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Abstract
Let us call a simple graph on n ≥ 2 vertices a prime gap graph if its vertex degrees are
1 and the first n−1 prime gaps.We show that such a graph exists for every large n, and
in fact for every n ≥ 2 if we assume the Riemann hypothesis. Moreover, an infinite
sequence of prime gap graphs can be generated by the so-called degree preserving
growth process. This is the first time a naturally occurring infinite sequence of positive
integers is identified as graphic. That is, we show the existence of an interesting, and
so far unique, infinite combinatorial object.

1 Introduction

1.1 The problem

This paper grew out from an empirical observation by one of us (Z.T.): there are large
graphs whose vertex degrees are consecutive members of the sequence of prime gaps.
Moreover, such graphs can be generated recursively by the so-called degree preserving
growth process [16]. To turn the observation into precise mathematical statements, we
introduce the following definition.

Definition Let pn denote then-th primenumber, and let p0 = 1.Wecall a simple graph
on n ≥ 2 vertices a prime gap graph if its vertex degrees are p1 − p0, . . . , pn − pn−1.
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Conjecture 1.1 (Toroczkai, 2016) For every n ≥ 2, there exists a prime gap graph on
n vertices.

Conjecture 1.2 (Toroczkai, 2016) In every prime gap graph on n vertices, there exist
(pn+1 − pn)/2 independent edges.

In fact, as will become clear in the next subsection, Conjecture 1.2 implies Conjec-
ture 1.1. By combining techniques from analytic number theory and matching theory,
we are able to almost fully settle these conjectures.

Theorem 1.1 Conjectures 1.1 and 1.2 are true for every sufficiently large n. Assuming
the Riemann hypothesis, they are true for every n ≥ 2.

The main input from analytic number theory is an upper bound on the sum of
large prime gaps. The main input from matching theory is Vizing’s theorem on edge
colorings. See Subsection 1.3 for more details. In the next subsection, we discuss the
background and motivation for Theorem 1.1.

1.2 Broader context

Networks are powerful, graph-based representations used in the study of complex
systems. They appear in systems ranging from elementary particle interactions,
through nucleosynthesis, chemistry, biology (gene interactions, protein interactions,
metabolism, physiology), social sciences (human interactions), infrastructures (trans-
portation, power grid, etc.), ecology (food webs) and climate, to the organization of
visible and dark matter in the universe. In this paper we report on a novel family of
networks, however, in number theory.

In this paper all graphs are simple: there are no parallel edges and loops. The most
common characteristic of a graph is its degree sequence: we equip each of the n vertices
with a unique label from {1, . . . , n}, and an integer vector D = (d1, . . . , dn) lists the
degrees of the corresponding labeled vertices, that is, the number of edges incident on
a given vertex. In chemistry, and in old-fashioned graph theory, this is called valency.

The inverse problem is the following: we are given a sequence D of nonnegative
integers, and we want to know whether there exists a graph with this ensemble as
a degree sequence. When the answer is affirmative, then we call the sequence D
graphic. Clearly, if the sequence is graphic, then the sum of its members must be
even. However, it is not self-evident whether a given sequence is graphic. The most
well-known characterization of graphic degree sequences is the following theorem:

Theorem 1.2 (Erdős–Gallai [7])Let d1 ≥ · · · ≥ dn ≥ 0 be integers. Then the sequence
(d1, . . . , dn) is graphic if and only if d1+· · ·+dn is even and for every k ∈ {1, . . . , n}
we have

k∑

�=1

d� ≤ k(k − 1) +
n∑

�=k+1

min(k, d�) . (1)
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It is well-understood that there are exponentiallymany different realizations for almost
every graphic degree sequence. At the same time, the number of all graphic degree
sequences is infinitesimal compared to the number of integer partitions of the sum of
the degrees. More precisely, let 2m denote the sum of the degrees (as usual), so that
the degree sequence is a partition of 2m. By a difficult result of Pittel [23], as m tends
to infinity, the probability of a random partition of 2m being graphic is zero in the
limit.

Theorem1.2 gives us ameans to decidewhether the degree sequence is graphic. It is,
however, an entirely different problem to actually construct a realization of a graphic
degree sequence. The simplest way to do that is via the Havel–Hakimi algorithm,
which, in turn, is based on the following observation:

Theorem 1.3 (Havel [12] andHakimi [11]) Let d1 > 0 and d2 ≥ · · · ≥ dn ≥ 0 be inte-
gers. Then (d1, . . . , dn) is graphic if and only if (d2−1, . . . , dd1+1−1, dd1+2, . . . , dn)
is graphic.

