EULER MEETS FEYNMAN

GERGELY HARCOS

1. Some rational multiples of $\zeta(3)$

This note is based on the MathOverflow posts [1, 2, 3, 4] and the MathStackExchange post [5]. We shall evaluate some series and integrals by a combination of methods pioneered by Euler and Feynman. The values obtained are rational multiples of $\zeta(3)$.

Theorem 1. Let H_n be the n-th harmonic number. Then

$$\sum_{n=1}^{\infty} \frac{1}{n^2} H_n = 2\zeta(3) \qquad and \qquad \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} H_n = \frac{5}{8}\zeta(3).$$

Theorem 2.

$$\int_0^1 \int_0^1 \int_1^\infty \frac{dx \, dy \, dz}{x(x+y)(x+y+z)} = \frac{5}{24} \zeta(3).$$

Theorem 3.

$$\int_0^1 \frac{\log(t)\log(t+1)}{t} dt = -\frac{3}{4}\zeta(3),$$

$$\int_0^1 \frac{\log(t)\log(t+2)}{t+1} dt = -\frac{13}{24}\zeta(3),$$

$$\int_0^1 \frac{\log(t)\log(t+1)}{t+1} dt = -\frac{1}{8}\zeta(3).$$

2. Proof of Theorem 1

Let $(a_n)_{n=1}^{\infty}$ be an arbitrary bounded sequence. Then

$$\begin{split} \sum_{n=1}^{\infty} \frac{a_n}{n^2} H_n &= \sum_{n=1}^{\infty} \frac{a_n}{n^2} \left\{ \frac{1}{n} + \frac{1}{2} \sum_{k=1}^{n-1} \left(\frac{1}{k} + \frac{1}{n-k} \right) \right\} \\ &= \sum_{n=1}^{\infty} \frac{a_n}{n^3} + \frac{1}{2} \sum_{n=1}^{\infty} \sum_{k=1}^{n-1} \frac{a_n}{nk(n-k)} \\ &= \sum_{n=1}^{\infty} \frac{a_n}{n^3} + \frac{1}{2} \sum_{k=1}^{\infty} \sum_{n=k+1}^{\infty} \frac{a_n}{nk(n-k)} \\ &= \sum_{n\geq 1} \frac{a_n}{n^3} + \frac{1}{2} \sum_{n\geq 1} \frac{a_{n+k}}{nk(n+k)}. \end{split}$$

Comparing the two sides,

(1)
$$\sum_{n \ge 1} \frac{a_{n+k}}{nk(n+k)} = 2\sum_{n \ge 1} \frac{a_n}{n^2} H_n - 2\sum_{n \ge 1} \frac{a_n}{n^3}.$$

On the other hand, we also have that

$$\sum_{n=1}^{\infty} \frac{a_n}{n^2} H_n = \sum_{n=1}^{\infty} \frac{a_n}{n^2} \sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{n+k} \right) = \sum_{n,k \geqslant 1} \frac{a_n}{nk(n+k)}.$$

1

Comparing the two sides, and using also the symmetry $n \leftrightarrow k$,

(2)
$$\sum_{n,k\geqslant 1} \frac{a_n}{nk(n+k)} = \sum_{n\geqslant 1} \frac{a_n}{n^2} H_n \quad \text{and} \quad \sum_{n,k\geqslant 1} \frac{a_k}{nk(n+k)} = \sum_{n\geqslant 1} \frac{a_n}{n^2} H_n.$$

If we take the constant sequence $a_n = 1$, then (1) and (2) yield that

(3)
$$\sum_{n \ge 1} \frac{1}{n^2} H_n = \sum_{n,k \ge 1} \frac{1}{nk(n+k)} = 2\zeta(3).$$

If we also utilize the parity sequence $a_n = (-1)^n$, then from (1) and (2) we deduce that

$$\sum_{n,k\geqslant 1} \frac{1+(-1)^n+(-1)^k+(-1)^{n+k}}{nk(n+k)} = 2\sum_{n\geqslant 1} \frac{1+2(-1)^n}{n^2} H_n - 2\sum_{n\geqslant 1} \frac{1+(-1)^n}{n^3}.$$

