1

. . . +
∑
τ

∑
|tf |�τ

. . .

for τ = 2k, k > 0 an integer. Thus typically we need to bound sums of the form

∑
rs|ae

rµ(s)
∑
|tf |�τ

∑
h

Gχ(h; c)ρ

(
|h|
H

)√
|h|ρf (|h|)

∑
n

τ(n)
√
nρf (n)

Ψ̂(h, n; tf )

cosh(πtf )
, (4.68)

(plus one more sum with
∑
|tf |�τ replaced by

∑
|tf |<1). Moreover, as we will see in Lemma 4.2 below,

the contribution of the τ ’s greater than qε
(

1 +
√
N
W (
√
H +

√
R)
)

is negligible.

It will be useful to separate the h, n, tf variables; we proceed by partial summation: for j ∈ N0

let

Ξj(h, n; z) :=
∂j

∂hj
∂

∂n
ρ

(
|h|
H

)
Ψ(h, n; z); (4.69)

note that differentiation commutes with taking Bessel transforms. Then by partial summation (4.68)
equals a sum of two expressions (corresponding to the signs ±)

∑
rs|ae

rµ(s)

∫ ∞
0

∫ ∞
0

∑
|tf |�τ

Ξ̂1(±h, n; tf )

cosh(πtf )

∑
h6h

Gχ(±h; c)
√
hρf (h)

∑
n6n

τ(n)
√
nρf (n) dh dn, (4.70)

but we can also suppress the partial summation with respect to h getting two expressions (corre-
sponding to the signs ±)

−
∑
rs|ae

rµ(s)

∫ ∞
0

∑
|tf |�τ

∑
h>1

Gχ(±h; c)
√
hρf (h)

Ξ̂0(±h, n; tf )

cosh(πtf )

∑
n6n

τ(n)
√
nρf (n) dn. (4.71)

We summarize the properties of Ξ̂j(t) = Ξ̂j(h, n; t) in the following lemma.

Lemma 4.2. Let

Z :=
qεR
√
Y

NWae
√
X

(
1 +

√
RN

W

)−1/2

(4.72)

and

Z̃ := min

(
1,

√
HN

W
,

√
H√
R

)
. (4.73)

Then for n � N , |h| � H and for any j ∈ N0 we have

Ξ̇j(t), Ξ̂j(t), Ξ̌j(t)�j,ε
Z

1 + |t|

( e
H

)j
Z̃−2|=t|,
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assuming |=t| < 1/2 and t ∈ N in the case of Ξ̇j(t). Moreover, all three functions are negligible unless

|t| 6 qε

(
1 +

√
N

W
(
√
H +

√
R)

)
. (4.74)

Proof. Let us first show that the function Ξj defined by (4.69) and (4.65) and supported on z �√
HN/W satisfies

zi
∂i

∂zi
Ξj(h, n; z)�i,j,ε Z

( e
H

)j (
1 +

√
RN

W

)i
(4.75)

for all i, j ∈ N0. To verify this we fix i and the sign of h and observe that, by the Leibniz rule for
the operator zi(∂i/∂zi), the left hand side is a finite linear combination of integrals of the form (cf.
(4.69) and (4.65))

∂j

∂hj

∫ ∞
0

∫ ∞
0

A(h− aex, y) B

(
h− aex

h

)
C(h, x, y) dx dy, (4.76)

where we have used an obvious abstract notation and suppressed the dependence on n, z for simplicity.
In particular, A : R \ {0} × (0,∞) → C is a smooth function supported on a product of compact
intervals t � ±R, y � Y satisfying

A(t, y)�ε q
ε

(
1 +

√
RY

c

)−1/2

,

B(t) := zk(∂k/∂zk)J±
(
z
√
|t|/(4π)

)
for some 0 6 k 6 i satisfying in the relevant range (cf. (4.64))

ts
∂s

∂ts
B(t)�s,i,ε q

ε

(
1 +

√
RN

W

)s+i−1/2

, z
√
|t| �

√
RN

W
6
√
eqε, (4.77)

and C : (R \ {0}) × (0,∞) × (0,∞) → C is a smooth function supported on a product of compact
intervals h � H, x � X, y � Y satisfying

HrXs ∂
r

∂hr
∂s

∂xs
C(h, x, y)�r,s,i,ε

qε

NW
√
XY

(
1 +

√
aeXY

c

)s
. (4.78)

Now for j > 1 we rewrite (4.76) as

∂j−1

∂hj−1

∫ ∞
0

∫ ∞
0

∂

∂h

{
A(h− aex, y)B

(
h− aex

h

)}
C(h, x, y) dx dy

+
∂j−1

∂hj−1

∫ ∞
0

∫ ∞
0

A(h− aex, y) B

(
h− aex

h

)
∂

∂h
C(h, x, y) dx dy.

The inner integral in the first term equals

− 1

h

∫ ∞
0

A(h− aex, y) B0

(
h− aex

h

)
C(h, x, y) dx

+
1

ae

∫ ∞
0

A(h− aex, y) B

(
h− aex

h

)
C0(h, x, y) dx,

(4.79)

where

B0(t) := t
∂

∂t
B(t), C0(h, x, y) :=

∂

∂x
C(h, x, y).

This decomposition is not obvious but follows easily by using the identities

∂

∂h
A(h− aex, y) = − 1

ae

∂

∂x
A(h− aex, y),

∂

∂h
B

(
h− aex

h

)
= −x

h

∂

∂x
B

(
h− aex

h

)
,
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and then integrating by parts in∫ ∞
0

∂

∂x

{
A(h− aex, y)B

(
h− aex

h

)}
C(h, x, y) dx.

From (4.77)–(4.79) we can see that (4.76) is a linear combination of 3 integrals of the form(√
e

H
+

1

aeX
+

√
Y

c
√
aeX

)
∂j−1

∂hj−1

∫ ∞
0

∫ ∞
0

A(h− aex, y) B1

(
h− aex

h

)
C1(h, x, y) dx dy,

where A is as before; B1 and C1 have the same support as B and C and satisfy the same bound as
in (4.77) and (4.78), respectively. By (4.62) and (4.67) we see that

√
e

H
+

1

aeX
+

√
Y

c
√
aeX

�ε q
ε e

H
.

By iterating this process we can finally decompose (4.76) as a linear combination of 3j integrals of
the form ( e

H

)j ∫ ∞
0

∫ ∞
0

A(h− aex, y) Bj

(
h− aex

h

)
Cj(h, x, y) dx dy, (4.80)

where A is as before; Bj and Cj have the same support as B and C and satisfy the same bound as
in (4.77) and (4.78), respectively. By estimating the integral pointwise we obtain (4.75) immediately.

The lemma follows now from part a) of Lemma 2.2, if t is real and
√
RN/W 6 qε. If

√
RN/W > qε

then we look more closely at the first factor in the third line of (4.65). In the J + case we are done
by the rapid decay of the Bessel K-function. In the J− case we use the asymptotic expansion of the
Bessel Y -function to see that for large x,

J−(x) =
1√
x
e(2x)J1(x) +

1√
x
e(−2x)J2(x)

with smooth functions J1,2 satisfying J
(j)
1,2(x) �j x

−j . Now a similar argument as above together
with part c) of Lemma 2.2 yields the proof of Lemma 4.2. A technical point to note here is that in
this case we develop the above decomposition for i = 0 only and then estimate the z-derivatives and
the Bessel transforms inside the resulting integrals (4.80) individually. In our exposition we did not
follow this path as we wanted to suppress the z-dependence for simplicity. Finally, if t is imaginary,
part b) of Lemma 2.2 completes the proof of Lemma 4.2.

We will bound separately the contribution of the τ ’s not exceeding a specific parameter T and of
the τ ’s larger than this parameter. In the former case we shall use (4.71), in the latter (4.70).

4.7 The case of large spectral parameter

Using (4.54), Lemma 4.2 and Cauchy–Schwarz, (4.70) can be estimated from above by

(q∗)1/2c1q1

∑
rs|ae

r
∑
d|c2q2

d

∫
n�N

∫
h�H

Ze

τH

 ∑
|tf |�τ

1

cosh(πtf )

∣∣∣∣∣∣∣∣∣
∑

h6h/c1q1d
(h,

c2q2
d )=1

χ(h)
√
c1q1dhρf (c1q1dh)

∣∣∣∣∣∣∣∣∣
2

1
2

×

 ∑
|tf |�τ

1

cosh(πtf )

∣∣∣∣∣∣
∑
n6n

τ(n)
√
nρf (n)

∣∣∣∣∣∣
2


1
2

dh dn.

Decompose d into d2d
′
2 such that d2 | q∞2 and (d′2, q2) = 1; then for f a Hecke eigenform one has

(since (rs, q) = 1) √
c1q1dhρf (c1q1dh) = λf (c1q1d2)

√
d′2hρf (d′2h),
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so that by the large sieve inequalities (2.46) one obtains that (4.70) is bounded by

�ε q
ε(q∗)1/2(c1q1)1+θ

∑
rs|ae

r
∑
d|c2q2

d′2d
1+θ
2

Ze

τH
HN

×

(
τ +

(
H

c1q1d2rs

)1/2
)(

H

c1q1d

)1/2
(
τ +

(
N

rs

)1/2
)
N1/2.

Here we clearly have the inequalities r 6 rs 6 ae 6 `,

d′2d
1+θ
2

(
τ +

(
H

c1q1d2rs

)1/2
)(

H

c1q1d

)1/2

= d′2
1/2
dθ2

(
d

1/2
2 τ +

(
H

c1q1rs

)1/2
)(

H

c1q1

)1/2

6 (c2q2)1/2+θ

(
τ +

(
H

c1q1q2r

)1/2
)(

H

c1q1

)1/2

,

and

r

(
τ +

(
H

c1q1q2r

)1/2
)(

τ +

(
N

r

)1/2
)

6 `

(
τ +

(
H

c1q1q2`

)1/2
)(

τ +

(
N

`

)1/2
)
.

Using these and the definition (4.72) of Z, we obtain, according to (4.62), (4.63), (4.67), (4.74), that
(4.70) is bounded by

�ε q
ε(q∗)1/2(c1c2q1q2)1/2+θ `

3/2R

τW

Y 1/2

X1/2
q1/2N1/2

(
τ +

q1/2

(c1q1q2)1/2

)(
τ +

N1/2

`1/2

)
�ε q

εc1/2
(
c

q∗

)θ
`2

R

τW
q1/2N1/2

(
τ + (q∗)1/2

)(
τ +

N1/2

`1/2

)
.

(4.81)

Let us recall that (by (4.62), (4.63), (4.67), (4.74))

1 6 qε
W

N1/2

(
1

R1/2
+

1

q1/2

)
, τ 6 qε

(
1 +

`1/2q1/2N1/2

W

)
, W 6 qε`q1/2;

we observe that the first two conditions imply that

τ 6 qε`1/2
(

1 +
( q
R

)1/2
)
.

If we assume that
τ > `1/2T for some T � qε,

then
R1/2 � q1/2+εT −1 � q1/2,

and in particular, (RN)1/2 � qεW. Now we bound the four terms of the product

R

τW
q1/2N1/2

(
τ + (q∗)1/2

)(
τ +

N1/2

`1/2

)
in (4.81):

τ
RN1/2

W
q1/2 �ε τq

εR1/2q1/2 �ε `
1/2q1+ε,

RN1/2

W
(q∗)1/2q1/2 �ε q

εR1/2(q∗)1/2q1/2 �ε
(q∗)1/2q1+ε

T
,

RN

W

q1/2

`1/2
�ε q

εW
q1/2

`1/2
�ε `

1/2q1+ε,

1

τ

RN

W`1/2
(q∗)1/2q1/2 �ε q

ε W

τ`1/2
(q∗)1/2q1/2 �ε

(q∗)
1/2
q1+ε

T
.
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The same argument works for holomorphic forms and Eisenstein series and gives the same estimates.
Therefore the total contribution of large eigenvalues to the sum (cf. (4.44))∑

abe=`

χ(ab)µ(a)τ(b)

a
√
b

∑
q|c

1

c2
SE,±(a, b, e, c; q) (4.82)

is bounded by

�ε q
ε

(
`2

T

(
q∗

q

)1/2−θ

+
`5/2

q1/2

(
q∗

q

)−θ)
. (4.83)

4.8 The case of small spectral parameter

The estimate (4.83) is useful if τ is not too small, that is, if T is at least some small power of q. In
fact we shall later specify T so that log T � log q. In view of the preceding section, we suppose that

0 6 τ 6 `1/2T . (4.84)

For such small τ we use (4.71) which can be bounded by

�ε q
ε
∑
rs|ae

r

∫
n�N

 ∑
|tf |�τ

∣∣∣∣∣∣
∑
h>1

Gχ(h; c)
√
hρf (h)

Ξ̂0(±h, n; tf )√
cosh(πtf )

∣∣∣∣∣∣
2


1/2(
τ
√
N +

N√
rs

)
dn, (4.85)

using Cauchy–Schwarz and the large sieve (2.46).
For f ∈ B0(rs, 1) (which we recall is a Hecke eigenform), let L(f, u) denote the Dirichlet series

L(f, u) :=
∑
h>1

Gχ(h; c)
√
hρf (h)

hu
.

In the following we study this Dirichlet series in order to estimate the h-sum in (4.85). The Dirichlet
series is absolutely convergent for <u� 1; by (4.54), one has

L(f, u) =
∑

h1|(rsc)∞

∑
(h2,rsc)=1

Gχ(h1; c)χ(h2)
√
h1h2ρf (h1h2)

hu1h
u
2

= L(rsc)(f ⊗ χ, u)× χ(c2q2)Gχ(1; q∗)(c1q1)1−u
∑

h|(rsc)∞

rc2q2(h)
√
c1q1hρf (c1q1h)χ(h)

hu

= L(rsc)(f ⊗ χ, u)×H(f, u),

say, with

L(rsc)(f ⊗ χ, u) :=
∑

(h,rsc)=1

λf (h)χ(h)

hu

and

H(f, u) := χ(c2q2)Gχ(1; q∗)(c1q1)1−u
∑
d|c2q2

d1−uχ(d)µ
(c2q2

d

) ∑
h|(rsc)∞

√
c1q1dhρf (c1q1dh)χ(h)

hu
.