Assume we are given a long sequence of natural numbers D such that every initial
segment Dn formed by the first n elements of D is graphic (we restrict this notion to
n ≥ 2). This means, in particular, that dn < n for n ≥ 2. We would like to construct
a realization Gn for any n ≥ 2. Clearly, it can be done by separate applications of the
Havel–Hakimi algorithm for every single n ≥ 2. But this is rather uneconomical: in
principle, for each new segment we have to restart the algorithm from scratch. Instead,
we want to find a graph growth dynamics (GGD) such thatGn+1 can be obtained from
Gn rapidly.

There are only a few GGDs in the network science literature as most graph con-
struction models are based on static algorithms. Arguably, the most popular GGDs
is the preferential attachment algorithm of scale-free networks. However, in this and
other GGDs, typically, some of the degrees of the vertices in Gn+1 are bigger than in
the degree sequence of Gn , and thus, they are unsuitable for our purposes.

Recently, a new network growth dynamics has been introduced: the degree-
preserving network growth (DPG) model family (see [8] or [16]). The DPG-process
can be described as follows: let G be a simple graph with degree sequence D. In what
follows, by a matching we mean a set of independent edges in the graph, that is, a set
of pairwise non-adjacent edges. In a general step, a new vertex u joins G by removing
a ν-element matching of G followed by connecting u to the vertices incident to the ν

removed edges. The degree of the newly inserted vertex is d = 2ν. This step does not
join two vertices of G that are non-adjacent, furthermore, the degrees of vertices in G
are not changed. The degree sequence of the newly generated graph is D ◦ d, that is,
d is concatenated to the end of D. This graph operation is called a degree-preserving
step (DP-step), and the DPG-process repeats such steps iteratively.

Returning to our long sequence D of natural numbers: if, for each step n, we can
find a matching of size dn+1/2 in Gn , then the application of a DP-step provides a
realizationGn+1 ofDn+1. In this case, we say that the pair (Gn, dn+1) isDPG-graphic.
One can ask, why should a suitable matching be found in Gn? Actually, this is not
inconceivable, as the following theorem shows:

123



2198 P. L. Erdős et al.

Theorem 1.4 (Theorem 2.5 in [18]) Given a graphic sequence D of length n and an
even integer 2 ≤ d ≤ n, the sequenceD◦d is graphic if and only ifD has a realization
with a matching of size d/2.

Since every initial segmentDn is graphic, therefore, for eachone there exists a “special”
realizationG ′

n with the requestedmatching.However, it is not automatic thatG ′
n = Gn .

A natural way to deal with this problem is to add the condition that every realization
of Dn has a matching of size dn+1/2.

We stress that it is not easy to find an infinite, naturally occurring sequenceDwhose
initial segments are all graphic, or at least graphic beyond a certain point. As a matter
of fact, until now we have only known one such example: when all elements in the
sequence are equal. Such a GGD describes an ever growing regular graph sequence.

In this paper, we describe for the first time a nontrivial, naturally arising infinite
sequence whose initial segments are all graphic. Furthermore, we show that any real-
ization of the initial segments is admissible for the DPG-algorithm. This sequence is
the sequence of prime gaps with a prefix 1:

PD := (p1 − p0, p2 − p1, . . . ) = (1, 1, 2, 2, 4, 2, . . . )

The prefix 1 was included to guarantee that the sum of the initial segments is even.
The figure below is an illustration of the DPG-process on prime gap graphs. The
independent edges used by the DP-steps are red zigzags.
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The proof that the DPG-process creates an infinite sequence of prime gap graphs
incorporates two main ingredients. The first one is a symmetric inequality, which
implies the Erdős–Gallai inequalities, and thus provides a practical sufficient condi-
tion for the graphicality of the underlying degree sequence. Moreover, another new
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inequality implies the DPG-graphicality of a long sequence of natural numbers. The
second ingredient combines classical L2 and L∞ bounds for prime gaps.

Theorem 1.5 If n is sufficiently large, then the initial segment PDn is graphic, and for
any realization Gn of PDn, the pair (Gn, pn+1 − pn) is DPG-graphic.

Ultimately, the proof relies on the rarity of zeros possibly violating the Riemann
hypothesis. In principle, it allows one to deduce an effective constant beyond which
Theorem 1.5 holds true, but this constant far exceeds the capabilities of computers.
However, assuming the Riemann hypothesis, we can reduce the constant significantly
and prove the result for all n ≥ 2. Here the numerics are quite delicate, and for
efficiency we depart from the symmetric treatment alluded to above. Instead, we go
back to first principles and examine the contribution of large prime gaps more directly.
We still need to rely on computational results, but they can either be obtained with
very simple computer programs, or found in the literature (e.g. prime gap records until
2 · 1018).
Theorem 1.6 Assume the Riemann hypothesis. Then, for any n ≥ 2, the initial segment
PDn is graphic, and for any realization Gn of PDn, the pair (Gn, pn+1 − pn) is DPG-
graphic.

