EULER MEETS FEYNMAN

GERGELY HARCOS

1. SOME RATIONAL MULTIPLES OF {(3)

This note is based on the MathOverflow posts [1, 2, 3, 4] and the MathStackExchange
post [5]. We shall evaluate some series and integrals by a combination of methods pio-
neered by Euler and Feynman. The values obtained are rational multiples of £ (3).

Theorem 1. Let H,, be the n-th harmonic number. Then
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2. PROOF OF THEOREM 1

Let (ay);_, be an arbitrary bounded sequence. Then
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On the other hand, we also have that
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Comparing the two sides, and using also the symmetry n < k,
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If we take the constant sequence a, = 1, then (1) and (2) yield that
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If we also utilize the parity sequence a, = (—1)", then from (1) and (2) we deduce that
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On the right-hand side, the numerator 1+ (—1)" equals 2 when 7 is even, and it equals 0
otherwise. Similarly, on the left-hand side, the numerator
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equals 4 when n and k are even, and it equals O otherwise. Therefore, using also (3), we
conclude that
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The proof of Theorem 1 is complete.

3. PROOF OF THEOREM 2

Let us denote by / the integral to be evaluated. First we integrate with respect to x:
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Now we integrate with respect to y, and make the change of variable y — ¢ (resp. y+z — ¢):
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Finally, we integrate with respect to z and apply Fubini’s theorem:
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We shall now obtain a similiar but different decomposition of / by utilizing the Feynman
parametrization
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Integrating this with respect to x ylelds that
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Integrating this with respect to y yields that
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Finally, integrating this with respect to z yields that the original integral equals
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Using that the integrand is symmetric in # and v, we infer that
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Now we integrate by parts in the u-variable to see that
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Finally, we integrate with respect to v and change u to ¢ to conclude that
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This should be compared with our earlier formula for / obtained by a different calculation:
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Using (4) and (5), we can eliminate the difficult integral involving log(z +2):
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where in the last step we used Theorem 1. So this equals 3/, and the proof of Theorem 2 is
complete.
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4. PROOF OF THEOREM 3

The proof of the first identity is straightforward:
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We combine this result with Theorem 2 and (5) to derive the second identity:
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Then, we combine this result with Theorem 2 and (4) to derive the third identity:
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The proof of Theorem 3 is complete.

REFERENCES

[1] Agno, Comments to MathOverflow question No. 267485, https://mathoverflow.net/q/267485

[2] T. Amdeberhan, Response to MathOverflow question No. 267485, https://mathoverflow.net/q/267485

[3] Robert Z, Comments to MathOverflow question No. 267485, https://mathoverflow.net/q/267485

[4] Z. Silagadze, Response to MathOverflow question No. 267485, https://mathoverflow.net/q/267485

[5] robjohn, Response to MathStackExchange question No. 275643, https://math.stackexchange.com/q/275643

ALFRED RENYI INSTITUTE OF MATHEMATICS, POB 127, BUDAPEST H-1364, HUNGARY
Email address: gharcos@renyi.hu


http://mathoverflow.net/q/267485
http://mathoverflow.net/q/267485
http://mathoverflow.net/q/267485
http://mathoverflow.net/q/267485
https://math.stackexchange.com/q/275643

	1. Some rational multiples of (3)
	2. Proof of thm1
	3. Proof of thm2
	4. Proof of thm3
	References