On the one hand,

L(rsc)(f ⊗ χ, u) =
∏
p|rsc

(
1−

λf̃ (p)χ(p)

ps
+
χ(p2)

p2s

)
× L(f̃ ⊗ χ, u)

where f̃ is the newform (of level dividing rs) underlying the Hecke eigenform f (and with the same
spectral parameter tf ). Applying a subconvex bound of the form

L(f ⊗ χ, s)�ε (|s|µfNq)ε|s|αµβfN
γq

1
2−δ (4.86)

55



one has
L(rsc)(f ⊗ χ, u)�ε (|u|(1 + |tf |)rsc)ε|u|α(τ)β(rs)γ(q∗)

1/2−δ
; (4.87)

in particular, we remark that (1.5) is applicable if (cf. (4.84))

q∗ > (`3/2T )4 > (rsτ)4. (4.88)

On the other hand, H(f, u) is holomorphic for <u > 1/2 and satisfies in this domain the uniform
bound

H(f, u)� (q∗c1q1)1/2
∑
d|c2q2

d1/2
∑

h|(rsc)∞

√
c1q1dh|ρf (c1q1dh)|

h1/2
, (4.89)

cf. (5.33). By Mellin inversion, the h-sum in (4.85) equals, without the factor
√

cosh(πtf ) and after

replacing f(z) by f(−z̄),

1

2πi

∫
(1/2)

L(f, u)

(∫ ∞
0

Ξ̂0(±x, n; tf )xu−1 dx

)
du.

By partial integration and Lemma 4.2 we see∫ ∞
0

Ξ̂0(x, n; tf )xu−1 dx�ε
Z
√
H

1 + τ

(
e

|u|

)ν
Z̃−2|=tf | (4.90)

on <u = 1/2, for any ν > 0 (at first for integer ν, but then by convexity also for real ν). We choose
ν := α+ 1 + ε in order to ensure absolute convergence of the u-integral. Using Cauchy–Schwarz and
(2.45), we see that

 ∑
|tf |�τ

∣∣∣∣∣∣
∑

h|(rsc)∞

√
c1q1dh|ρf (c1q1dh)|
h1/2

√
cosh(πtf )

∣∣∣∣∣∣
2


1
2

�ε (rsc)ε
∑

h|(rsc)∞

 1

h1−ε

∑
|tf |�τ

c1q1dh|ρf (c1q1dh)|2

cosh(πtf )


1
2

�ε c
ε(c1q1d)θ(1 + τ), (4.91)

where θ = 7/64 < 1/2 (cf. (2.42)). Collecting the estimates (4.87), (4.89), (4.90), (4.91), we can
bound (4.85) by

�ε qε
∑
rs|ae

reα+1 (τ)
β

(rs)γ(q∗)
1−δ ∑

d|c2q2

(c1q1d)1/2+θNZ
√
H

(
τ
√
N +

N√
rs

)
Z̃−2θ0

�ε c2ε (τ)
β
`2+α+γ(q∗)

1−δ
(
c

q∗

)1/2+θ

NZ
√
H

(
τ
√
N +

N√
`

)
Z̃−2θ0 , (4.92)

where θ0 = 0 if τ > 1 and θ0 = θ if τ 6 1.
If τ > 1, Z̃−2θ0 = 1 and we use the bound (4.84) to obtain that (4.92) is at most

c2εT β`2+α+β/2+γ(q∗)
1−δ

(
c

q∗

)1/2+θ

NZ
√
H

(
τ
√
N +

N√
`

)
. (4.93)

We deal now with the sum (4.85) where the summation
∑
|tf |�τ is replaced by

∑
|tf |<1: we recall that

Z̃ depends on H according to (4.73), so that (4.92) is an increasing function of H. Thus we estimate
(4.92) from above using (4.67). But then, together with (4.62), we see that Z̃ > `−1/2q−ε so that
Z̃−2θ0 6 qε`θ; in that case however, there is no factor (T

√
`)β . Since β > 3/8 > 2θ, the contribution

of |tf | < 1 is dominated by (4.93).
Using (4.72), and the bound (cf. (4.62) and (4.67))

√
Y

ae
√
X

√
H �ε q

1/2+ε,
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we are left with

c2εT β`2+α+β/2+γ(q∗)
1−δ

q1/2

(
c

q∗

)1/2+θ
RN1/2

W

(
1 +

√
RN

W

)−1/2(
T
√
`+

√
N√
`

)
,

subject to √
RN

W
6
√
`qε, R 6 `q1+ε, W 6 `q1/2+ε.

Averaging over c ≡ 0 (mod q), we see that the total contribution of small eigenvalues to (4.82) is at
most

�ε q
ε`α+ β

2 +γ+2T β (q∗)1/2−θ−δ

q1−θ
R

3
4N

1
4

W
1
2

(
T
√
`+

√
N√
`

)

�ε q
ε`α+ β

2 +γ+2T β (q∗)1/2−θ−δ

q1−θ

(
R

1
2 T ` 3

4 +W`
1
4

)
,

�ε q
ε`α+ β

2 +γ+ 13
4 T β+1

(
q∗

q

)1/2−θ

(q∗)−δ. (4.94)

The same bound holds for holomorphic cusp forms. The case of Eisenstein series is somewhat
different at least when they are parametrized by the cusps for their Fourier coefficients are not
multiplicative anymore. Instead we proceed as in [Mi04, HM06] and calculate the coefficients directly.
Unfolding the Gauss sum leads for each cusp a = v

w , w | rs, to the normalized series∑
h

χ(h)
√
ghρa(1/2 + it, gh)

hu
√

cosh(πt)
, (4.95)

where g := c1q1dd
′ and dd′ | c2q2. By the computation of Section 5.7 this series can be written in

terms of products of two Dirichlet L-functions L(χϕ, u − it)L(χϕ, u + it) for certain characters ϕ
having conductor dividing

(
w, rsw

)
, times a holomorphic function in <u > 1/2 that is bounded on

<u = 1/2 by

�ε (grs)ε (g, w)
(
w,

rs

w

)1/2

(rs)−1/2.

Here we used that (rs, q) = 1. In particular, the function defined by (4.95) can be holomorphically
continued to <u > 1/2 and on <u = 1/2 it is bounded by

�ε (q(1 + |t|)|u|)ε (|u|+ |t|)3/8(g, rs)
(
w,

rs

w

)7/8

(rs)−1/2q3/8,

according to Heath-Brown’s hybrid bound [HB80] for Dirichlet L-functions. Summing over all cusps
of Γ0(rs) and noting that∑

w|rs

ϕ
(
w,

rs

w

)(
w,

rs

w

)7/8

(rs)−1/2 �ε (rs)7/16+ε,

we obtain a bound of at least the same quality as in the case of Maass cusp forms if we assume
α, β > 3/8, γ > 7/16, δ 6 1/8. Then we proceed analogously.

4.9 Putting it all together

Collecting (4.35), (4.41), (4.49), (4.57), (4.83) and (4.94), we obtain that

k−18
∣∣Qholo

k (`)
∣∣+ |Q(`)|

�s,t0,ε q
ε

(
1

`1/2
+
`2

T

(
q∗

q

)1/2−θ

+
`5/2

q1/2

(
q∗

q

)−θ
+ `α+ β

2 +γ+ 13
4 T β+1

(
q∗

q

)1/2−θ

(q∗)−δ

)

�s,t0,ε q
ε

(
1

`1/2
+
`2

T

(
q∗

q

)1/2−θ

+ `α+ β
2 +γ+ 13

4 T β+1(q∗)−δ
(
q∗

q

)1/2−θ
)

(4.96)
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(in the first inequality above the last term is always larger than the third one).
Set q∗ = qη with η ∈ [0, 1]. If η is small (to be determined in a moment) we choose T := qε

√
`

and apply the convexity bound (1.2) (cf. (4.86)) with

α =
1

2
, β =

1

2
, γ =

1

4
, δ = 0,

and so we arrive at we arrive at (4.30) with

c1 := 5 and c2 := (1− η)

(
1

2
− θ
)
.

Substituting the expressions for c1 and c2 into (4.33) we obtain

L(f0, s)�s,t0,ε q
1
4−

(1−η)(1−2θ)
168 +ε. (4.97)

If η is large, we use the exponents provided by the subconvex bound (1.5) (cf. (4.86)),

α :=
1

2
, β := 3, γ :=

1

4
, δ :=

1

8
,

assuming that (4.88) holds. Equating the second and third terms on the right hand side of (4.96) we
choose

T := (q∗)
δ

β+2 +ε`−
α+β/2+γ+5/4

β+2 ,

provided

qηδ−ε > `α+ β
2 +γ+ 5

4 (4.98)

(so that log T � log q), and provided

qη(β+2−4δ)−ε > `−4α+4β−4γ+7 (4.99)

(in order to satisfy (4.88)). Under these assumptions we obtain a total error term of

�ε q
ε

(
1

`1/2
+

`
α+5β/2+γ+21/4

β+2

qη
δ

β+2 +(1−η)( 1
2−θ)

)
�ε q

ε

(
1

`1/2
+
`
α+5β/2+γ+21/4

β+2

q
δ

β+2

)
,

since 1
2 − θ >

δ
β+2 for any β > 0 and any δ ∈ [0, 1/2]. Hence we arrive at (4.30) with

c1 :=
α+ 5β/2 + γ + 21/4

β + 2
and c2 :=

δ

β + 2
.

We choose L as in (4.32):
L := qc2/(2c1+1/2).

In (4.31) we apply (4.30) for ` 6 L2, and it is easily checked that (4.98) and (4.99) are satisfied as
long as η > 14/59. Substituting the expressions for c1 and c2 into (4.33) we obtain

L(f0, s)�s,t0,ε q
1
4−

δ
16α+44β+16γ+92 +ε �s,t0 q

1
4−

1
1889

for η > 14/59 while for η 6 14/59 the bound (4.97) is stronger. This concludes the proof of Theo-
rem 1.2.
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Chapter 5

Rankin–Selberg L-functions

5.1 Approximate functional equation

For s on the critical line <s = 1
2 , we set (cf. (2.4))

P := (|s|+ µf + µg)
2.

By standard techniques (see [Mi04] for instance), one can show that for s with <s = 1
2 and for any

A > 1, one has a bound of the form

L(f ⊗ g, s)�A log2(qDP + 1)
∑
N

∣∣Lf⊗g(N)
∣∣

√
N

(
1 +

N

qDP

)−A
, (5.1)

where N > 1 ranges over the powers of 2, and Lf⊗g(N) are sums of type

Lf⊗g(N) =
∑
n

λf (n)λg(n)W (n)

for some smooth function W (x) = WN,A(x) supported on [N/2, 5N/2] such that

xjW (j)(x)�j,A P
j (5.2)

for all j > 0. In particular, Theorem 1.3 follows from

Proposition 5.1. Assume Hypothesis Hθ for any 0 6 θ 6 1
2 and that χfχg is nontrivial. Let B and

δtw be as in (5.35). Then for any 0 < ε 6 10−3 and any integer

1 6 N 6 (qDP )1+ε, (5.3)

one has
Lf⊗g(N)√

N
�ε q

100εq
1
2−

(1−2θ)δtw
88+18B−28θ−80θ2 .

The implied constant depends on ε and polynomially on D and P .

Indeed, for any 0 < ε 6 10−3 by a trivial estimate and by taking A sufficiently large, we see that
the contribution to (5.1) of the N ’s such that N > (qDP )1+ε is bounded by

�ε (qDP )200ε.

For the remaining terms, we apply Proposition 5.1, getting

L(f ⊗ g, s)�ε,D,P q
100ε log3(qDP + 1)q

1
2−

(1−2θ)δtw
88B+18B−28θ−80θ2

�ε,D,P q
200εq

1
2−

(1−2θ)δtw
88B+18B−28θ−80θ2 .
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5.2 Amplification

As usual, the bound for Lf⊗g(N) in Proposition 5.1 follows from an application of the amplification
method. For this one has to embed f into an appropriate family. In preparation of this, we change
the notation slightly and write χ for the nebentypus of f and rename our original primitive form f to
f0. We note that when f0 is a holomorphic form of weight k > 1, then F0(z) := yk/2f0(z) is a Maass
form of weight k and of course Lf0⊗g(N) = LF0⊗g(N), so we may treat f0 as a Maass form of some
weight k > 0. As an appropriate family we choose an orthonormal basis Bk

(
[q,D], χ

)
= {uj}j>1 of

Maass cusp forms of level [q,D] and nebentypus χ containing (the old form) f0/〈f0, f0〉1/2[q,D] (note the

enlargement of the level from q to the l.c.m. of q and D) .

Remark 5.1. As was emphasized in [DFI02], the replacement of the holomorphic form f0 by its
associated weight k Maass form is not a cosmetic artefact but turns out to be crucial when k is small.
Indeed, for small k, the c-summation in the Petersson formula (2.15) does not converge quickly enough
(and Petersson’s formula does not even exist when k = 1 !): the reason is that when k is small, the
holomorphic forms of weight k are too close to the continuous spectrum. On the other hand, when k is
large (k > 106 say), we could have chosen for family an orthonormal basis of the space of holomorphic

cusp forms of level [q,D] and nebentypus χ containing (the old form) f0/〈f0, f0〉1/2[q,D], see Remark 5.2

below.

For L > 1 (a small positive power of q), let ~x = (x1, . . . , x`, . . . , xL) be any complex vector whose
entries x` satisfy

(`, qD) 6= 1 =⇒ x` = 0. (5.4)

For f(z) ∈ Lk
(
[q,D], χ

)
either a Maass cusp form or an Eisenstein series Ea(z, s), we consider the

following linear form:

Lf⊗g(~x,N) :=
∑
`

x`
∑
de=`

χ(d)
∑
ab=d

µ(a)χg(a)λg(b)
∑
n

W (adn)λg(n)
√
aenρf (aen).

As explained in Section 4 of [Mi04], it follows from (2.10) and (2.11) that for our original primitive
form f = f0, Lf⊗g(~x,N) factors as

Lf0⊗g(~x,N) = ρf0(1)

∑
`6L

x`λf0(`)

Lf0⊗g(N). (5.5)

Thus we form the “spectrally complete” quadratic form

Q(~x,N) :=
∑
j

H(tj)
∣∣Luj⊗g(~x,N)

∣∣2 +
∑
a

1

4π

∫
R
H(t)

∣∣La,t,g(~x,N)
∣∣2dt,

whereH(t) is as in Proposition 2.2, and the parameter A used to defineH(t) will be chosen sufficiently
large. Our goal is the following estimate for the complete quadratic form.

Proposition 5.2. Assume Hypothesis Hθ for any 0 6 θ 6 1
2 , and let B and δtw be as in (5.35).