Note that Theorems 1.5 and 1.6 are a reformulation of Theorem 1.1 in the terminology
of combinatorics and network theory. They rely on the core theorems presented in the
next subsection, which are of independent interest.

1.3 New results

Our first result provides, via two symmetric inequalities, sufficient conditions for a
given sequence to be graphic and that in every graph realization of the sequence, there
is a matching of a given size.

Theorem 1.7 Let D = (d1, . . . , dn) be a sequence of positive integers such that
‖D‖1 = ∑n

�=1 d� is even. Let 1 < p ≤ ∞ be a parameter.
Part (a). Assume that the following L p-norm bound holds:

‖2 + D‖p ≤ n
1
2+ 1

2p . (2)

Then there is a simple graph G with degree sequence D.
Part (b). Let G be any simple graph with degree sequence D. Assume that d ≥ 2 is

an even integer satisfying

4d1−
1
p ‖D‖p ≤ ‖D‖1. (3)

Then the pair (G, d) is DPG-graphic, and consequently D ◦ d is graphic.

Our second result makes explicit a theorem of Selberg [25, Th. 2].
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Theorem 1.8 Assume the Riemann hypothesis. Then, for any x ≥ 2 and N > 0, we
have

∑

x≤p�≤2x
p�+1−p�≥N

(p�+1 − p�) <
163x log2 x

N
. (4)

Remark The example x = 2 and N = 2 shows that this result would become false if
we replaced the constant 163 by 4. On the other hand, Cramér’s model predicts that it
can be replaced by o(1) for x → ∞ (cf. [9, §1.1]).

In order to achieve the good numeric constant 163, we estimate carefully (among
others) the error term in the truncated von Mangoldt formula for the Chebyshev psi
function. This result, stated below, makes explicit a theorem of Goldston [10], and
simultaneously extends and sharpens a theorem of Dudek [6, Th. 1.3] in the special
case relevant for us. Here and later the notation A = O∗(B) stands for |A| ≤ B.

Theorem 1.9 For any z > x > 1018 we have

ψ(x) = x −
∑

|�ρ|<z

xρ

ρ
+ O∗(5 log x log log x

)
,

where the sum is over the nontrivial zeros of the Riemann zeta function (counted with
multiplicity).

2 Preliminary results

2.1 An application of Vizing’s theorem

Theorem 2.1 (Vizing [27]) A simple graph with maximal degree � admits a proper
edge coloring with � + 1 colors.

Lemma 2.1 Let G be a simple graph on n vertices with degrees d1, . . . , dn. Let δ ≥ 1
be an integer, and let d ≥ 2 be an even integer satisfying

δd ≤
∑

d�<δ

d� −
∑

d�≥δ

d�. (5)

Then G has a matching of size d/2.

Proof Let us delete all vertices of degree at least δ (and the incident edges) from G.
The remaining subgraph H has maximal degree less than δ, and number of edges at
least

1

2

n∑

�=1

d� −
∑

d�≥δ

d� = 1

2

⎛

⎝
∑

d�<δ

d� −
∑

d�≥δ

d�

⎞

⎠ ≥ δd

2
(6)
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by (5). It follows from Theorem 2.1 that the edge set of H can be partitioned into δ

matchings, and then (6) shows that the largest matching in this decomposition must
be of size at least d/2. Since H is a subgraph of G, the proof is complete. �


2.2 Preliminaries about 0(z) and �(s)

Lemma 2.2 Assume that �z > 0. Then

��′(z)
�(z)

+ �′(�z)

�(�z)
< log |z| + log�z − � 1

2z
− 1

2�z
.

Proof With the help of the well-known integral representation (cf. [28, §12.31])

�′(z)
�(z)

= log z − 1

2z
−

∫ ∞

0

(
1

2
− 1

t
+ 1

et − 1

)
e−t z dt, �z > 0, (7)

the statement becomes

∫ ∞

0

(
1

2
− 1

t
+ 1

et − 1

) (
�e−t z + e−t�z

)
dt > 0.

However, this one is clear, because the integrand is non-negative with a discrete set of
zeros (there are no zeros when z is real). �

Lemma 2.3 (Delange [5]) For any σ > 1 and t ∈ R we have

∣∣∣∣
ζ ′(σ + i t)

ζ(σ + i t)

∣∣∣∣ <
1

σ − 1
− 1

2σ 2 .