On the right-hand side, the numerator $1 + (-1)^n$ equals 2 when n is even, and it equals 0 otherwise. Similarly, on the left-hand side, the numerator

$$1 + (-1)^n + (-1)^k + (-1)^{n+k} = (1 + (-1)^n)(1 + (-1)^k)$$

equals 4 when n and k are even, and it equals 0 otherwise. Therefore, using also (3), we conclude that

$$\zeta(3) = 4\zeta(3) + 4\sum_{n>1} \frac{(-1)^n}{n^2} H_n - \frac{1}{2}\zeta(3).$$

In other words,

$$\sum_{n\geq 1} \frac{(-1)^{n-1}}{n^2} H_n = \frac{5}{8} \zeta(3).$$

The proof of Theorem 1 is complete.

3. Proof of Theorem 2

Let us denote by I the integral to be evaluated. First we integrate with respect to x:

$$\int_{1}^{\infty} \frac{dx}{x(x+y)(x+y+z)} = \left[\frac{\log(x)}{y(y+z)} + \frac{\log(x+y+z)}{(y+z)z} - \frac{\log(x+y)}{yz} \right]_{x=1}^{x=\infty}$$
$$= \frac{\log(1+y)}{yz} - \frac{\log(1+y+z)}{(y+z)z}.$$

Now we integrate with respect to y, and make the change of variable $y \to t$ (resp. $y + z \to t$):

$$\begin{split} \int_0^1 \int_1^\infty \frac{dx \, dy}{x(x+y)(x+y+z)} &= \int_0^1 \frac{\log(1+t)}{tz} \, dt - \int_z^{1+z} \frac{\log(1+t)}{tz} \, dt \\ &= \int_0^z \frac{\log(1+t)}{tz} \, dt - \int_1^{1+z} \frac{\log(1+t)}{tz} \, dt. \end{split}$$

Finally, we integrate with respect to z and apply Fubini's theorem:

$$I = \int_0^1 \int_0^z \frac{\log(1+t)}{tz} dt dz - \int_0^1 \int_1^{1+z} \frac{\log(1+t)}{tz} dt dz$$

$$= \int_0^1 \int_t^1 \frac{\log(1+t)}{tz} dz dt - \int_1^2 \int_{t-1}^1 \frac{\log(1+t)}{tz} dz dt$$

$$= -\int_0^1 \frac{\log(t) \log(t+1)}{t} dt + \int_1^2 \frac{\log(t-1) \log(t+1)}{t} dt$$

$$= -\int_0^1 \frac{\log(t) \log(t+1)}{t} dt + \int_0^1 \frac{\log(t) \log(t+2)}{t+1} dt.$$

We shall now obtain a similar but different decomposition of I by utilizing the Feynman parametrization

$$\frac{1}{x(x+y)(x+y+z)} = 2\int_0^1 \int_0^{1-s} \frac{drds}{(rx+s(x+y)+(1-r-s)(x+y+z))^3}
= 2\int_0^1 \int_0^{1-s} \frac{drds}{(x+(1-r)y+(1-r-s)z)^3}
= 2\int_0^1 \int_0^u \frac{dvdu}{(x+uy+vz)^3}.$$

Integrating this with respect to x yields that

$$\int_{1}^{\infty} \frac{dx}{x(x+y)(x+y+z)} = \int_{0}^{1} \int_{0}^{u} \frac{dv \, du}{(1+uy+vz)^{2}}.$$

Integrating this with respect to y yields that

$$\int_0^1 \int_1^\infty \frac{dx \, dy}{x(x+y)(x+y+z)} = \int_0^1 \int_0^u \frac{dv \, du}{(1+vz)(1+u+vz)}.$$