With the above notation, suppose that χχg is nontrivial and let q∗ > 1 denote its conductor; moreover,
suppose that g satisfies

w | D =⇒ q∗ - (w,D/w). (5.6)

Then for any 1 6 L 6 q, any 0 < ε 6 10−3 and any N satisfying (5.3), there is A = A(ε) as in
Proposition 2.2 such that

Q(~x,N)�ε q
100εN

{
‖~x‖22 + ‖~x‖21LδLq−δq

}
with

δL :=
41 + 8B − 14θ − 40θ2

6 + 2B
, δq :=

1− 2θ

3 +B
δtw

and
‖~x‖1 :=

∑
`6L

|x`|, ‖~x‖22 :=
∑
`6L

|x`|2.
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If g does not satisfy (5.6), then

Q(~x,N)�ε q
100εN

{
‖~x‖22 + ‖~x‖21

(
LδLq−δq + Lδ3Lq−δ3q + Lδ4Lq−δ4q

)}
with

δ3L := 9− 17θ + 20θ2

3 +B
, δ3q :=

1

2
− 2θ

3 +B
δtw,

δ4L := 13− 17θ + 20θ2

3 +B
, δ4q :=

1 + 4θ − 2δtw
4(1 + θ)

.

In these inequalities the implied constant depends on ε and polynomially on µg, D and P .

Proof of Proposition 5.1. As explained in Section 4 of [Mi04], Proposition 5.1 now follows from Propo-
sition 5.2. Indeed, by (5.5) and by positivity, in particular by (2.16), one has

H(tf0)|ρf0(1)|2

〈f0, f0〉q[Γ0(q) : Γ0([q,D])]

∣∣∣∣∣∣
∑
`6L

x`λf0(`)

∣∣∣∣∣∣
2 ∣∣Lf0⊗g(N)

∣∣2 6 Q(~x,N).

Moreover, for a Maass cusp form f0 of weight k ∈ {0, 1}, we have, by (5.5), (2.16) and (2.40),

H(tf0)|ρf0(1)|2

〈f0, f0〉q[Γ0(q) : Γ0([q,D])]
� (qD + |tf0 |)−ε

[q,D](1 + |tf0 |)16
,

where the implied constant depends at most on ε. When f0 comes from a holomorphic form of weight
k (i.e., tf0 = ±ik−1

2 ), we have, by (2.16) and (2.41),

H(tf0)|ρf0(1)|2

〈f0, f0〉q[Γ0(q) : Γ0([q,D])]
� (qD + |tf0 |)−εe−Ck

[q,D](1 + |tf0 |)16
,

for some absolute positive constant C > 0, the implied constant depending at most on ε. We suppose
first that g satisfies (5.6); by Proposition 5.2, we have∣∣∣∣∣∣

∑
`6L

x`λf0(`)

∣∣∣∣∣∣
2 ∣∣Lf0⊗g(N)

∣∣2 �µg,D,P,ε D
εq101ε(1 + |tf0 |)16eCk[q,D]N

{
‖~x‖22 + ‖~x‖21LδLq−δq

}
,

where the implied constant depends at most polynomially on µg, D and P . The result follows by
choosing the (standard) amplifier (x1, . . . , xL) given by

x` :=

 λf 0(p)χ(p) if ` = p, (p, qD) = 1,
√
L/2 < p 6

√
L;

−χ(p) if ` = p2, (p, qD) = 1,
√
L/2 < p 6

√
L;

0 else.

Indeed, from the relation λf0(p)2 − λf0(p2) = χ(p), we have∣∣∣∣∣∣
∑
`6L

x`λf0(`)

∣∣∣∣∣∣�
√
L

logL

for L > 5(log qD)2, and from (2.44) we have

‖~x‖1 + ‖~x‖22 �
(
qD(1 + |tf0 |)L

)ε
L1/2,

where the implied constants depend at most on ε. Hence we have

Lf0⊗g(N)�µg,D,P,ε (1 + |tf0 |)8eCk/2q52ε(qN)1/2
(
L−1/4 + LδL/2q−δq/2

)
.

By choosing

L = L0 := q
2δq

1+2δL = q
2(1−2θ)δtw

44+9B−14θ−40θ2 ,

we conclude the proof of Proposition 5.1 when g satisfies (5.6). When g does not satisfy (5.6), one
has

L
δ3L/2
0 q−δ3q/2 + L

δ4L/2
0 q−δ4q/2 6 L

−1/4
0 ,

so that Proposition 5.1 holds in that case, too.
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Remark 5.2. The above estimates prove Proposition 5.1 with a polynomial dependency in µf0 , µg,
D, P except possibly when f0 is a holomorphic form of weight k in which case the dependency in
µf0 = 1+ k−1

2 is only proven to be at most exponential. This comes from the fact that Γ(k)/H
(
ik−1

2

)
is bounded exponentially in k rather than polynomially. We could probably remedy this by making
a different choice for the weight function H(t); another—more natural—way is to consider, instead
of Q(~x,N), the quadratic form

Qh(~x,N) :=
∑

f∈Bhk ([q,D],χ)

Γ(k)|Lf⊗g(~x,N)|2,

where Bhk
(
[q,D], χ

)
is an orthonormal basis of the space of holomorphic cusp forms of level [q,D]

and nebentypus χ containing (the old form) f0/〈f0, f0〉1/2[q,D]. If k is large enough (k > 106 say),

Qh(~x,N) can be analyzed (by means of the holomorphic Petersson formula (2.15)) exactly as in the
next section, and Proposition 5.2 can be shown to hold for Qh(~x,N) with the same (polynomial)
dependencies in µg, P and D only. Then the argument above (using (2.41)) yields Proposition 5.1
with a polynomial dependency in kf0 as well.

5.3 Analysis of the quadratic form

We compute the quadratic form Q(~x,N) by applying the spectral summation formula of Proposi-
tion 2.2. Q(~x,N) decomposes into a diagonal part and a non-diagonal one:

Q(~x,N) =
∑
`1,`2

x`1x`2
∑

a1b1e1=`1
a2b2e2=`2

µ(a1)µ(a2)χχg(a1a2)χ(b1b2)λg(b1)λg(b2)

×

SD

((
a1 b1 e1

a2 b2 e2

)
, N

)
+

∑
c≡0 ([q,D])

1

c2
SND

((
a1 b1 e1

a2 b2 e2

)
, N ; c

)
= cAQ

D(~x,N) +QND(~x,N), (5.7)

say, with

SD

((
a1 b1 e1

a2 b2 e2

)
, N

)
:=

∑
a1e1m=a2e2n

λg(m)λg(n)W (a1d1m)W (a2d2n),

and

SND

((
a1 b1 e1

a2 b2 e2

)
, N ; c

)
:=

c
∑
m,n

λg(m)λg(n)Sχ(a1e1m, a2e2n; c)I
(

4π
√
a1a2e1e2mn

c

)
W (a1d1m)W (a2d2n). (5.8)

Here we have put d1 := a1b1 and d2 := a2b2. The diagonal term is easy to bound and the arguments
of [Mi04, Section 4.1.1] yield

QD(~x,N)�ε (qNP )εN
∑
d,`1,`2

|xd`1‖xd`2 |
σg(`1)σg(`2)√

`1`2
�g,ε (qNP )2εN‖~x‖22 (5.9)

for any ε > 0.
We transform (5.8) further by applying the Voronoi summation formula of Proposition 2.3 to the

n variable. We set e := (a2e2, c), c
∗ := c/e, e∗ := a2e2/e, so that (c∗, e∗) = 1, and by (5.4) we have

(e, qD) = 1, hence D|[q,D]|c∗. Again, the arguments of [Mi04, Section 4.1.2] yield, for a cusp form g,

SND

((
a1 b1 e1

a2 b2 e2

)
, N ; c

)
= eχg(e

∗)
∑
±
ε±g

∑
m,n>1

λg(m)λg(n)Gχχg (a1e1m∓ ee∗n; c)J±(m,n),
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where ε+
g = 1 and ε−g = ±1 is the sign in (2.14) (for g not induced from a holomorphic form) and

J±(x, y) := W (a1d1x)

∫ ∞
0

W (a2d2u)I
(

4π
√
a1a2e1e2xu

c

)
J±g

(
4πe
√
yu

c

)
du.

We consider the following (unique) factorization of c:

c = c]c[, where c[ :=
∏
p|c

vp(c)<vp(a2e2)

pvp(c).

Then
(c], c[) = 1, c[|e, (c], e∗) = 1,

and a calculation in [Mi04, Section 4.1.2] yields

SND

((
a1 b1 e1

a2 b2 e2

)
, N ; c

)
=

χ(e∗)χχg(c
[)e
∑
f |c[

fµ

(
c[

f

) ∑
f ′|f∗

µ(f ′)χg(f ′)λg(f∗/f ′)
∑
±
ε±g Σ±(a1e1e

∗f ′f∗, e), (5.10)

where f∗ := f/(a1e1, f) and

Σ±(a1e1e
∗f ′f∗, e) :=

∑
h

Gχχg (h; c])S±h (a1e1e
∗f ′f∗, e) (5.11)

with
S±h (a1e1e

∗f ′f∗, e) :=
∑

a1e1e∗f ′f∗m∓en=h

λg(m)λg(n)J±(f ′f∗m,n).

Since χχg is not the trivial character, Gχχg (0; c)S0 = 0, and we are left to evaluate (5.11) over
the frequencies h 6= 0. This will be done in Theorem 5.1.

First we analyze the properties of J±(x, y); to simplify the notation we set

a := a1d1, b := a2d2, d := a1a2e1e2.

Lemma 5.1. Let

Θ :=

(
d

ab

)1/2
N

c
, Z := P + Θ, W0 :=

bc2

e2N
, X0 :=

N

a
,

Y0 := P 2W0(1 + Θ2) = P 2

(
bc2

e2N
+
dN

ae2

)
= P 2 d

e2

(
1 + Θ2

Θ2

)
X0.

For any i, j, k > 0, any ε > 0 we have

xiyi
∂i

∂xi
∂j

∂yj
J±(x, y)� Zi+j

N

b
(1 + Θ)

(
Θ

1 + Θ

)A+1(
1 +

y

Y0

)−k (
Y0

y

)θg+ε

,

where

θg :=

{
|=tg| if g is a weight 0 Maass cusp form;

0 otherwise.

Here the implied constant depends on ε, i, j, A and polynomially on µg; A is the constant which
appears in (2.17). Note that =tg = 0 when g is a Maass form of weight 1. Recall also that as a
function of x, J (x, y) is supported on [X0/2, 5X0/2].
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Proof. We have

J±(x, y) = W (ax)

∫ ∞
0

W (bu)I (W1) J±g (W2) du

with

W1 :=
4π
√
dxu

c
∼ Θ, W2 :=

4π
√
e2yu

c
∼
(
y

W0

)1/2

>

(
y

Y0

)1/2

.

The latter integral can be written as a linear combination (with constant coefficients) of integrals of
the form

W (ax)

∫ ∞
0

{
W (bu)I (W1)W−ν2

}
W ν

2 Jν (W2) du,

where

Jν(x) ∈
{ Yν(x)

cosh(πt)
, cosh(πt)Kν(x)

}
with ν ∈ {±2itg} if g is a Maass form of weight 0; or

Jν(x) ∈
{ Yν(x)

sinh(πt)
, sinh(πt)Kν(x)

}
with ν ∈ {±2itg} if g is a Maass form of weight 1; or

Jν(x) = Jkg−1(x),

if g is a holomorphic form of weight kg. Using (6.12) we integrate by parts 2k times (where we may
assume that k = 0 for y 6 Y0). We obtain, using also Propositions 6.1 and 6.2, (2.17), (5.2) and that
u ∼ N/b,

J±(x, y)�A,ε
N

b
(1 + Θ)

(
Θ

1 + Θ

)A+1(
1 +

y

Y0

)−k−1/4

×


(

W2

1+W2

)−2|=tg|−ε
if g is a Maass form;(

W2

1+W2

)kg−1

6 1 if g is holomorphic.

For the higher derivatives, the proof is similar after several derivations with respect to the variables
x, y.

We proceed now by bounding Σ±(a1e1e
∗f ′f∗, e). We set

l1 := a1e1e
∗f ′f∗ =

d

e
f ′f∗, l2 := e;

X :=
l1
f ′f∗

X0 =
d

e
X0, Y := l2Y0 = P 2

(
1 + Θ2

Θ2

)
X;

q := Cond(χχg) = q∗, c := c], F(x, y) := J±(f ′f∗x/l1, y/l2).

By a smooth dyadic partition of unity, we have the decomposition

F(x, y) =
N

b
(1 + Θ)

(
Θ

1 + Θ

)A+1 ∑
Y>1

FY (x, y),

where Y is of the form 2ν , ν ∈ N, FY (x, y) is supported on [X/4, 4X]× [Y/4, 4Y ] and satisfies

xiyi
∂i

∂xi
∂j

∂yj
FY (x, y)�i,j,k,ε Z

i+j

(
1 +

Y

Y

)−k (
Y

Y

)θg+ε

(5.12)

for any i, j, k > 0 and any ε > 0. The sum Σ±(l1, l2) decomposes accordingly as

Σ±(l1, l2) :=
N

b
(1 + Θ)

(
Θ

1 + Θ

)A+1 ∑
Y>1

∑
h

Gχχg (h; c)Sh,Y (l1, l2)
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with
Sh,Y (l1, l2) :=

∑
l1m±l2n=h

λg(m)λg(n)FY (l1m, l2n).

We want to apply Theorem 5.1 (to be proved in the forthcoming section) to the h-sums above.
Given ε > 0 very small, we see by trivial estimation and by choosing A large enough (we will take
A = 1000/ε+ 100), that the total contribution of the SND(. . . , N ; c) such that Θ < q−ε is negligible;
hence in the remaining case we have the easy inequalities

Θ−1 6 qε, Θ 6 LN/c, 1 + Θ 6 2qεLN/c, l1l2 6 (Lc[)2,

X 6 dN/e 6 L2N/e, Y/X 6 q2εP 2, Y 6 q2εP 2L2N/e.