Lemma 2.4 (Dudek [6]) Let σ ≤ −1 and t ∈ R. Assume that either σ ∈ 1 + 2Z or
|t | ≥ 1. Then

∣∣∣∣
ζ ′(σ + i t)

ζ(σ + i t)

∣∣∣∣ < 9 + log |σ + i t |.

Proof This is a variant of [6, Lem. 2.3], and can be proved in the same way. We note a
small oversight in [6, p. 183]: instead of assuming that U ≥ 2 is an even integer, one
should assume that U ≥ 1 is an odd integer, just as in [4, §17]. �

Lemma 2.5 (Dudek [6]) Assume that z > 100. Then there exists T ∈ (z − 2, z) such
that

∣∣∣∣
ζ ′(σ + iT )

ζ(σ + iT )

∣∣∣∣ < log2 z + 20 log z, σ > −1. (8)

Proof The statement follows from [6, Lem. 2.8]. �
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Definition For T > 0, we denote by N (T ) the number of zeros of ζ(s)with imaginary
part in (0, T ), counted with multiplicity.

Lemma 2.6 For any T ≥ � + 2π > � > 0 we have

N (T ) − N (T − �) <

(
�

2π
+ 0.56

)
log T .

Proof By [2, Cor. 1], we have

N (T ) − N (T − �) = 1

2π

∫ T

T−�

log
t

2π
dt + O∗(0.56 log T ).

The integrand is less than log T , and the result follows. �


2.3 Preliminaries about prime gaps

Theorem 2.2 (Ingham [15, Th. 4]) Let ε > 0. For any x ≥ x0(ε), there is a prime
number in [x, x + x5/8+ε].
Remark The exponent 5/8+ε was improved multiple times, the current record 21/40
being due to Baker–Harman–Pintz [1]. We have emphasized the classical result of
Ingham [15] as it suffices for our purposes.

Theorem 2.3 (Carneiro–Milinovich–Soundararajan [3, Th. 1.5])Assume theRiemann
hypothesis. Then, for any x ≥ 4, there is a prime number in [x, x + 22

25

√
x log x].

In a restricted range, we have a stronger unconditional result thanks to explicit
calculations.

Lemma 2.7 For any x ∈ [117, 1018], there is a prime number in [x, x + √
x].

Proof Assume that the conclusion fails for some x ∈ [117, 1018]. Then there is a
unique prime number p� such that p� < x < x + √

x < p�+1. In particular, � ≥ 31
and p� < x < (p�+1 − p�)

2. Hence the computations of Oliveira e Silva, Herzog,
and Pardi [21, Table 8] show that the initial upper bound 1018 for p� successively
improves to: 14422, 1482, 522, 342, 222, 142. This means that 31 ≤ � ≤ 44, but then
x < (p�+1 − p�)

2 ≤ 102 is a contradiction. �

Remark The conclusion of Lemma 2.7 is likely true for all x ≥ 117. However, this
statement is not known to follow from the Riemann hypothesis, and it is stronger
than Oppermann’s conjecture (which itself implies Legendre’s conjecture, Andrica’s
conjecture, and Brocard’s conjecture).

Theorem 2.4 (Heath-Brown [13]) For any x ≥ 2 we have

∑

p�≤x

(p�+1 − p�)
2 � x4/3(log x)10000.
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Remark The exponent 4/3 was improved to 23/18 + ε by Heath-Brown [14], and to
5/4+ε independently by Peck [22] andMaynard [17]. The current record 123/100+ε

is due to Stadlmann [26]. We have emphasized the original breakthrough of Heath-
Brown [13] as it suffices for our purposes.

3 Proof of themain theorem

In this section, we first prove Theorem 1.5 assuming Theorem 1.7, and then we prove
Theorem 1.6 assuming Theorem 1.8. In other words, we deduce Theorem 1.1 from
Theorems 1.7 and 1.8.

3.1 Proof of Theorem 1.5

Let n be sufficiently large. We shall verify the conditions of Theorem 1.7 for

p := 2, d� := p� − p�−1, d := pn+1 − pn .

Clearly, ‖D‖1 = pn − 1 is even. Condition (2) reads

n∑

�=1

(2 + p� − p�−1)
2 ≤ n3/2, (9)

while condition (3) reads

16(pn+1 − pn)
n∑

�=1

(p� − p�−1)
2 ≤ (pn − 1)2. (10)

Now (9) and (10) follow from Theorems 2.2 and 2.4, hence we are done:

n∑

�=1

(2 + p� − p�−1)
2 ≤ 9

n∑

�=1

(p� − p�−1)
2 ≤ p4/3+o(1)

n = n4/3+o(1),

16(pn+1 − pn)
n∑

�=1

(p� − p�−1)
2 ≤ p5/8+o(1)

n p4/3+o(1)
n = p47/24+o(1)

n .

