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GERGELY HARCOS

1. SOME RATIONAL MULTIPLES OF ζ (3)

This note is based on the MathOverflow posts [1, 2, 3, 4] and the MathStackExchange
post [5]. We shall evaluate some series and integrals by a combination of methods pio-
neered by Euler and Feynman. The values obtained are rational multiples of ζ (3).

Theorem 1. Let Hn be the n-th harmonic number. Then
∞

∑
n=1

1
n2 Hn = 2ζ (3) and

∞

∑
n=1

(−1)n−1

n2 Hn =
5
8

ζ (3).

Theorem 2. ∫ 1

0

∫ 1

0

∫
∞

1

dxdydz
x(x+ y)(x+ y+ z)

=
5
24

ζ (3).

Theorem 3. ∫ 1

0

log(t) log(t +1)
t

dt =−3
4

ζ (3),∫ 1

0

log(t) log(t +2)
t +1

dt =−13
24

ζ (3),∫ 1

0

log(t) log(t +1)
t +1

dt =−1
8

ζ (3).

2. PROOF OF THEOREM 1

Let (an)
∞
n=1 be an arbitrary bounded sequence. Then

∞

∑
n=1

an

n2 Hn =
∞

∑
n=1

an

n2

{
1
n
+

1
2

n−1

∑
k=1

(
1
k
+

1
n− k

)}

=
∞

∑
n=1

an

n3 +
1
2

∞

∑
n=1

n−1

∑
k=1

an

nk(n− k)

=
∞

∑
n=1

an

n3 +
1
2

∞

∑
k=1

∞

∑
n=k+1

an

nk(n− k)

= ∑
n⩾1

an

n3 +
1
2 ∑

n,k⩾1

an+k

nk(n+ k)
.

Comparing the two sides,

(1) ∑
n,k⩾1

an+k

nk(n+ k)
= 2 ∑

n⩾1

an

n2 Hn −2 ∑
n⩾1

an

n3 .

On the other hand, we also have that
∞

∑
n=1

an

n2 Hn =
∞

∑
n=1

an

n2

∞

∑
k=1

(
1
k
− 1

n+ k

)
= ∑

n,k⩾1

an

nk(n+ k)
.
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Comparing the two sides, and using also the symmetry n ↔ k,

(2) ∑
n,k⩾1

an

nk(n+ k)
= ∑

n⩾1

an

n2 Hn and ∑
n,k⩾1

ak

nk(n+ k)
= ∑

n⩾1

an

n2 Hn.

If we take the constant sequence an = 1, then (1) and (2) yield that

(3) ∑
n⩾1

1
n2 Hn = ∑

n,k⩾1

1
nk(n+ k)

= 2ζ (3).

If we also utilize the parity sequence an = (−1)n, then from (1) and (2) we deduce that

∑
n,k⩾1

1+(−1)n +(−1)k +(−1)n+k

nk(n+ k)
= 2 ∑

n⩾1

1+2(−1)n

n2 Hn −2 ∑
n⩾1

1+(−1)n

n3 .

On the right-hand side, the numerator 1+(−1)n equals 2 when n is even, and it equals 0
otherwise. Similarly, on the left-hand side, the numerator

1+(−1)n +(−1)k +(−1)n+k = (1+(−1)n)(1+(−1)k)

equals 4 when n and k are even, and it equals 0 otherwise. Therefore, using also (3), we
conclude that

ζ (3) = 4ζ (3)+4 ∑
n⩾1

(−1)n

n2 Hn −
1
2

ζ (3).

In other words,

∑
n⩾1

(−1)n−1

n2 Hn =
5
8

ζ (3).

The proof of Theorem 1 is complete.

3. PROOF OF THEOREM 2

Let us denote by I the integral to be evaluated. First we integrate with respect to x:∫
∞

1

dx
x(x+ y)(x+ y+ z)

=

[
log(x)

y(y+ z)
+

log(x+ y+ z)
(y+ z)z

− log(x+ y)
yz

]x=∞

x=1

=
log(1+ y)

yz
− log(1+ y+ z)

(y+ z)z
.

Now we integrate with respect to y, and make the change of variable y→ t (resp. y+z→ t):∫ 1

0

∫
∞

1

dxdy
x(x+ y)(x+ y+ z)

=
∫ 1

0

log(1+ t)
tz

dt −
∫ 1+z

z

log(1+ t)
tz

dt

=
∫ z

0

log(1+ t)
tz

dt −
∫ 1+z

1

log(1+ t)
tz

dt.