We will also use the trivial bound Θ/(1 + Θ) 6 1. We introduce a parameter Ymin to be deter-
mined later, and denote by Σ±Y6Ymin

(l1, l2) (resp. Σ±Y >Ymin
(l1, l2)) the contribution to Σ±(l1, l2)

of Y 6 Ymin (resp. Y > Ymin). For Y 6 Ymin, we apply the ”trivial” bound (5.17) to the sums∑
hGχχg (h; c)Sh,Y (l1, l2), and find that (since l1l2 = df ′f∗ and θg 6 θ)

Σ±Y6Ymin
(l1, l2)�P,g,ε q

10εN
LN

c
c1/2

(
L2N

e2

)1/2(
dNYmin

df ′f∗

)1/2(
Y

Ymin

)θ
�P,g,ε q

10εN
L2+2θN2+θ

(f∗)1/2e1+θc1/2
Y

1/2−θ
min . (5.13)

For Y > Ymin, we apply Theorem 5.1 and for this we set (cf. the next section), with B := 3,

η1Z :=
13 + 2B + 4θ

2
, η1L :=

1

2
, η1X := 0, η1Y := 1, η1Y/X :=

2 +B

2
,

η1c :=
1 + 2θ

2
, η1q :=

1− 2θ − 2δtw
2

,

and

DZ := −9 + 2B + 4θ

4(1 + θ)
, DL := 0, DX :=

1

4(1 + θ)
, DY := 0, DY/X := − 2 +B

4(1 + θ)
,

Dc := − θ

2(1 + θ)
, Dq := −1− 2θ − 2δtw

4(1 + θ)
= − η1q

2(1 + θ)
,

η2Z := η1Z + (1 + 2θ)DZ =
17 + 2B + 4θ

4(1 + θ)
, η2L := η1L + (1 + 2θ)DL =

1

2
,

η2X := η1X+(1+2θ)DX =
1 + 2θ

4(1 + θ)
, η2Y := η1Y = 1, η2Y/X := η1Y/X+(1+2θ)DY/X =

2 +B

4(1 + θ)
,

η2c := η1c + (1 + 2θ)Dc =
1 + 2θ

2(1 + θ)
, η2q := η1q + (1 + 2θ)Dq =

1− 2θ − 2δtw
4(1 + θ)

=
η1q

2(1 + θ)
.

It follows from (5.4) that l1l2 is coprime with q = q∗ | q and also with D, therefore if the cusp form
g satisfies (5.6) then Theorem 5.1 yields, by (5.12),

Σ±Y >Ymin
(l1, l2)�P,g,ε q10εN

LN

c

×

((
LN

c

)η1Z
(Lc[)2η1L

(
L2N

e

)η1Y +η1Y/X+θ

Y
η1X−η1Y/X−θ
min

( c
c[

)η1c
(q∗)η1q

+

(
LN

c

)η2Z
(Lc[)2η2L

(
L2N

e

)η2Y +η2Y/X+θ

Y
η2X−η2Y/X−θ
min

( c
c[

)η2c
(q∗)η2q

)
,
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i.e.,

Σ±Y >Ymin
(l1, l2)�P,g,ε q

10εN

(
L

25+4B+8θ
2 N

19+3B+6θ
2

(c[)
1−2θ

2

e
4+B+2θ

2 c7+B+θ
(q∗)η1qY

− 2+B+2θ
2

min

+L
37+4B+36θ+8θ2

4(1+θ) N
27+3B+24θ+4θ2

4(1+θ)
(c[)

1
2(1+θ)

e
6+B+8θ+4θ2

4(1+θ) c
19+2B+12θ

4(1+θ)

(q∗)η2qY
− 1+B+2θ+4θ2

4(1+θ)

min

)
.

A comparison of the second portion of this bound with (5.13) suggests the choice

Ymin := L
29+4B+20θ

3+B N
19+3B+12θ

3+B (c[)
2

3+B e−
2+B
3+B (f∗)

2(1+θ)
3+B c−

17+2B+10θ
3+B (q∗)

1−2θ−2δtw
3+B .

Note that c 6 qεLN and e 6 c imply that Ymin > 1. With this choice, one has

Σ±(l1,l2)�P,g,ε q
10εN(q∗)δq∗

×

(
L

17−(74+20B)θ−40θ2

6+2B N
19+3B−(44+12B)θ−24θ2

6+2B
(c[)

−1−B−(10+2B)θ
6+2B

(f∗)
2+B+(4+B)θ+2θ2

3+B e
8+3B+2θ

6+2B c
8−B−(48+12B)θ−20θ2

6+2B

+L
41+8B−(26+4B)θ−40θ2

6+2B N
31+7B−(20+4B)θ−24θ2

6+2B
(c[)

1−2θ
3+B

(f∗)
1+B+2θ+4θ2

6+2B e
8+3B+2θ

6+2B c
20+3B−(24+4B)θ−20θ2

6+2B

)
,

where

δq∗ := (1− 2θ)
1− 2θ − 2δtw

6 + 2B
.

We note that by f∗|f |c[|e|c and (e, qD) = 1,∑
c≡0 ([q,D])

∑
f |c[

ef(f∗)θ

c2
(c[)

−1−B−(10+2B)θ
6+2B

(f∗)
2+B+(4+B)θ+2θ2

3+B e
8+3B+2θ

6+2B c
8−B−(48+12B)θ−20θ2

6+2B

�ε q
ε− 20+3B−(48+12B)θ−20θ2

6+2B

and ∑
c≡0 ([q,D])

∑
f |c[

ef(f∗)θ

c2
(c[)

1−2θ
3+B

(f∗)
1+B+2θ+4θ2

6+2B e
8+3B+2θ

6+2B c
20+3B−(24+4B)θ−20θ2

6+2B

�ε q
ε− 32+7B−(24+4B)θ−20θ2

6+2B .

Collecting all the terms (see (5.7), (5.10), (5.11)) and using also q∗ 6 q, we deduce that for g satisfying
(5.6) and for N 6 (qDP )1+ε,

QND(~x,N)�P,g,ε q
100ε‖~x‖21NLδLq−δq

with

δL := 2θ +
41 + 8B − (26 + 4B)θ − 40θ2

6 + 2B
=

41 + 8B − 14θ − 40θ2

6 + 2B
,

δq := − δq∗ −
19 + 3B − (44 + 12B)θ − 24θ2

6 + 2B
+

20 + 3B − (48 + 12B)θ − 20θ2

6 + 2B

= − δq∗ −
31 + 7B − (20 + 4B)θ − 24θ2

6 + 2B
+

32 + 7B − (24 + 4B)θ − 20θ2

6 + 2B

=
1− 2θ

3 +B
δtw.

For g not satisfying (5.6), an additional term occurs whose contribution to QND(~x,N) is bounded by
(cf. Theorem 5.1)

�P,g,ε q
100ε‖~x‖21N

(
Lδ3Lq−δ3q + Lδ4Lq−δ4q

)
with

δ3L := 9− 17θ + 20θ2

3 +B
, δ3q :=

1

2
− 2θ

3 +B
δtw,

δ4L := 13− 17θ + 20θ2

3 +B
, δ4q :=

1 + 4θ − 2δtw
4(1 + θ)

.

The above estimates together with (5.9) conclude the proof of Proposition 5.2.
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5.4 A shifted convolution problem

Our main point is to solve the following instance of the shifted convolution problem: let χ be a
primitive character of modulus q > 1, 1 < c ≡ 0 (q), `1, `2 > 1 be two integers, and g be a primitive
cusp form of level D and nebentypus χg. We assume that g is arithmetically normalized by which we
mean that its first Fourier coefficient (see (2.2)) ρg(1) equals one and consequently, by (2.10), that

λg(n) =
√
nρg(n)

for any n > 1.
Given X,Y, Z > 1 and a smooth function f(u, v) supported on [1/4, 4]× [1/4, 4] satisfying ‖f‖∞ =

1 and
∂i

∂ui
∂j

∂vj
f(u, v)� Zi+j

for all i, j > 0, where the implied constant depends only on i and j , we consider F (x, y) := f( xX ,
y
Y )

which is supported on [X/4, 4X]× [Y/4, 4Y ] and satisfies

xiyj
∂i

∂xi
∂j

∂yj
F (x, y)� Zi+j (5.14)

for all i, j > 0, the implied constant depending at most on i and j.
We consider the sum

Σ±χ (`1, `2; c) :=
∑
h6=0

Gχ(h; c)S±h (`1, `2),

where Gχ(h; c) is the Gauss sum of the (induced) character χ (mod c) and

S±h (`1, `2) :=
∑

`1m∓`2n=h

λg(m)λg(n)F (`1m, `2n). (5.15)

Our goal is

Theorem 5.1. Assume Hypothesis Hθ for any 0 6 θ 6 1
2 , and let B and δtw be as in (5.35). Set

P := cDµg`1`2Z(X + Y ),

and assume (as one may by symmetry) that Y > X. Set also

Dopt := Z−
9+2B+4θ
4(1+θ) c−

θ
2(1+θ) q−

1−2θ−2δtw
4(1+θ) (X/Y )

2+B
4(1+θ)X

1
4(1+θ) .

Suppose that
w|D`1`2 =⇒ q - (w,D`1`2/w),

then the following upper bound holds:

Σ±χ (`1, `2; c)�g,ε P
εZ

13+2B+4θ
2 (`1`2)

1
2 c

1
2 +θq

1
2−θ−δtw(Y/X)

2+B
2 Y (1 +Dopt)

1+2θ.

On the other hand, if q|(w,D`1`2/w) for some w|D`1`2 (in which case q 6 (D`1`2)
1
2 ), the above

bound holds up to an additional term bounded by

� P εZ4(c, `1`2)
1
2 (`1`2)

1
2Y

3
2 (1 +Dopt).

In these bounds, the implied constants depend at most on ε and g. The latter dependence is at most
polynomial in D and µg, where D (resp. µg) denotes the level (resp. spectral parameter given in
(2.4)) of g.

Remark 5.3. It is crucial for applications to subconvexity that the sums of the exponents in the X,
Y , c, q variables are strictly smaller than 2: indeed, one has

1 +

(
1

2
+ θ

)
+

(
1

2
− θ − δtw

)
= 2− δtw

and

1 + 2θ

4(1 + θ)
+ 1 + (1 + 2θ)

(
1

2
− θ

2(1 + θ)

)
+

(
1

2
− θ − δtw

)(
1− 1 + 2θ

2(1 + θ)

)
= 2− δtw

2(1 + θ)
.
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The proof of this theorem will take us the next two sections. For the rest of this section and in
the next one, we use the following convention: · · · �g . . . means implicitly that the implied constant
in the Vinogradov symbol depends at most polynomially on D and µg.

By symmetry, we assume that Y > X. Considering the unique factorization

c = qq′c′, (c′, q) = 1, q′|q∞,

we have
Gχ(h; c) = χ(c′)Gχ(h; qq′)r(h; c′),

where
r(h; c′) =

∑
d|(c′,h)

dµ(c′/d)

denotes the Ramanujan sum. Moreover, Gχ(h; qq′) = 0 unless q′|h in which case

Gχ(h; qq′) = χ(h/q′)q′Gχ(1; q),

hence we have

Σ±χ (`1, `2; c) = χ(c′)q′Gχ(1; q)
∑
d|c′

dµ(c′/d)χ(d)
∑
h6=0

χ(h)S±hq′d(`1, `2). (5.16)

Observe that by (5.14), (5.15) and (2.44) this implies the trivial bound

Σ±χ (`1, `2; c)� q′q1/2
∑
d|c′

d
∑

m�X/`1
n�Y/`2

q′d|`1m∓`2n

|λg(m)||λg(n)|

6 q′q1/2
∑
d|c′

d
∑

m�X/`1
n�Y/`2

q′d|`1m∓`2n

(
|λg(m)|2 + |λg(n)|2

)

�ε P
εq1/2 (`1`2, c)

`1`2
XY.

When q is large a better bound can be obtained from an application of Lemma 2.4: integrating by
parts and applying Cauchy–Schwarz, we obtain

Σ±χ (`1, `2; c) 6 q′q1/2
∑
d|c′

d

∫∫
(R+)2

`1`2

∣∣∣∣ ∂2

∂x∂y
F (`1x, `2y)

∣∣∣∣∑
h6=0

∣∣∣∣∣∣∣∣
∑

m6x, n6y
`1m∓`2n=dq′h

λg(m)λg(n)

∣∣∣∣∣∣∣∣ dxdy

6 Z2q′q1/2
∑
d|c′

d max
x�X/`1
y�Y/`2

∑
|dq′h|6`1x+`2y

∣∣∣∣∣∣∣∣
∑

m6x, n6y
`1m∓`2n=h

λg(m)λg(n)

∣∣∣∣∣∣∣∣
�ε P

εDµ2
gZ

2q′q1/2
∑
d|c′

d

(
X + Y

dq′

)1/2(
XY

`1`2

)1/2

�ε P
2εDµ2

gZ
2c1/2(X + Y )1/2

(
XY

`1`2

)1/2

. (5.17)

On the other hand, an application of the δ-symbol method of [DFI94b] yields (cf. [Mi04, Section 7.1],
[Ha03b, Theorem 3.1], [KMV02, Appendix B])

Σ±χ (`1, `2; c)�g,ε P
εZ5/4q1/2X1/4Y 3/2.

For our given subconvexity problem, one typically has c ∼
√
XY , X ∼ Y and `1`2 is a very small

power of Y .
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5.5 Jutila’s variant of the circle method

In the sequel, we only treat the case of the “+” sums (i.e., Σ+
χ (`1, `2; c) and S+

h (`1, `2)), the case
of the “−” sums being identical; consequently, we simplify notation by omitting the “+” sign from
Σ+
χ (. . . ) and S+

h (. . . ).
We shall assume that

Y > (4D`1`2)2,

for otherwise the bound of Theorem 5.1 follows from (5.17). We denote by D(g, `1, `2, q
′d) the h-sum

in (5.16); to simplify notation further, we change it slightly and replace χ by χ and q′d by d and set

D(g, `1, `2, d) :=
∑
h6=0

χ(h)Shd(`1, `2) =
∑
h 6=0

χ(h)
∑

`1m−`2n=dh

λg(m)λg(n)F (`1m, `2n)φ(dh).

As in [DFI94a], we have multiplied F (`1m, `2n) by a redundancy factor φ(dh), where φ is a smooth
even function satisfying φ|[−2Y,2Y ] ≡ 1, suppφ ⊂ [−4Y, 4Y ] and φ(i)(x)�i Y

−i. Of course, this extra
factor does not change the value of D(g, `1, `2, d), but will prove to be useful in the forthcoming
computations.

We detect the summation condition `1m− `2n− dh = 0 by means of additive characters:

D(g, `1, `2, d) =

∫
R
G(α)1[0,1](α) dα

with
G(α) :=

∑
h6=0

χ(h)
∑
m,n>1

λg(m)λg(n)F (`1m, `2n)φ(dh)e
(
α(`1m− `2n− dh)

)
.

As in [Ha03a], we apply Jutila’s method of overlapping intervals [Ju92, Ju96] to approximate the
characteristic function of the unit interval I(α) = 1[0,1](α) by sums of characteristic functions of
intervals centered at well chosen rationals: for this we consider some C satisfying

Y 1/2 6 C 6 Y

and a smooth function w supported on [C/2, 3C] with values in [0, 1] equal to 1 on [C, 2C] such that
w(i)(x)�i C

−i; we also set

δ := Y −1, N := D`1`2, L :=
∑

c≡0 (N)

w(c)ϕ(c).