3.2 Proof of Theorem 1.6

Assume the Riemann hypothesis, and let G be a prime gap graph on n vertices. It
suffices to show that G has (pn+1 − pn)/2 independent edges (cf. Conjecture 1.2),
because then a straightforward induction argument based on Theorem 1.4 shows that
every initial segment of PD is graphic (cf. Conjecture 1.1). The statement is clear for
2 ≤ n ≤ 4, hence we shall restrict to n ≥ 5.
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By Lemma 2.1, it suffices to exhibit an integer N ≥ 1 satisfying

N (pn+1 − pn) + 2
∑

1≤�≤n
p�−p�−1≥N

(p� − p�−1) < pn . (11)

For pn < 1018 we take

N := max
1≤�≤n

(1 + p� − p�−1),

so that (11) simplifies to N (pn+1 − pn) < pn . In fact the proof of Lemma 2.1 reveals
that the last condition can be relaxed to

pn+1 − pn
2

≤
⌈
pn − 1

2N

⌉
, (12)

which works better for very small n ≥ 5. For 5 ≤ n ≤ 44 the condition (12) can
be checked by a simple computer program (or by hand). For n ≥ 45 and pn < 1018

we verify (12) as follows. Let k be the unique positive integer satisfying (k − 1)2 <

pn < k2. Note that k ≥ 15, because pn ≥ p45 = 197. From Lemma 2.7 it follows
that pn+1 − pn ≤ k − 1 and

N = max

(
15, max

32≤�≤n
(1 + p� − p�−1)

)
≤ k,

hence also that

pn − 1

2N
>

k2 − 2k

2N
≥ k2 − 2k

2k
= k

2
− 1.

Therefore, (12) is clear by

pn+1 − pn
2

≤ k − 1

2
≤

⌈
pn − 1

2N

⌉
.

For pn > 1018 we take

N :=
⌈ √

pn
3 log pn

⌉
.

Then, by Theorems 2.3 and 1.8, we have

N (pn+1 − pn) <
pn
3

and
∑

1≤�≤n
p�−p�−1≥N

(p� − p�−1) < 489
√
pn log

3 pn <
pn
3

.

From here the bound (11) is immediate, hence we are done.

123



The sequence of prime gaps is graphic 2205

4 A symmetric criterion for graphicality

In this section, we prove Theorem 1.7.
Part (a). By symmetry, we can assume that d1 ≥ · · · ≥ dn . By Theorem 1.2, it

suffices to check that for any 1 ≤ k ≤ n,

k∑

�=1

d� ≤ k(k − 1) +
n∑

�=k+1

min(k, d�).

Since d� ≥ 1 for any 1 ≤ � ≤ n, it suffices to prove that

k∑

�=1

d� ≤ k(k − 1) + (n − k),

which is equivalent to

k∑

�=1

(2 + d�) ≤ k2 + n.

This last condition follows from (2) and Hölder’s inequality, hence we are done:

‖2 + Dk‖1 ≤ k1−
1
p ‖2 + Dk‖p ≤ k1−

1
p ‖2 + D‖p ≤ k1−

1
p n

1
2+ 1

2p ≤ max(k2, n).

In the last step, we used that both k2 and n are upper bounded by max(k2, n).
Part (b). By Theorem 1.4 and Lemma 2.1, it suffices to verify that (5) holds for

some integer δ ≥ 1. If p = ∞, then (3) says that 4d‖D‖∞ ≤ ‖D‖1, hence (5) holds
for δ := 1 + ‖D‖∞. So let us focus on the case 1 < p < ∞. For any integer δ ≥ 1,
we have

‖D‖p
p ≥

∑

d�≥δ

d p
� ≥ δ p−1

∑

d�≥δ

d�,

hence also

∑

d�<δ

d� −
∑

d�≥δ

d� ≥ ‖D‖1 − 2δ1−p‖D‖p
p.

So for the validity of (5), it suffices that

δ1−p‖D‖p
p ≤ 1

4
‖D‖1 and δd ≤ 1

2
‖D‖1.

123



2206 P. L. Erdős et al.

In other words, it suffices to find an integer δ satisfying

(
4‖D‖p

p

‖D‖1

) 1
p−1

≤ δ ≤ 1

2d
‖D‖1.

The left-hand side exceeds 1, hence δ exists as long as

2

(
4‖D‖p

p

‖D‖1

) 1
p−1

≤ 1

2d
‖D‖1.

This is equivalent to condition (3), hence the proof of Theorem 1.7 is complete.