Finally, integrating this with respect to z yields that the original integral equals

$$I = \int_0^1 \int_0^u \frac{\log(1+u) + \log(1+v) - \log(1+u+v)}{uv} \, dv \, du.$$

Using that the integrand is symmetric in u and v, we infer that

$$I = \frac{1}{2} \int_0^1 \int_0^1 \frac{\log(1+u) + \log(1+v) - \log(1+u+v)}{uv} \, du \, dv.$$

Now we integrate by parts in the u-variable to see that

$$\int_0^1 \frac{\log(1+u) + \log(1+v) - \log(1+u+v)}{uv} \, du = -\int_0^1 \frac{\log(u)}{(1+u)(1+u+v)} \, du.$$

Finally, we integrate with respect to v and change u to t to conclude that

(4)
$$I = \frac{1}{2} \int_0^1 \frac{\log(t) \log(t+1)}{t+1} dt - \frac{1}{2} \int_0^1 \frac{\log(t) \log(t+2)}{t+1} dt.$$

This should be compared with our earlier formula for *I* obtained by a different calculation:

(5)
$$I = -\int_0^1 \frac{\log(t)\log(t+1)}{t} dt + \int_0^1 \frac{\log(t)\log(t+2)}{t+1} dt.$$

Using (4) and (5), we can eliminate the difficult integral involving $\log(t+2)$:

$$3I = 2I + I = \int_0^1 \frac{\log(t)\log(t+1)}{t+1} dt - \int_0^1 \frac{\log(t)\log(t+1)}{t} dt.$$

The right-hand side equals

$$-\int_0^1 \frac{\log(t)\log(t+1)}{t(t+1)} dt = \int_0^1 \frac{\log(t)}{t} \sum_{n=1}^\infty (-1)^n H_n t^n dt$$
$$= \sum_{n=1}^\infty (-1)^n H_n \int_0^1 t^{n-1} \log(t) dt$$
$$= \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^2} H_n = \frac{5}{8} \zeta(3),$$

where in the last step we used Theorem 1. So this equals 3I, and the proof of Theorem 2 is complete.

4. Proof of Theorem 3

The proof of the first identity is straightforward:

$$\int_0^1 \frac{\log(t)\log(t+1)}{t} dt = \int_0^1 \frac{\log(t)}{t} \sum_{n=1}^\infty \frac{(-1)^{n-1}t^n}{n} dt$$
$$= \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n} \int_0^1 t^{n-1} \log(t) dt$$
$$= \sum_{n=1}^\infty \frac{(-1)^n}{n^3} = -\frac{3}{4}\zeta(3).$$

We combine this result with Theorem 2 and (5) to derive the second identity:

$$\int_0^1 \frac{\log(t) \log(t+2)}{t+1} dt = \frac{5}{24} \zeta(3) - \frac{3}{4} \zeta(3) = -\frac{13}{24} \zeta(3).$$

Then, we combine this result with Theorem 2 and (4) to derive the third identity:

$$\int_0^1 \frac{\log(t) \log(t+1)}{t+1} \, dt = \frac{5}{12} \zeta(3) - \frac{13}{24} \zeta(3) = -\frac{1}{8} \zeta(3).$$

The proof of Theorem 3 is complete.

REFERENCES

- [1] Agno, Comments to MathOverflow question No. 267485, https://mathoverflow.net/q/267485
- [2] T. Amdeberhan, Response to MathOverflow question No. 267485, https://mathoverflow.net/q/267485
- [3] Robert Z, Comments to MathOverflow question No. 267485, https://mathoverflow.net/q/267485
- [4] Z. Silagadze, Response to MathOverflow question No. 267485, https://mathoverflow.net/q/267485
- [5] robjohn, Response to MathStackExchange question No. 275643, https://math.stackexchange.com/q/275643

ALFRÉD RÉNYI INSTITUTE OF MATHEMATICS, POB 127, BUDAPEST H-1364, HUNGARY *Email address*: gharcos@renyi.hu