Note that C > 4D`1`2, hence L satisfies the inequality

L�ε C
2−ε/N �g,ε C

2−ε/(`1`2) (5.18)

for any ε > 0. The approximation to I(α) is provided by

Ĩ(α) :=
1

2δL

∑
c≡0 (N)

w(c)
∑
a(c)

(a,c)=1

1[ ac−δ,
a
c+δ](α)

(which is supported in [−1, 2]), and by the main theorem in [Ju92] one has∫
[−1,2]

|I(α)− Ĩ(α)|2dα�ε
C2+ε

δL2
�g,ε C

2ε(`1`2)2 Y

C2
. (5.19)

Next, we introduce the corresponding approximation of D(g, `1, `2, d):

D̃(g, `1, `2, d) :=

∫
[−1,2]

G(α)Ĩ(α)dα,

then it follows from (5.19) that

|D(g, `1, `2, d)− D̃(g, `1, `2, d)| 6 ‖I − Ĩ‖2‖G‖2 �g,ε C
ε`1`2

Y 1/2

C
‖G‖2.
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We factor G(α) as

G(α) =
∑
h 6=0

χ(h)φ(dh)e
(
−αdh)×

∑
m,n>1

λg(m)λg(n)F (`1m, `2n)e
(
α(`1m− `2n)

)
=: H(α)K(α),

say. By Parseval, we have

‖G‖2 6 ‖H‖2‖K‖∞ �
(
Y

d

)1/2

‖K‖∞.

Integrating by parts shows that (cf. (2.47))

K(α) = `1`2

∫∫
(R+)2

F (1,1)(`1x, `2y)Sg(−`1α, x)Sg(−`2α, y) dxdy,

where by (5.14),

F (1,1)(`1x, `2y)� Z2

XY
,

and by Proposition 2.5,
Sg(−`1α, x)Sg(−`2α, y)�g,ε (xy)1/2+ε,

so that

‖K‖∞ �g,ε (XY )εZ2

(
XY

`1`2

)1/2

.

Collecting the above estimates, we find that

D − D̃ �g,ε P
εZ2 (`1`2XY )

1/2

(
Y

d

)1/2
Y 1/2

C
,

therefore the contribution of this difference to Σχ(`1, `2; c) is bounded by

�g,ε P
2εZ2(`1`2)1/2c1/2X

1/2Y 3/2

C
. (5.20)

We have

D̃ =
1

L

∑
c≡0 (N)

w(c)
∑
a(c)

(a,c)=1

Iδ, ac ,

where

Iδ, ac :=
∑
h

χ(h)e

(
−adh
c

)∑
m,n

λg(m)λg(n)e

(
a`1m

c

)
e

(
−a`2n
c

)
E(m,n, h)

and

E(x, y, z) := F (`1x, `2y)φ(dz)
1

2δ

∫ δ

−δ
e
(
α(`1x− `2y − dz)

)
dα.

By applying Proposition 2.3 to the variables m,n (cf. (2.10), (2.13), (2.14)) and by summing over
a, c, we get (observe that the factor χg(a) from the m-sum is cancelled by χg(a) coming from the
n-sum)

D̃ =
∑
±,±

ε±g ε
±
g D̃
±,±,

where ε+
g = 1 and ε−g = ±1 is the sign in (2.14) (for g not induced from a holomorphic form),

D̃±,± :=
1

L

∑
m,n

λg(m)λg(n)
∑

c≡0 (N)

∑
h

χ(h)
S(dh,∓`1m± `2n; c)

c
E±,±(m,n, h; c) (5.21)

and

E±,±(m,n, h; c) :=
`1`2w(c)

c

∫∫
(R+)2

E(x, y, h)J±g

(
4π`1
√
mx

c

)
J±g

(
4π`2
√
ny

c

)
dxdy.
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Notice that the definition of E and the various assumptions made so far imply that

E(x, y, z) = 0 unless x ∼ X/`1, y ∼ Y/`2, |dz| 6 4Y. (5.22)

Moreover,

E(i,j,k)(x, y, z)�i,j,k
Zi+j`i1`

j
2d
k

XiY j+k
, (5.23)

so that for any fixed h

‖E(i,j,k)(∗, ∗, h)‖1 �i,j,k
Zi+j`i−1

1 `j−1
2 dkXY

XiY j+k
, (5.24)

and therefore

‖E(i,j,k)‖1 �i,j,k
Zi+j`i−1

1 `j−1
2 dk−1XY 2

XiY j+k
.

Next, we evaluate E±,±(m,n, h; c) and its partial derivatives: depending on the case, E±,±(m,n, h; c)
can be written as a linear combination (with constant coefficients) of integrals of the form

`1`2w(c)

c

∫∫
(R+)2

E(x, y, h)J1,ν1

(
4π`1
√
mx

c

)
J2,ν2

(
4π`2
√
ny

c

)
dxdy, (5.25)

where {
J1,ν(x), J2,ν(x)

}
⊂
{ Yν(x)

cosh(πt)
, cosh(πt)Kν(x)

}
with ν ∈ {±2itg} if g is a Maass form of weight 0; or

{
J1,ν(x), J2,ν(x)

}
⊂
{ Yν(x)

sinh(πt)
, sinh(πt)Kν(x)

}
with ν ∈ {±2itg} if g is a Maass form of weight 1; or

J1,ν(x) = J2,ν(x) = Jkg−1(x),

if g is a holomorphic form of weight kg.
In order to estimate (5.25) efficiently, we integrate by parts i (resp. j) times with respect to x

(resp. y), where i (resp. j) will be determined later in terms of m (resp. n) and ε. Using (6.12),
we see that E±,±(m,n, h; c) can be written as a linear combination (with constant coefficients) of
expressions of the form

`1`2w(c)

c

(
`1
√
m

c

)−2i(
`2
√
n

c

)−2j ∫∫
(R+)2

∂i+j

∂xi∂yj
{
E(x, y, h)W−ν11 W−ν22

}
×W ν1+i

1 W ν2+j
2 J1,ν1+i(W1)J2,ν2+j(W2) dxdy,

where {ν1, ν2} ⊂ {±2itg} (or ν1, ν2 = kg − 1) and

W1 :=
4π`1
√
mx

c
∼
√
m`1X

C
, W2 :=

4π`2
√
ny

c
∼
√
n`2Y

C
,

in view of (5.22). Using (5.24) and Proposition 6.2 in the slightly weaker form

J1,ν1+i(W1)�i,ε µ
i+ε
g

(
1 +W−1

1

)i+2|=tg|+ε(
1 +W1

)−1/2
,

J2,ν2+j(W2)�j,ε µ
j+ε
g

(
1 +W−1

2

)j+2|=tg|+ε(
1 +W2

)−1/2
,

we can deduce for any i, j > 0 that

E±,±(m,n, h; c)�i,j,ε P
ε(µ2

gZ)i+j

{
C2

`1mX
+

(
C2

`1mX

)1/2
}i{

C2

`2nY
+

(
C2

`2nY

)1/2
}j

Ξ(m,n),
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where

Ξ(m,n) :=
XY

C

{(
1 +

C2

`1mX

)(
1 +

C2

`2nY

)}|=tg|{(
1 +

`1mX

C2

)(
1 +

`2nY

C2

)}−1/4

. (5.26)

This shows, upon choosing i and j appropriately, that E±,±(m,n, h; c) is very small unless

d|h| 6 4Y, c ∼ C, m�ε P
ε
µ4
gZ

2C2

`1X
, n�ε P

ε
µ4
gZ

2C2

`2Y
, (5.27)

and in this range we retain the bound (by taking i = j = 0)

E±,±(m,n, h; c)�ε P
εΞ(m,n). (5.28)

The partial derivatives

hjck
∂j+k

∂hj∂ck
E±,±(m,n, h; c)

can be estimated similarly. We shall restrict our attention to the range (5.27); the argument also
yields that outside this range the partial derivatives are very small. By (6.13), the above partial
derivative is a linear combination of integrals of the form

Rk(itg)c
k3
∂k3

∂ck3

(
w(c)

c

)∫∫
(R+)2

hj
∂j

∂hj
E(x, y, h)W k1

1 W k2
2 J1,ν1−k1(W1)J2,ν2−k2(W2) dxdy,

where Rk is a polynomial of degree 6 k and the integers k1, k2, k3 satisfy

k1 + k2 + k3 6 k.

Therefore we obtain

hjck(E±,±)(0,0,j,k)(m,n, h; c)�j,k,ε P
ε

(
d|h|
Y

)j
µkg

(
1 +

√
`1mX

C
+

√
`2nY

C

)k
Ξ(m,n)

�j,k,ε P
ε(P εµ3

gZ)kΞ(m,n). (5.29)

5.6 Expanding the c-sum

Our next step will be to expand spectrally the c-sum in (5.21) as a sum over a basis of Maass and
holomorphic forms on Γ0(N). To do this we use the complete version of the Petersson–Kuznetsov
formulae given in Theorem 2.1. We only treat D̃−,−, the other terms being similar. To simplify
notation further, we denote D̃−,− by D̃ and E−,− by E . The shape of the sum formula depends
on the sign of the product h(`1m − `2n) when it is nonzero. So our first step will be to isolate the
contribution of the m,n such that `1m − `2n = 0 (the contribution of the h = 0 is void since we
assume that χ is nontrivial). Thus we have the splitting

D̃ = D̃0 + D̃+ + D̃−,

where

D̃0 :=
1

L

∑
`1m=`2n

λg(m)λg(n)
∑

c≡0 (N)

∑
h

χ(h)
r(dh; c)

c
E(m,n, h; c)

with
r(dh; c) = S(dh, 0; c) =

∑
c′|(dh,c)

µ(c/c′)c′

the Ramanujan sum, and

D̃± :=
1

L

∑
`1m−`2n 6=0

λg(m)λg(n)
∑

c≡0 (N)

∑
h

±h(`1m−`2n)>0

χ(h)
S(dh, `1m− `2n; c)

c
E(m,n, h; c)

=
1

L

∑
`1m−`2n 6=0

λg(m)λg(n)D̃±(m,n)
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with

D̃±(m,n) :=
∑

c≡0 (N)

∑
±hh′>0

χ(h)
S(dh, h′; c)

c
E(m,n, h; c);

here we have set h′ := `1m− `2n 6= 0.
We set `′1 := `1/(`1, `2), `′2 := `2/(`1, `2), then

D̃0 =
1

L

∑
m>1

λg(`
′
2m)λg(`

′
1m)

∑
c≡0 (N)

1

c

∑
h

χ(h)r(dh; c)E(`′2m, `
′
1m,h; c),

and the c-sum equals∑
c′′

µ(c′′)

c′′

∑
c′≡0 (N/(c′′,N))

χ

(
c′

(c′, d)

)∑
h

χ(h)E
(
`′2m, `

′
1m,

c′

(c′, d)
h; c′c′′

)
.

Combining partial summation with (5.29) and Burgess’ bound∑
h6H

χ(h)�ε H
1/2q3/16+ε,

we find that the h-sum is bounded by

∑
h

χ(h) . . .�ε P
ε

(
(c′, d)

c′

)1/2
Y 1/2

d1/2
q3/16Ξ(`′2m, `

′
1m)

(c′, d)Y

c′d

c′d

(c′, d)Y

�ε P
ε

(
(c′, d)

c′

)1/2
Y 1/2

d1/2
q3/16Ξ(`′2m, `

′
1m),

and the c-sum is bounded by

∑
c≡0 (N)

1

c

∑
h

χ(h) · · · �ε P
2ε (d, `1`2)1/2

`1`2

Y 1/2

d1/2
C1/2q3/16Ξ(`′2m, `

′
1m).

In summing over the m variable we may restrict ourselves to some range

[`1, `2]m�g,ε P
εZ2(C2/Y ),

as the remaining contribution is negligible. If Y/X �g,ε P
εZ2, then we split the m-sum into three

parts, ∑
[`1,`2]m<C2/Y

. . . +
∑

C2/Y6[`1,`2]m<C2/X

. . . +
∑

C2/X6[`1,`2]m�g,εP εZ2(C2/Y )

. . . ,

and combine (2.12), (2.44), (5.18) and (5.26) to infer that

D̃0 �g,ε P
3ε (d, `1`2)1/2

d1/2[`1, `2]1−θ
q3/16XY

3/2

C1/2

(
X−θY θ−1 +X−3/4Y −1/4 + ZX−1/4Y −3/4

)
.

If Y/X �g,ε P
εZ2, then we split the m-sum into two parts,∑

[`1,`2]m<C2/Y

. . . +
∑

C2/Y6[`1,`2]m�g,εP εZ2(C2/Y )

. . . ,

and infer similarly that

D̃0 �g,ε P
3ε (d, `1`2)1/2

d1/2[`1, `2]1−θ
q3/16XY

3/2

C1/2

(
X−θY θ−1 + Z3/2−2θX−θY θ−1

)
.
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In both cases we conclude that

D̃0 �g,ε P
4εZ

(d, `1`2)1/2

d1/2[`1, `2]1−θ
q3/16X

3/4Y 3/4

C1/2
.

Finally, returning to our initial sum Σχ(`1, `2; c), we see by (5.16) that the contribution of the D̃0

terms is bounded by (remember that we have reused the letter d in place of q′d)

�g,ε P
5εZ

(c, `1`2)1/2

[`1, `2]1−θ
c1/2q3/16X

3/4Y 3/4

C1/2
. (5.30)

Remark 5.4. Notice that in the (important for us) case q ∼ c ∼ X ∼ Y (remember that C > Y 1/2),
Burgess’ estimate is used crucially in order to improve over the bound Y 2.

We perform a dyadic subdivision on the h variable. By (5.28) and (5.29), we can decompose
E(m,n, h; c) as

E(m,n, h; c) =
∑
H>1

EH(m,n, h; c),

where H = 2ν , ν ∈ N, and EH(m,n, h; c) as a function of h is supported on [−2H,−H/2]∪ [H/2, 2H]
and satisfies

hjckE(0,0,j,k)
H (m,n, h; c)�j,k,ε P

ε(P εµ3
gZ)kΞ(m,n). (5.31)

Accordingly, we have the decomposition D̃ =
∑
H>1 D̃H .

We shall assume that H 6 8Y/d for otherwise D̃H = 0. We split D̃±H into two more sums getting

a total of 4 terms, D̃±,±H say, where

D̃ε1,ε2
H :=

1

L

∑
m>1

∑
n>1
ε2h
′>0

λg(m)λg(n)D̃ε1
H (m,n)

with

D̃ε1
H (m,n) :=

∑
ε1hh′>0

χ(h)
∑

c≡0 (N)

1

c
S(dh, h′; c)EH(m,n, h; c).