5 The sum of large prime gaps

In this section, we prove Theorem 1.8 assuming Theorem 1.9. Throughout, we assume
the Riemann hypothesis.

First we eliminate some simple cases. Let N∗ denote the largest prime gap p�+1− p�

occurring in (4). Then we can clearly assume that

N ≤ N∗ and 2x + N∗ >
163x log2 x

N
, (13)

hence also that N∗(2x + N∗) > 163x log2 x . From Theorem 2.3 it follows that N∗ <

3
√
x log x , so our previous inequality yields N∗ > 77 log2 x . By [21, Table 8], this

forces x > 1018. Indeed, for x ∈ [2, 103]we have N∗ ≤ 34, while for x ∈ [103, 1018]
we have N∗ ≤ 1476. On the other hand, for x > 1018 we get from Therore 2.3 that
N∗ < 4

3

√
x log x < 0.001x , hence by (13) also that

81 log2 x < N <
4

3

√
x log x . (14)

From now on we assume both x > 1018 and (14). Following Heath-Brown [13],
we write N = 4δx with

81 log2 x

4x
< δ <

log x

3
√
x

,

and we set out to estimate the square mean of

E(y, δ) := ψ(y + δy) − ψ(y) − δy, x ≤ y ≤ 2x .
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It follows from Theorem 1.9 and the crude bound y + δy < 3x that

|E(y, δ)| <

∣∣∣∣∣∣

∑

|�ρ|<3x

yρC(ρ)

∣∣∣∣∣∣
+ log2 x,

where

C(ρ) := 1 − (1 + δ)ρ

ρ
.

As a result,

∫ 2x

x
|E(y, δ)|2 dy < 2

∫ 2x

x

∣∣∣∣∣∣

∑

|�ρ|<3x

yρC(ρ)

∣∣∣∣∣∣

2

dy + 2x log4 x . (15)

Lemma 5.1 We have

|C(ρ)| < min

(
δ,

√
4 + 4δ

|ρ|

)
. (16)

Proof The bound |C(ρ)| < δ is a consequence of the integral representation

C(ρ) =
∫ 1

1+δ

xρ−1 dx

and the triangle inequality for complex-valued Riemann integrals. In addition, the
triangle inequality for complex numbers yields by the definition of C(ρ) that

|C(ρ)| ≤ 1 + √
1 + δ

|ρ| <

√
4 + 4δ

|ρ| .

�

We estimate the integral on the right-hand side of (15) as in the proof of [24,

Lem. 5]:

∫ 2x

x

∣∣∣∣∣∣

∑

|�ρ|<3x

yρC(ρ)

∣∣∣∣∣∣

2

dy ≤
∫ 2

1

∫ 2xv

xv/2

∣∣∣∣∣∣

∑

|�ρ|<3x

yρC(ρ)

∣∣∣∣∣∣

2

dy dv

=
∑

|�ρ|,|�ρ′|<3x

x2+ρ−ρ′
C(ρ)C(ρ′) · 2

2+ρ−ρ′ − 2−2−ρ+ρ′

2 + ρ − ρ′ · 2
3+ρ−ρ′ − 1

3 + ρ − ρ′

≤ x2
∑

|�ρ|,|�ρ′|<3x

|C(ρ)C(ρ′)|
∣∣∣∣
22 + 2−2

2 + ρ − ρ′

∣∣∣∣

∣∣∣∣
23 + 1

3 + ρ − ρ′

∣∣∣∣
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≤ x2
∑

|�ρ|,|�ρ′|<3x

|C(ρ)|2
∣∣∣∣
22 + 2−2

2 + ρ − ρ′

∣∣∣∣

∣∣∣∣
23 + 1

3 + ρ − ρ′

∣∣∣∣ .

Here the contribution of �ρ < 0 is the same as the contribution of �ρ > 0. Therefore,
applying Lemma 5.1 along with the elementary inequality

|2 + i t | · |3 + i t | ≥ 6 + t2, t ∈ R,

we arrive at

∫ 2x

x

∣∣∣∣∣∣

∑

|�ρ|<3x

yρC(ρ)

∣∣∣∣∣∣

2

dy <
153

2
x2

∑

0<�ρ<3x

min

(
δ2,

4 + 4δ

|ρ|2
) ∑

|�ρ′|<3x

1

6 + |ρ − ρ′|2 .

(17)

We need to estimate the inner sum in (17). The idea is to drop the condition |�ρ′| <

3x , and consider the full convergent series

∑

ρ′

1

6 + |ρ − ρ′|2 = 1√
6

∑

ρ′
� 1√

6 + ρ − ρ′ = 1√
6
�ξ ′(

√
6 + ρ)

ξ(
√
6 + ρ)

.