Finally, we integrate with respect to z and apply Fubini’s theorem:

I =
∫ 1

0

∫ z

0

log(1+ t)
tz

dt dz−
∫ 1

0

∫ 1+z

1

log(1+ t)
tz

dt dz

=
∫ 1

0

∫ 1

t

log(1+ t)
tz

dzdt −
∫ 2

1

∫ 1

t−1

log(1+ t)
tz

dzdt

=−
∫ 1

0

log(t) log(t +1)
t

dt +
∫ 2

1

log(t −1) log(t +1)
t

dt

=−
∫ 1

0

log(t) log(t +1)
t

dt +
∫ 1

0

log(t) log(t +2)
t +1

dt.
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We shall now obtain a similiar but different decomposition of I by utilizing the Feynman
parametrization

1
x(x+ y)(x+ y+ z)

= 2
∫ 1

0

∫ 1−s

0

dr ds
(rx+ s(x+ y)+(1− r− s)(x+ y+ z))3

= 2
∫ 1

0

∫ 1−s

0

dr ds
(x+(1− r)y+(1− r− s)z)3

= 2
∫ 1

0

∫ u

0

dvdu
(x+uy+ vz)3 .

Integrating this with respect to x yields that∫
∞

1

dx
x(x+ y)(x+ y+ z)

=
∫ 1

0

∫ u

0

dvdu
(1+uy+ vz)2 .

Integrating this with respect to y yields that∫ 1

0

∫
∞

1

dxdy
x(x+ y)(x+ y+ z)

=
∫ 1

0

∫ u

0

dvdu
(1+ vz)(1+u+ vz)

.

Finally, integrating this with respect to z yields that the original integral equals

I =
∫ 1

0

∫ u

0

log(1+u)+ log(1+ v)− log(1+u+ v)
uv

dvdu.

Using that the integrand is symmetric in u and v, we infer that

I =
1
2

∫ 1

0

∫ 1

0

log(1+u)+ log(1+ v)− log(1+u+ v)
uv

dudv.

Now we integrate by parts in the u-variable to see that∫ 1

0

log(1+u)+ log(1+ v)− log(1+u+ v)
uv

du =−
∫ 1

0

log(u)
(1+u)(1+u+ v)

du.

Finally, we integrate with respect to v and change u to t to conclude that

(4) I =
1
2

∫ 1

0

log(t) log(t +1)
t +1

dt − 1
2

∫ 1

0

log(t) log(t +2)
t +1

dt.

This should be compared with our earlier formula for I obtained by a different calculation:

(5) I =−
∫ 1

0

log(t) log(t +1)
t

dt +
∫ 1

0

log(t) log(t +2)
t +1

dt.

Using (4) and (5), we can eliminate the difficult integral involving log(t +2):

3I = 2I + I =
∫ 1

0

log(t) log(t +1)
t +1

dt −
∫ 1

0

log(t) log(t +1)
t

dt.

The right-hand side equals

−
∫ 1

0

log(t) log(t +1)
t(t +1)

dt =
∫ 1

0

log(t)
t

∞

∑
n=1

(−1)nHntn dt

=
∞

∑
n=1

(−1)nHn

∫ 1

0
tn−1 log(t)dt

=
∞

∑
n=1

(−1)n−1

n2 Hn =
5
8

ζ (3),

where in the last step we used Theorem 1. So this equals 3I, and the proof of Theorem 2 is
complete.
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4. PROOF OF THEOREM 3

The proof of the first identity is straightforward:∫ 1

0

log(t) log(t +1)
t

dt =
∫ 1

0

log(t)
t

∞

∑
n=1

(−1)n−1tn

n
dt

=
∞

∑
n=1

(−1)n−1

n

∫ 1

0
tn−1 log(t)dt

=
∞

∑
n=1

(−1)n

n3 =−3
4

ζ (3).

We combine this result with Theorem 2 and (5) to derive the second identity:∫ 1

0

log(t) log(t +2)
t +1

dt =
5

24
ζ (3)− 3

4
ζ (3) =−13

24
ζ (3).

Then, we combine this result with Theorem 2 and (4) to derive the third identity:∫ 1

0

log(t) log(t +1)
t +1

dt =
5

12
ζ (3)− 13

24
ζ (3) =−1

8
ζ (3).

The proof of Theorem 3 is complete.
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