We only consider D̃+,+
H (the term corresponding to h, h′ > 0), the other three terms being treated in

the same way. We proceed by separating the variables h and c by means of Mellin transforms: we
have

EH

(
m,n, h;

4π
√
dhh′

r

)
=

1

2πi

∫
(2)

ϕH(m,n; s; r)h−sds,

where

ϕH(m,n; s; r) :=

∫ +∞

0

EH

(
m,n, x;

4π
√
dxh′

r

)
xs
dx

x

is a smooth function of r compactly supported in the interval
(

2
√
dHh′

C , 36
√
dHh′

C

)
. Hence taking

r = 4π
√
dhh′

c , we have

D̃+
H(m,n) =

1

2πi

∫
(2)

∑
h>1

χ(h)

hs

∑
c≡0 (N)

S(dh, h′; c)

c
ϕH

(
m,n; s,

4π
√
dhh′

c

)
ds.

We are now in a position to apply the Kuznetsov trace formula (2.21) to the innermost c-sum. We
obtain a sum of 3 terms,

D̃+
H(m,n) =

1

2πi

∫
(2)

THolo
H (m,n; s) ds+

1

2πi

∫
(2)

TMaass
H (m,n; s) ds+

1

2πi

∫
(2)

TEisen
H (m,n; s) ds, (5.32)
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where

THolo
H (m,n; s) := 4

∑
k≡0 (2)

ϕ̇H(m,n; s; ∗)(k)Γ(k)
∑

f∈Bhk (N,1)

√
h′ρf (h′)L(f ⊗ χ, s; d),

TMaass
H (m,n; s) := 4

∑
j>1

ϕ̂H(m,n; s; ∗)(tj)
cosh(πtj)

√
h′ρj(h

′)L(uj ⊗ χ, s; d),

TEisen
H (m,n; s) :=

1

π

∑
a

∫ +∞

−∞

ϕ̂H(m,n; s; ∗)(t)
cosh(πt)

√
h′ρa(h′, t)L

(
Ea

(
1
2 + it

)
⊗ χ, s; d

)
dt,

and

L(f ⊗ χ, s; d) :=
∑
h>1

χ(h)
√
dhρf (dh)

hs
.

Our next step will consist of shifting the contours of integration in (5.32) to the left up to <s = 1
2 and

of bounding the three integrand on these contours. For this we will need to bound the various twisted
L-functions L(f ⊗ χ, s; d) on the line <s = 1

2 and the various Bessel transforms ϕ̇H(m,n; s; ∗)(k),
ϕ̂H(m,n; s; ∗)(t) and ϕ̌H(m,n; s; ∗)(t). This will be done in the next two sections.

5.7 Bounds for twisted L-functions

In this section we seek nontrivial bounds for the Dirichlet series L(f ⊗ χ, s; d) when f(z) has trivial
nebentypus and is either a holomorphic Hecke cusp form (i.e., f ∈ Bhk (N, 1)) or a Hecke–Maass cusp
form (i.e., f = uj ∈ B0(N, 1)) or an Eisenstein series f(z) = Ea

(
z, 1

2 + it
)
.

Denoting by f̃ the primitive (arithmetically normalized) cusp form (of level N ′|N) underlying f ,
we have the further factorization

L(f ⊗ χ, s; d) =

 ∑
h|(dN)∞

χ(h)
√
dhρf (dh)

hs

 ∑
(n,dN)=1

χ(n)λf (n)

ns


=

 ∑
h|(dN)∞

χ(h)
√
dhρf (dh)

hs

∏
p|dN

(
1−

χ(p)λf̃ (p)

ps
+
χ0(p)

p2s+1

)L(f̃ .χ, s),

where χ0 denotes the trivial character modulo N ′ and

L(f̃ .χ, s) =
∑
n>1

χ(n)λf̃ (n)

ns

is the twisted L-function of f̃ by the character χ. In particular, we see by (2.45) and Hypothesis H 7
64

that L(f ⊗ χ, s; d) is holomorphic for <s > 1
2 , and for <s = 1

2 one has

L(f ⊗ χ, s; d)�ε (PN)ε

 ∑
h|(dN)∞

|
√
dhρf (dh)|
h1/2

∣∣L(f̃ .χ, s)
∣∣. (5.33)

By (1.4), for L(f̃ .χ, s) one has the subconvexity bound

L(f̃ .χ, s)� (|s|µfNq)ε|s|
1
2µBf N

1
2 q

1
2−δtw , (5.34)

with the parameters

B := 3, δtw :=
1

8
. (5.35)

When f(z) is of the form Ea

(
z, 1

2 + it
)
, the computations of [Mi04] show that bounds for L(f ⊗

χ, s; d) are reduced to bounds for products of Dirichlet L-functions. More precisely, we recall (see
[DI82, Lemma 2.3]) that the cusps {a} of Γ0(N) are uniquely represented by the rationals{ u

w
: w|N, u ∈ Uw

}
,

75



where, for each w|N , Uw is a set of integers coprime with w representing each reduced residue class
modulo (w,N/w) exactly once, and in the half-plane =t < 0 we have for h 6= 0 (see [DI82, (1.17) and
p.247]),

√
|dh|ρa(dh, t) =

π
1
2 +it|dh|it

Γ
(

1
2 + it

) ( (w,N/w)

wN

) 1
2 +it ∑

(γ,N/w)=1

1

γ1+2it

∑
δ(γw), (δ,γw)=1

δγ≡u mod (w,N/w)

e

(
−dh δ

γw

)

with analytic continuation to =t = 0. The congruence condition on δ can be analyzed by means of
multiplicative characters modulo (w,N/w):

∑
(γ,N/w)=1

1

γ1+2it

∑
δ(γw), (δ,γw)=1

δγ≡u mod (w,N/w)

e

(
−dh δ

γw

)
=

1

ϕ((w,N/w))

∑
ψmod (w,N/w)

ψ(−u)
∑

(γ,N/w)=1

ψ(γ)

γ1+2it
Gψ(dh; γw).

For each character ψ mod (w,N/w), we denote by w∗ its conductor and decompose w as

w = w∗w′w′′, w′|(w∗)∞, (w′′, w∗) = 1.

Accordingly, the Gauss sum factors as

Gψ(dh; γw) = ψ(γw′′)Gψ(dh;w∗w′)r(dh; γw′′) = δw′|dhw
′ψ(γw′′)Gψ(dh/w′;w∗)r(dh; γw′′).

Hence the inner sum on the right hand side equals

∑
(γ,N/w)=1

ψ(γ)

γ1+2it
Gψ(dh; γw) =

δw′|dhw
′ψ(dh/w′)ψ(w′′)Gψ(1;w∗)

L(N)(ψ2, 1 + 2it)

 ∑
γ|N∞

(γ,N/w)=1

ψ2(γ)

γ1+2it
r(dh; γw′′)


 ∑

a|dh
(a,N)=1

ψ2(a)

a2it

 ,

where the superscript (N) indicates that the local factors at the primes dividing N have been removed.
We deduce from here the inequality√

|dh|ρa(dh, t)�ε (P (1 + |t|))ε cosh1/2(πt)
(dh,w)(w,N/w)

(wN)1/2

�ε (P (1 + |t|))ε cosh1/2(πt)(dh,N)1/2, (5.36)

and also the identity

L(f ⊗ χ, s; d) =
π

1
2 +itdit

Γ
(

1
2 + it

) ( (w,N/w)

wN

) 1
2 +it

× 1

ϕ((w,N/w))

∑
ψ mod (w,N/w)

w′Gψ(1;w∗)ψ(−ud/(d,w′))ψ(w′′)

(w′/(d,w′))s−itL(N)(ψ2, 1 + 2it)
χ

(
w′

(d,w′)

)

×
∑
h>1

χ(h)ψ(h)

hs−it

 ∑
γ|N∞

(γ,N/w)=1

ψ2(γ)

γ1+2it
r

(
dhw′

(d,w′)
; γw′′

)


∑
a| dh

(d,w′)
(a,N)=1

ψ2(a)

a2it

 .
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Now the h-sum factors as ∑
(h,dN)=1

. . .

 ∑
h|(dN)∞

. . .

 = L(dN)(χψ, s− it)L(dN)(χψ, s+ it)

×
∑

h|(dN)∞

χ(h)ψ(h)

hs−it

 ∑
γ|N∞

(γ,N/w)=1

ψ2(γ)

γ1+2it
r

(
dh

(d,w′)
; γw′′

)


∑
a| dh

(d,w′)
(a,N)=1

ψ2(a)

a2it

 .

We can see that the second factor is holomorphic for <s > 0 and is bounded, for any ε > 0, by
�ε (dN)ε(d,w′′)(w′′)1−<s in this domain. Hence L(f ⊗χ, s; d) has meromorphic continuation to the
half-plane {s, <s > 0} with the only possible poles at s = 1 ± it. The latter poles occur only if q
divides (w,N/w).

By Burgess’ bound

L(χψ, s− it)L(χψ, s+ it)�ε (|s|+ |t|)1/2+ε(qw∗)1/2−1/8+ε,

we infer that for <s = 1
2 ,

L
(
Ea

(
z, 1

2 + it
)
⊗ χ, s; d

)
�ε ((1 + |t|)Nq)ε cosh1/2(πt)(|s|+ |t|)1/2+ε (w,N/w)1−1/8(d,w)

N
1
2

q1/2−1/8

�ε ((1 + |t|)Nq)ε cosh1/2(πt)(|s|+ |t|)1/2+ε(d,N)q1/2−1/8.

Remark 5.5. In the special case where q|(w,N/w), the residues of L
(
Ea

(
z, 1

2 + it
)
⊗ χ, s; d

)
at

s = 1± it (t 6= 0) are bounded by

ress=1±it L
(
Ea

(
z, 1

2 + it
)
⊗ χ, s; d

)
�ε ((1 + |t|)Nq)ε cosh1/2(πt)

(d,w)(w,N/w)

(wN)1/2

�ε ((1 + |t|)Nq)ε cosh1/2(πt)(d,N)1/2, (5.37)

and the same bound holds for ress=1(s− 1)L
(
Ea

(
z, 1

2 + it
)
⊗ χ, s; d

)
if t = 0.

5.8 Putting it all together

We will need to bound the Bessel transforms ϕ̇H(m,n; s; ∗)(k), ϕ̂H(m,n; s; ∗)(t) and ϕ̌H(m,n; s; ∗)(t).
For this purpose, we first record an estimate for ϕH and its partial derivatives. Using (5.31) and
several integrations by parts, we see that for any j, k > 0 and <s > − 1

2 ,

rk
∂k

∂rk
ϕH(m,n; s; r)�j,k,ε P

ε(P εµ3
gZ)j+k|s|−jΞ(m,n)H<s, (5.38)

where Ξ(m,n) is defined in (5.26); moreover, as a function of r, ϕH(m,n; s; r) is supported on(
2

√
dHh′

C
, 36

√
dHh′

C

)
= (R, 18R),

say. We will apply these bounds in conjunction with Lemma 2.1.
We are now ready to combine the results of the preceding sections to conclude the proof of

Theorem 5.1. We start by estimating the contribution of the Maass spectrum to D̃+,+
H :

1

L

∑
m,n>1
h′>0

λg(m)λg(n)
1

2πi

∫
(2)

TMaass
H (m,n; s) ds =

1

2πi

∫
(1/2)

1

L

∑
m,n>1
h′>0

λg(m)λg(n)TMaass
H (m,n; s) ds.
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With some T0 > max(10R, 1) to be determined later, we further decompose TMaass
H (m,n; s) as

TMaass
H (m,n; s) = TMaass

H,6T0
(m,n; s) + TMaass

H,>T0
(m,n; s),

corresponding to the contributions of the eigenforms uj ∈ B0(N, 1) such that |tj | 6 T0 and |tj | > T0,
respectively (observe that the first portion contains the exceptional spectrum whenever it exists).

Setting W := P εµ3
gZ, we can apply (2.23) and (2.24) to ϕ = ϕH(m,n; s; ∗) in the light of (5.38).

Using also (5.33) and (5.34), we obtain, for any j > 0,

TMaass
H,6T0

(m,n; s)�j,ε (PT0)ε
W j

|s|j−1/2−εΞ(m,n)(`1`2)1/2H1/2q1/2−δtw

×
∑
|ti|6T0

|
√
h′ρi(h

′)|
cosh(πti)

 ∑
h|(dN)∞

|
√
dhρi(dh)|
h1/2

 1 + | log(R/W )|+ (R/W )−2|=ti|

1 +R/W
TB0 .

By several applications of the Cauchy–Schwarz inequality and the bound (2.45), we can see that

∑
|ti|6T0

|
√
h′ρi(h

′)|
cosh(πti)

 ∑
h|(dN)∞

|
√
dhρi(dh)|
h1/2

�ε (mnPT0)ε(h′d)θT 2
0 . (5.39)

In addition, since H 6 8Y/d and R = 2
√
dHh′/C, we have

1 + | log(R/W )|+ (R/W )−2|=ti|

1 +R/W
H1/2 �ε P

ε

(
W 2C2

h′Y

)θ (
Y

d

)1/2

.

Hence by summing over m,n and using (2.44) and (5.26), we find that∑
`1m�g,εP

εZ2(C2/X)

`2n�g,εP
εZ2(C2/Y )

∣∣∣λg(m)λg(n)TMaass
H,6T0

(m,n; s)
∣∣∣�j,g,ε

(PT0)5εZ3+2θ W j

|s|j−1/2−ε (`1`2)1/2dθ
C3

`1`2

(
C2

Y

)θ (
Y

d

)1/2

q1/2−δtwTB+2
0 .

For TMaass
H,>T0

(m,n; s), we use (2.26), (5.33) and (5.34): we obtain, for any j > 0 and any k > 1,

TMaass
H,>T0

(m,n; s)�j,ε P
ε W j

|s|j−1/2−εΞ(m,n)(`1`2)1/2H1/2q1/2−δtw

×
∑
|ti|>T0

|
√
h′ρi(h

′)|
cosh(πti)

 ∑
h|(dN)∞

|
√
dhρi(dh)|
h1/2

|ti|B+ε

(
W

ti

)k(
1

t
1/2
i

+
R

ti

)
.