The first equality follows from the Riemann hypothesis, while the second equality
follows from [20, Cor. 10.14]. Let us write s := √

6 + ρ for simplicity. Then, as in
the proof of [20, Cor. 10.14], we have

ξ ′(s)
ξ(s)

= −1

2
logπ + 1

s − 1
+ ζ ′(s)

ζ(s)
+ 1

2

�′(s/2 + 1)

�(s/2 + 1)
.

We take the real part of both sides, and apply Lemma 2.2:

�ξ ′(s)
ξ(s)

< − 1

2
logπ + � 1

s − 1
− ζ ′(�s)

ζ(�s)
+ 1

2
��′(s/2 + 1)

�(s/2 + 1)

< − 1

2
logπ + � 1

s − 1
− � 1

2s + 4
− ζ ′(�s)

ζ(�s)
− 1

2�s + 4

− 1

2

�′(�s/2 + 1)

�(�s/2 + 1)
+ 1

2
log(�s/2 + 1) + 1

2
log |s/2 + 1|.

Using that �s = √
6 + 1/2 and �s > 14, it is straightforward to check that � 1

s−1

< � 1
2s+4 , hence in fact

�ξ ′(s)
ξ(s)

< 0.181 − 1

2
logπ + 1

2
log |s/2 + 1| <

1

4
+ 1

2
log

�ρ

2π
.
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To sum up, we have proved that

∑

ρ′

1

6 + |ρ − ρ′|2 <
1

2
√
6

(
1

2
+ log

�ρ

2π

)
.

Going back to (17), we conclude that

∫ 2x

x

∣∣∣∣∣∣

∑

|�ρ|<3x

yρC(ρ)

∣∣∣∣∣∣

2

dy < 15.616x2
∑

0<�ρ<3x

min

(
δ2,

4

|ρ|2
)(

1

2
+ log

�ρ

2π

)
.

In the sum on the right-hand side, we drop the condition �ρ < 3x and replace |ρ| by
�ρ. By [2, Cor. 1, Lem. 5–6], the resulting bigger sum can be estimated as follows:

< δ2N (2/δ)

(
1

2
+ log

1

δπ

)
+

∑

�ρ≥2/δ

(
2

(�ρ)2
+ 4

(�ρ)2
log

�ρ

2π

)

<
δ

π

(
log

1

δπ

) (
1

2
+ log

1

δπ

)
+ δ

2π
log

2

δ
+ δ

π

(
log2

2

δ
− log

2

δ

)

<
δ

π

(
log2

1

δπ
+ log2

2

δ

)
<

2δ

π
log2 x .

In the end, we get

∫ 2x

x

∣∣∣∣∣∣

∑

|�ρ|<3x

yρC(ρ)

∣∣∣∣∣∣

2

dy < 9.942δx2 log2 x .

Plugging this bound into (15), we conclude that

∫ 2x

x
|E(y, δ)|2 dy < 19.884δx2 log2 x + 2x log4 x < 19.983δx2 log2 x . (18)

Assume now that the prime p� ∈ [x, 2x] satisfies p�+1 − p� ≥ N . There is at most
one p� such that (p� + p�+1)/2 > 2x , so assume also that (p� + p�+1)/2 ≤ 2x . Then,
for any

y ∈ (p�, (p� + p�+1)/2) ⊂ (x, 2x),

the interval

[y, y + δy] ⊂ [y, y + N/2] ⊂ (p�, p�+1)
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is free of primes, hence counting the possible higher prime powers in this interval, we
get

ψ(y + δy) − ψ(y) ≤ (1 + δ
√
y/2) log2(y + δy) < (2 + δ

√
y) log x < 0.003δy.

That is, |E(y, δ)| > 0.997δy holds on (p�, (p� + p�+1)/2). Squaring and integrating,
we get

∫ (p�+p�+1)/2

p�

|E(y, δ)|2 dy > 0.497δ2x2(p�+1 − p�).

Summing over all such primes p�, and using (18) as well as Theorem 2.3 for the
possible single exceptional p�, we obtain (4):

∑

x≤p�≤2x
p�+1−p�≥N

(p�+1 − p�) <
4

3

√
x log x + 1

0.497δ2x2

∫ 2x

x
|E(y, δ)|2 dy <

163x log2 x

N
.

6 The error term in the truncated vonMangoldt formula

In this section, we prove Theorem 1.9. We follow Davenport [4, §17] and Goldston
[10] with appropriate modifications.