We take k > 3/2 +B + ε to ensure the convergence of the sum over the {uj}, and then we sum over
m,n using (2.44) and (5.26). As before, we may restrict ourselves to some range

`1m�g,ε P
εZ2(C2/X) and `2n�g,ε P

εZ2(C2/Y ),

the remaining contribution being negligible. In this range

h′ �g,ε P
εZ2(C2/X) and R�g,ε P

εZ(Y/X)1/2,

therefore we obtain, using also (5.39),∑
`1m�g,εP

εZ2(C2/X)

`2n�g,εP
εZ2(C2/Y )

∣∣∣λg(m)λg(n)TMaass
H,>T0

(m,n; s)
∣∣∣�j,k,g,ε (PT0)5εZ3+2θ

× W j

|s|j−1/2−ε (`1`2)1/2dθ
C3

`1`2

(
C2

X

)θ (
Y

d

)1/2

q1/2−δtw
(
W

T0

)k
TB+2

0

(
1

T
1/2
0

+
Z(Y/X)1/2

T0

)
.
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Summing up and using also (5.18), we infer that

1

L

∑
m,n>1
h′>0

λg(m)λg(n)TMaass
H (m,n; s)�j,k,g,ε (PT0)6εZ3+2θ W j

|s|j−1/2−ε (`1`2)1/2dθ

× C
(
C2

Y

)θ (
Y

d

)1/2

q1/2−δtwTB+2
0

{
1 +

(
W

T0

)k(
(Y/X)θ

T
1/2
0

+
Z(Y/X)1/2+θ

T0

)}
.

Upon choosing
T0 := max(10R,WY 1/k)�g,ε WY 1/k(Y/X)1/2

and taking k very large (in terms of ε), the above becomes

�j,g,ε P
13εZ3+2θ W

j+B+2

|s|j−1/2−ε (`1`2)1/2dθ−1/2q1/2−δtw(Y/X)(B+2)/2Y 1/2−θC1+2θ.

We use this bound with j > 3/2 + ε (to ensure convergence in the s-integral), and integrate over s.
In this way we obtain that the contribution of the Maass spectrum to D̃+,+ is bounded by

�g,ε P
14εZ3+2θW 7/2+B(`1`2)1/2dθ−1/2q1/2−δtw(Y/X)(B+2)/2Y 1/2−θC1+2θ,

hence by (5.16) the global contribution of the Maass spectrum to Σχ(`1, `2; c) is bounded by (remem-
ber that we have reused the letter d in place of q′d)

�g,ε P
24εZ13/2+B+2θ(`1`2)1/2c1/2+θq1/2−θ−δtw(Y/X)(B+2)/2Y 1/2−θC1+2θ. (5.40)

Similar arguments (using also (2.45) and (2.26) for ϕ̇) show that the same bound holds for the
holomorphic and the Eisenstein spectrum (in fact in a stronger form). For the Eisenstein portion,
however, an additional term might occur, coming from the poles of L

(
Ea

(
z, 1

2 + it
)
⊗ χ, s

)
at s = 1±

it. This additional term occurs only if q|(w,N/w) for some w|N (in particular q 6 N1/2 = (D`1`2)1/2)
and (by (5.36), (5.37), (2.24), and (5.38) with j = 1 + δ for δ > 0 small) contributes to D̃+,+

>H (m,n)
at most

�g,ε P
2εWΞ(m,n)(d, `1`2)1/2(h′, `1`2)1/2Y

d
,

and the contribution of these residues to Σχ(`1, `2; c) is bounded by

�g,ε P
3εWZ3(c, `1`2)1/2q1/2Y C �g P

4εZ4(c, `1`2)1/2(`1`2)1/2Y C. (5.41)

Collecting all the previous estimates, we obtain that Σχ(`1, `2; c) is bounded by the sum of the
terms in (5.20), (5.30), (5.40), plus the additional term (5.41) if q|(w,N/w) for some w|N . To
conclude, we discuss now the choice of the parameter C.

A comparison of (5.40) with (5.20) suggests the choice

Copt := Z−
9+2B+4θ
4(1+θ) c−

θ
2(1+θ) q−

1−2θ−2δtw
4(1+θ) (X/Y )

B+2
4(1+θ)X

1
4(1+θ)Y 1/2 =: DoptY

1/2,

say. Clearly, Copt 6 Y and the condition Copt > Y 1/2 is fulfilled if and only if

X > Xopt := Z
9+2B+4θ
B+3 c

2θ
B+3 q

1−2θ−2δtw
B+3 Y

B+2
B+3 . (5.42)

Under this condition it follows from Y > X, c > q and δtw 6 1
8 that

q3/16X
3/4Y 3/4

C
1/2
opt

6
X1/2Y 3/2

Copt
,

so that (5.30) is bounded by (5.20) (when P 2ε is replaced by P 5ε). Therefore, we obtain Theorem 5.1
when (5.42) is satisfied (cf. (5.40)):

Σχ(`1, `2; c)�g,ε P
24εZ13/2+B+2θ(`1`2)1/2c1/2+θq1/2−θ−δtw(Y/X)(B+2)/2Y D1+2θ

opt ,
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plus the additional term (5.41), if q|(w,N/w) for some w|N , which equals

P 4εZ4(c, `1`2)1/2(`1`2)1/2Y Copt = P 4εZ4(c, `1`2)1/2(`1`2)1/2Y 3/2Dopt.

If (5.42) is not satisfied (i.e., X < Xopt, hence Dopt < 1), we choose C = Y 1/2 = Y 1/2 max(1, Dopt).
We see that (5.20) is bounded by (5.40) whose value is given by

�g,ε P
24εZ13/2+B+2θ(`1`2)1/2c1/2+θq1/2−θ−δtw(Y/X)4Y.

The diagonal contribution (5.30) is bounded by

�g,ε P
5εZ

(c, `1`2)1/2

[`1, `2]1−θ
c1/2q3/16X3/4Y 1/2 6 P 5εZ(`1`2)θc1/2q3/16X1/4(X/Y )1/2Y.

Translating X < Xopt into

X(X/Y )B+2 < Z9+2B+4θc2θq1−2θ−2δtw ,

and using also c > q and δtw 6 1
8 , we can see that

q3/16X1/4(X/Y )(B+2)/4 < Z9/2+B+2θcθq1/2−θ−δtw .

It follows that (5.30) is bounded by

�g,ε P
5εZ11/2+B+2θ(`1`2)θc1/2+θq1/2−θ−δtw(Y/X)B/4Y.

In particular, if (5.42) is not satisfied, then (5.20), (5.30) and (5.40) are all bounded by

P 24εZ13/2+B+2θ(`1`2)1/2c1/2+θq1/2−θ−δtw(Y/X)B/4Y.

Finally, if q|(w,N/w) for some w|N , the additional term (5.41) equals

P 4εZ4(c, `1`2)1/2(`1`2)1/2Y 3/2.

This concludes the proof of Theorem 5.1.
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Chapter 6

Appendix

6.1 Heegner points, closed geodesics, and ideal classes

In this section we discuss how the narrow ideal classes in an imaginary (resp. real) quadratic number
field give rise to Heegner points (resp. closed geodesics) on the modular surface SL2(Z)\H.

Let us start the discussion with the equivalence of integral binary quadratic forms. The concept
was introduced by Lagrange [La73] and studied by Gauss [Ga86] in a systematic fashion.

An integral binary quadratic form is a homogeneous polynomial

〈a, b, c〉 := ax2 + bxy + cy2 ∈ Z[x, y]

with associated discriminant
d := b2 − 4ac ∈ Z.

The possible discriminants are the integers congruent to 0 or 1 mod 4. We shall assume that the form
〈a, b, c〉 is not a product of linear factors in Z[x, y], then d is not a square, hence ac 6= 0. If d < 0
then ac > 0 and we shall assume that we are in the positive definite case a, c > 0. Furthermore, we
shall assume that d is a fundamental discriminant which means that it cannot be written as d′e2 for
some smaller discriminant d′. Then 〈a, b, c〉 is a primitive form which means that a, b, c are relatively
prime. The possible fundamental discriminants are the square-free numbers congruent to 1 mod 4
and 4 times the square-free numbers congruent to 2 or 3 mod 4.

Example 1. The first few negative fundamental discriminants are: −3, −4, −7, −8, −11, −15, −19,
−20, −23, −24. The first few positive fundamental discriminants are: 5, 8, 12, 13, 17, 21, 24, 28, 29,
33.

Lagrange [La73] discovered that every form 〈a, b, c〉 with a given discriminant d can be reduced
by some integral unimodular substitution

(x, y) 7→ (αx+ βy, γx+ δy),

(
α β
γ δ

)
∈ SL2(Z),

to some form with the same discriminant that lies in a finite set depending only on d. Forms that
are connected by such a substitution are called equivalent. It is easiest to understand this reduction
by looking at the simple substitutions

(x, y)
T7→ (x− y, y) and (x, y)

S7→ (−y, x). (6.1)

The induced actions on forms are given by

〈a, b, c〉 T7→ 〈a, b− 2a, c+ a− b〉 and 〈a, b, c〉 S7→ 〈c,−b, a〉.

Now a given form 〈a, b, c〉 can always be taken to some 〈a, b′, c′〉 with |b′| 6 |a| by applying T or T−1

a few times. If |a| 6 |c′| then we stop our reduction. Otherwise we apply S to get some 〈a′′, b′′, c′′〉
with |a′′| < |a| and we start over with this form. In this algorithm we cannot apply S infinitely
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many times because |a| decreases at each such step. Hence in a finite number of steps we arrive at
an equivalent form 〈a, b, c〉 whose coefficients satisfy

|b| 6 |a| 6 |c|, b2 − 4ac = d. (6.2)

These constraints are satisfied by finitely many triples (a, b, c). Indeed, we have

|d| = |b2 − 4ac| > 4|ac| − b2 > 3b2, (6.3)

so there are only� |d|1/2 choices for b and for each such choice there are only�ε d
ε choices for a and

c since the product ac is determined by b. We have shown that the number of equivalence classes of
integral binary quadratic forms of fundamental discriminant d, denoted h(d), satisfies the inequality

h(d)�ε |d|1/2+ε. (6.4)

In the case d < 0 it is straightforward to compile a maximal list of inequivalent forms satisfying
(6.2). There is an algorithm for d > 0 as well but it is less straightforward. In fact the subsequent
findings of this lecture can be turned into an algorithm for all d. Note that for d > 0 (6.3) implies
4ac = b2−d < 0, hence by an extra application of S we can always arrange for a reduced form 〈a, b, c〉
with a > 0.

Example 2. The equivalence classes for d = −23 are represented by the forms 〈1, 1, 6〉, 〈2,±1, 3〉.
Hence h(−23) = 3. The equivalence classes for d = 21 are represented by the forms 〈1, 1,−5〉,
〈−1, 1, 5〉. Hence h(21) = 2.

To obtain a geometric picture of equivalence classes of forms we shall think of Q(
√
d) as embedded

in C such that
√
d/i > 0 for d < 0 and

√
d > 0 for d > 0. For q1, q2 ∈ Q we shall consider the

conjugation

q1 + q2

√
d := q1 − q2

√
d.

Each form 〈a, b, c〉 decomposes as

ax2 + bxy + cy2 = a(x− zy)(x− z̄y),

where

z :=
−b+

√
d

2a
, z̄ :=

−b−
√
d

2a
.

Using (6.1) we can see that the action of SL2(Z) on z and z̄ is the usual one given by fractional linear
transformations:

z
T7→ z + 1 and z

S7→ −1/z.

Therefore in fact we are looking at the standard action of SL2(Z) on certain conjugate pairs of points
of Q(

√
d) embedded in C. For d < 0 we consider the points z ∈ H and obtain h(d) points on

SL2(Z)\H. These are the Heegner points of discriminant d < 0. For d > 0 we consider the geodesics
Gz̄,z ⊂ H connecting the real points {z̄, z} and obtain h(d) geodesics on SL2(Z)\H.

It is a remarkable fact that for d > 0 any geodesic Gz̄,z as above becomes closed when projected
to SL2(Z)\H, and its length is an important arithmetic quantity associated with the number field
Q(
√
d). To see this take any matrix M ∈ GL+

2 (R) which takes 0 to z̄ and ∞ to z, for example1

M :=

(
z z̄
1 1

)
,

then M takes the positive real axis (resp. geodesic) connecting {0,∞} to the real segment (resp.
geodesic) connecting {z̄, z}. In particular, using that M is a conformal automorphism of the Riemann
sphere, we see that Gz̄,z is the semicircle above the real segment [z̄, z], parametrized as

Gz̄,z = {g(λ)i : λ > 0}, where g(λ) := M

(
λ 0
0 λ−1

)
.

1we assume here that a > 0 which is legitimate as we have seen
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Moreover, the unique isometry of H fixing the geodesic Gz̄,z and taking g(1)i to g(λ)i is given by the
matrix

M

(
λ 0
0 λ−1

)
M−1 ∈ SL2(R).

Therefore we want to see that for some λ > 1 the matrix

M

(
λ 0
0 λ−1

)
M−1 =

1

z − z̄

(
zλ− z̄λ−1 zz̄(λ−1 − λ)
λ− λ−1 zλ−1 − z̄λ

)
(6.5)

is in SL2(Z), and then the projection of Gz̄,z to SL2(Z)\H has length∫ λ2

1

dy

y
= 2 ln(λ)

for the smallest such λ > 1. A necessary condition for λ is that the sum and difference of diagonal
elements of the matrix (6.5) are integers and so are the anti-diagonal elements as well. Using that

z − z̄ =

√
d

a
, z + z̄ =

−b
a
, zz̄ =

c

a

this is equivalent to:

λ+ λ−1 ∈ Z, {a, b, c}λ− λ
−1

√
d
⊂ Z.

As gcd(a, b, c) = 1 we can simplify this to

λ+ λ−1 ∈ Z, and
λ− λ−1

√
d
∈ Z.

In other words, there are integers m,n such that

λ =
m+ n

√
d

2
and λ−1 =

m− n
√
d

2
. (6.6)

As λ > 1 the integers m,n are positive and they satisfy the diophantine equation

m2 − dn2 = 4. (6.7)

The equations (6.6)–(6.7) are not only necessary but also sufficient for (6.5) to lie in SL2(Z). Namely,
(6.5)–(6.7) imply that

M

(
λ 0
0 λ−1

)
M−1 =

(
m−bn

2 −nc
na m+bn

2

)
∈ SL2(Z) (6.8)

since
m± bn ≡ m2 − dn2 ≡ 0 (mod 2).

The λ’s given by (6.6)–(6.7) are exactly the totally positive2 units in the ring of integers Od of
Q(
√
d). These units form a group isomorphic to Z by Dirichlet’s theorem, therefore there is a smallest

λ = λd > 1 among them (which generates the group). In other words, the sought λ = λd > 1 exists
and comes from the smallest positive solution of (6.7). In classical language, the matrices (6.8) are
the automorphs of the form 〈a, b, c〉.

To summarize, the SL2(Z)-orbits of forms 〈a, b, c〉 with given fundamental discriminant d give rise
to h(d) Heegner points on SL2(Z)\H for d < 0 and h(d) closed geodesics of length 2 ln(λd) for d > 0
where λd = (m + n

√
d)/2 is the smallest totally positive unit of Od greater than 1. This geometric

picture is even more interesting in the light of the following refinement of (6.4) which is a consequence
of Dirichlet’s class number formula and Siegel’s theorem (see [Da00, Chapters 6 and 21]):

|d|1/2−ε �ε h(d)�ε |d|1/2+ε, d < 0,

d1/2−ε �ε h(d) ln(λd)�ε d
1/2+ε, d > 0.

(6.9)

2i.e. positive under both embeddings Q(
√
d) ↪→ R
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This shows that the set of Heegner points of discriminant d < 0 has cardinality about |d|1/2, while
the set of closed geodesics of discriminant d > 0 has total length about d1/2.

We now prove that the equivalence classes of forms of fundamental discriminant d can be mapped
bijectively to narrow ideal classes of the quadratic number field Q(

√
d) in a natural fashion. As the

latter classes form an abelian group under multiplication, we obtain a natural multiplication law
on the equivalence classes of forms. This law, discovered by Gauss [Ga86], is called composition in
the classical theory. In combination with the previous paragraphs, we obtain that the narrow ideal
classes correspond bijectively to the Heegner points (if d < 0) or the closed geodesics (if d > 0)
of discriminant d on SL2(Z)\H, and the narrow ideal class group acts on these geometric objects
accordingly.

Recall that a fractional ideal of Q(
√
d) is a finitely generated Od-module contained in Q(

√
d)

and two nonzero fractional ideals are equivalent (in the narrow sense) if their quotient is a principal
fractional ideal generated by a totally positive element of Q(

√
d). Here “totally positive element” can

clearly be changed to “element of positive norm” where the norm of µ ∈ Q(
√
d) is given by N(µ) = µµ̄.

Recall also that we can represent equivalence classes of forms of fundamental discriminant d by some

Qi(x, y) = aix
2 + bixy + ciy

2 = ai(x− ziy)(x− z̄iy), i = 1, . . . , h(d),

with

ai > 0, zi :=
−bi +

√
d

2ai
, z̄i :=

−bi −
√
d

2ai
.

It will suffice to show that each fractional ideal I of Q(
√
d) is equivalent to some fractional ideal

Ii := Z + Zzi, i = 1, . . . , h(d),

and that the fractional ideals Ii are pairwise inequivalent.
Any fractional ideal I can be written as

I = Zω1 + Zω2 with
ω̄1ω2 − ω1ω̄2√

d
> 0.

We associate to I (and ω1, ω2) the binary quadratic form

QI(x, y) :=
(xω1 − yω2)(xω̄1 − yω̄2)

N(I)
,

where N(I) > 0 is the absolute norm of I, i.e. the multiplicative function that agrees with (Od : I)
for integral ideals I. We claim first that QI(x, y) has integral coefficients and discriminant d. To see
the claim we can assume that I is an integral ideal since QI(x, y) does not change if we replace I by
nI (and ωi by nωi) for some positive integer n. Then ω1, ω2 and their conjugates are in Od and the
claim amounts to:

• N(I) | ω1ω̄1, ω1ω̄2 + ω̄1ω2, ω2ω̄2;

• (ω1ω̄2 − ω̄1ω2)2 = N(I)2d.

The first statement follows from the fact that ω1, ω2, ω1 +ω2 are elements of I, hence their norms are
divisible by N(I). The second statement follows by writing Od as Z + Zω and then noting that∣∣∣∣ω1 ω̄1

ω2 ω̄2

∣∣∣∣2 = (Od : I)2

∣∣∣∣1 1
ω ω̄

∣∣∣∣2 = N(I)2d.

The claim implies that there is a unique i and a unique

(
α β
γ δ

)
∈ SL2(Z) such that

QI(αx+ βy, γx+ δy) = Qi(x, y).

We can write this as

N(αω1 − γω2)

N(I)
(x− zy)(x− z̄y) = ai(x− ziy)(x− z̄iy),
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where

z :=
−βω1 + δω2

αω1 − γω2
. (6.10)

This implies immediately that

N(αω1 − γω2) = aiN(I) > 0. (6.11)

Then a straightforward calculation yields

z − z̄√
d

=
αδ − βγ

N(αω1 − γω2)

ω̄1ω2 − ω1ω̄2√
d

> 0

which by
zi − z̄i√

d
=

1

ai
> 0

forces that z = zi. But then (6.10)–(6.11) imply that

I = Zω1 + Zω2 = Z(αω1 − γω2) + Z(−βω1 + δω2)

is equivalent to
Z + Zz = Z + Zzi = Ii.

Now assume that Ii and Ij are equivalent, i.e. there is some µ ∈ Q(
√
d) such that

µ(Z + Zzi) = Z + Zzj , N(µ) > 0.

Then we certainly have some

(
α β
γ δ

)
∈ GL2(Z) such that

µ = α+ βzj , µzi = γ + δzj .

In particular,

zi =
γ + δzj
α+ βzj

with N(α+ βzj) > 0.

By a straightforward calculation as before,

zi − z̄i√
d

=
αδ − βγ

N(α+ βzj)

zj − z̄j√
d

,

which shows that

αδ − βγ = 1 and N(α+ βzj) =
zj − z̄j
zi − z̄i

=
ai
aj
.

Now we obtain

ai(x− ziy)(x− z̄iy) = aj
(
(α+ βzj)x− (γ + δzj)y

)(
(α+ βz̄j)x− (γ + δz̄j)y

)
,

i.e.

Qi(x, y) = Qj(αx− γy,−βx+ δy),

(
α −γ
−β δ

)
∈ SL2(Z).

This clearly implies that i = j, since otherwise the forms Qi and Qj are inequivalent.
Incidentally, we see that the equivalence class of the associated form QI(x, y) only depends on the

narrow class of I (in particular, it is independent of the choice of ordered basis of I) and two fractional
ideals I and J are in the same narrow class if and only if QI(x, y) and QJ(x, y) are equivalent.
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6.2 Bessel functions

In this section we prove some basic facts concerning Bessel functions.
For s ∈ C, the Bessel functions satisfy the recurrence relations(

xsJs(x)
)′

= xsJs−1(x),
(
xsYs(x)

)′
= xsYs−1(x),

(
xsKs(x)

)′
= −xsKs−1(x).

In particular, if α > 0 and Bs denotes either Js, Ys or Ks, then

(α
√
x)sBs(α

√
x) = ± 2

α2

d

dx

(
(α
√
x)s+1Bs+1(α

√
x)
)
. (6.12)

and for any j ∈ N,

xj
dj

djx
Bs

(α
x

)
= Qj(s)Bs

(α
x

)
+Qj−1(s)

(α
x

)1

Bs−1

(α
x

)
+ · · ·+Q0(s)

(α
x

)j
Bs−j

(α
x

)
, (6.13)

where each Qi is a polynomial of degree i whose coefficients depend on i and j.

Lemma 6.1. Let F ∈ C∞c (R+) be a smooth function of compact support. For s ∈ C let Bs denote
either of the Bessel functions Js, Ys or Ks. Then for α > 0 and j ∈ N we have∫ ∞

0

F (x)Bs(α
√
x) dx = ±

(
2

α

)j ∫ ∞
0

dj

dxj
(
F (x)x−

s
2

)
x
s+j
2 Bs+j(α

√
x) dx. (6.14)

Proof. Using (6.12) and applying integration by parts j times we obtain∫ ∞
0

F (x)Bs(α
√
x) dx = ±

(
2

α2

)j ∫ ∞
0

F (x)(α
√
x)−s

dj

dxj
(
(α
√
x)s+jBs+j(α

√
x)
)
dx

= ±
(

2

α2

)j ∫ ∞
0

dj

dxj
(
F (x)(α

√
x)−s

)
(α
√
x)s+jBs+j(α

√
x) dx

= ±
(

2

α

)j ∫ ∞
0

dj

dxj
(
F (x)x−

s
2

)
x
s+j
2 Bs+j(α

√
x) dx.

Proposition 6.1. For any integer k > 1, the following uniform estimate holds:

Jk−1(x)�

{
xk−1

2k−1Γ(k− 1
2 )
, 0 < x 6 1;

kx−1/2, 1 < x.

The implied constant is absolute.

Proof. For x > k2, the asymptotic expansion of Jk−1 (see Section 7.13.1 of [Ol74]) provides the
stronger estimate Jk−1(x)� x−1/2 with an absolute implied constant.

For 1 < x 6 k2, we use Bessel’s original integral representation (see Section 2.2 of [Wa44]),

Jk−1(x) =
1

2π

∫ 2π

0

cos
(
(k − 1)θ − x sin θ

)
dθ,

to deduce that in this range
|Jk−1(x)| 6 1 6 kx−1/2.

For the remaining range 0 < x 6 1, the required estimate follows from the Poisson–Lommel
integral representation (see Section 3.3 of [Wa44])

Jk−1(x) =
xk−1

2k−1Γ
(
k − 1

2

)
Γ
(

1
2

) ∫ π

0

cos(x cos θ) sin2k−2 θ dθ.
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Proposition 6.2. For any σ > 0 and any ε > 0, the following uniform estimates hold in the strip
|<s| 6 σ:

e−π|=s|/2Ys(x)�


(
1 + |=s|

)σ+ε
x−σ−ε, 0 < x 6 1 + |=s|;(

1 + |=s|
)−ε

xε, 1 + |=s| < x 6 1 + |s|2;

x−1/2, 1 + |s|2 < x.

eπ|=s|/2Ks(x)�

{(
1 + |=s|

)σ+ε
x−σ−ε, 0 < x 6 1 + π|=s|/2;

e−x+π|=s|/2x−1/2, 1 + π|=s|/2 < x.

The implied constants depend at most on σ and ε.

Proof. The last estimate for Ys follows from its asymptotic expansion (see Section 7.13.1 of [Ol74]).
The last estimate for Ks follows from Schläfli’s integral representation (see Section 6.22 of [Wa44]),

Ks(x) =

∫ ∞
0

e−x cosh(t) cosh(st) dt,

by noting that
cosh(t) > 1 + t2/2 and | cosh(st)| 6 eσt.

We shall deduce the remaining uniform bounds from the integral representations

4Ks(x) =
1

2πi

∫
C

Γ

(
w − s

2

)
Γ

(
w + s

2

)(x
2

)−w
dw,

−2πYs(x) =
1

2πi

∫
C

Γ

(
w − s

2

)
Γ

(
w + s

2

)
cos
(π

2
(w − s)

)(x
2

)−w
dw,

where the contour C is a broken line of 2 infinite and 3 finite segments joining the points

−ε− i∞, −ε− i
(
2 + 2|=s|

)
, σ + ε− i

(
2 + 2|=s|

)
,

σ + ε+ i
(
2 + 2|=s|

)
, −ε+ i

(
2 + 2|=s|

)
, −ε+ i∞.

These formulae follow by analytic continuation from the well-known but more restrictive inverse
Mellin transform representations of the K- and Y -Bessel functions, cf. formulae 6.8.17 and 6.8.26 in
[Er54].

If we write in the second formula

cos
(π

2
(w − s)

)
= cos

(π
2
w
)

cos
(π

2
s
)

+ sin
(π

2
w
)

sin
(π

2
s
)
,

then it becomes apparent that the remaining inequalities of the lemma can be deduced from the
uniform bound∫
C
eπmax(|=s|,|=w|)/2

∣∣∣∣Γ(w − s2

)
Γ

(
w + s

2

)(x
2

)−w
dw

∣∣∣∣�σ,ε

(
x

1 + |=s|

)−σ−ε
+

(
x

1 + |=s|

)ε
.

By introducing the notation
G(s) = eπ|=s|/2Γ(s),

Ms(x) =

∫
C

∣∣∣∣G(w − s2

)
G

(
w + s

2

)(x
2

)−w
dw

∣∣∣∣ ,
the previous inequality can be rewritten as

Ms(x)�σ,ε

(
x

1 + |=s|

)−σ−ε
+

(
x

1 + |=s|

)ε
. (6.15)
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Case 1. |=s| 6 1.
If w lies on either horizontal segments of C or on the finite vertical segment joining σ + ε± i

(
2 +

2|=s|
)
, then w ± s varies in a fixed compact set (depending at most on σ and ε) disjoint from the

negative axis (−∞, 0]. It follows that for these values w we have

G

(
w − s

2

)
G

(
w + s

2

)
�σ,ε 1,

i.e.,

G

(
w − s

2

)
G

(
w + s

2

)(x
2

)−w
�σ,ε x

−σ−ε,

and the same bound holds for the contribution of these values to Ms(x).
If w lies on either infinite vertical segments of C, then

|=(w ± s)| � |=w| > 1,

whence Stirling’s approximation yields

G

(
w − s

2

)
G

(
w + s

2

)
�ε |=w|−ε−1.

It follows that the contribution of the infinite segments to Ms(x) is �σ,ε x
ε.

Altogether we infer that
Ms(x)�σ,ε x

−σ−ε + xε,

which is equivalent to (6.15).

Case 2. |=s| > 1.
If w lies on either horizontal segments of C, then

|=(w ± s)| � |=s|,

whence Stirling’s approximation yields

G

(
w − s

2

)
G

(
w + s

2

)
�σ,ε |=s|<w−1,

i.e.,

G

(
w − s

2

)
G

(
w + s

2

)(x
2

)−w
�σ,ε

1

|=s|

(
|=s|
x

)<w
.

It follows that the contribution of the horizontal segments to Ms(x) is

�σ,ε |=s|−1+σ+εx−σ−ε + |=s|−1−εxε.

If w lies on the finite vertical segment of C joining σ + ε± i
(
2 + 2|=s|

)
, then

<(w ± s) > ε and max |=(w ± s)| � |=s|,

whence Stirling’s approximation implies

G

(
w − s

2

)
G

(
w + s

2

)
�σ,ε

{
|=s|σ+ε/2−1/2 if min |=(w ± s)| 6 1;

|=s|σ+ε−1 if min |=(w ± s)| > 1.

It follows that the contribution of the finite vertical segment to Ms(x) is

�σ,ε |=s|σ+εx−σ−ε.

If w lies on either infinite vertical segments of C, then

|=(w ± s)| � |=w| > |=s|,
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whence Stirling’s approximation yields

G

(
w − s

2

)
G

(
w + s

2

)
�ε |=w|−ε−1.

It follows that the contribution of the infinite vertical segments to Ms(x) is

�σ,ε |=s|−εxε.

Altogether we infer that

Ms(x)�σ,ε |=s|σ+εx−σ−ε + |=s|−εxε,

which is equivalent to (6.15).

The proof of Proposition 6.2 is complete.
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[Er54] A. Erdélyi et al., Tables of integral transforms, Vol. I. [based on notes left by H.
Bateman], McGraw-Hill, New York, 1954. 87

[FM11] A. Folsom, R. Masri, The asymptotic distribution of traces of Maass–Poincaré series,
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