We assume first that x /∈ Z. We choose T ∈ (z − 2, z) according to Lemma 2.5,
and we also fix c := 1 + 1/ log x . We record the following approximation to the
characteristic function of (1,∞):

1y>1 = 1

2π i

∫ c+iT

c−iT

ys

s
ds + O∗

(
yc min

(
0.501,

1

πT | log y|
))

, y ∈ (0, 1) ∪ (1,∞).

This formula follows by making explicit the calculation on [4, pp. 105–106]. The
constant 0.501 follows by observing that the line �s = c divides the circle |s| =
|c + iT | into two almost equal arcs, each of length less than 1.001π |c + iT |. The
constant 1/π arises as twice the size of the leading 1/(2π i). Applying the formula for
y = x/n, multiplying by �(n), and summing over n ≥ 1, we get

ψ(x) = 1

2π i

∫ c+iT

c−iT

(
− ζ ′(s)

ζ(s)

)
xs

s
ds + O∗

( ∞∑

n=1

( x
n

)c
�(n)min

(
0.501,

1

πT
∣∣log x

n

∣∣

))
.

(19)

We shall abbreviate the integrand in (19) by f (s), and estimate the error term by
cutting the n-sum into four parts. Throughout, we keep in mind that x/T < x/(x−2).
As a preparation, we record the elementary inequalities

( x
n

)c
�(n) ≤

( x
n

)c
log n = x

n
· e log n

elog n/ log x ≤ x

n
log x, (20)
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∣∣∣∣log
x

y

∣∣∣∣ =
∫ max(x,y)

min(x,y)

du

u
≥ |x − y|

max(x, y)
, y > 0.

(21)

We also observe that the function

y �→ x − y

y log x
y

, y > 0,

is positive and decreasing (the function has a removable discontinuity at y = x).
Indeed, writing v := log x

y , the claim is that v �→ (ev −1)/v is positive and increasing
on R, which in turn follows from the fact that the exponential function is increasing
and convex.

First we consider the n’s satisfying 1 ≤ |x−n| ≤ log x . By (21) and the subsequent
observation, in this range we have

0 <
x − n

n log x
n

≤ log x

(x − log x) log x
x−log x

≤ x

x − log x
< 1.001,

hence by (20) also

( x
n

)c �(n)∣∣log x
n

∣∣ ≤ x log x

n
∣∣log x

n

∣∣ < 1.001
x log x

|x − n| . (22)

So the corresponding n-subsum within (19) is at most

1.001
x log x

πT

∑

1≤|x−n|≤log x
�(n) �=0

1

|x − n| < 0.638 log x
∑

1≤k≤log x

1

k
< A(x), (23)

where

A(x) := 0.638 log x · (log log x + 3/5).

Second, we consider the n’s satisfying log x < |x − n| ≤ x/5. In this range we have
the following variant of (22) proved in the same way:

( x
n

)c �(n)∣∣log x
n

∣∣ ≤ x log x

n
∣∣log x

n

∣∣ ≤ 1

4 log 5
4

· x log x

|x − n| .

So the corresponding n-subsum within (19) is at most

1

4 log 5
4

· x log x
πT

∑

log x<|x−n|≤x
�(n) �=0

1

|x − n| , (24)
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where we relaxed the summation condition for convenience. If p(u) denotes the num-
ber of prime powers in [x − u, x + u], then the last sum can be written as

∑

log x<|x−n|≤x
�(n) �=0

1

|x − n| =
∫ x

log x

dp(u)

u
=

[
p(u)

u

]x

log x
+

∫ x

log x

p(u)

u2
du. (25)

Since 0 ≤ p(u) ≤ 2u + 1, the first term on the right-hand side is less than 2.001. By
the Brun–Titchmarsh inequality in the form given by Montgomery and Vaughan [19,
Th. 2], we also see that

p(u) <
4u

log u
+ log2(x)

(
1 + 2u√

2x

)
, u ∈ [2, x].

Indeed, on the right-hand side, the first term upper bounds the number of primes in
[x−u, x+u], while the second term upper bounds the number of higher prime powers
in [x − u, x + u]. In particular,

∫ x

log x

p(u)

u2
du <

∫ x

log x

(
4.001

u log u
+ log2 x

u2

)
du < 4.001 log log x − 3.818. (26)

We infer from (24)–(26) that the n’s satisfying log x < |x − n| ≤ x/5 contribute to
(19) less than

B(x) := 1.427 log x · (log log x − 2/5).

Now we turn to the n’s satisfying |x − n| > x/5. In this range we have | log(x/n)| >

log(6/5), hence by Lemma 2.3 the corresponding n-subsum is at most

∑

|x−n|>x/5

�(n)
( x
n

)c 1

πT log(6/5)
<

ex

πT log(6/5)

∣∣∣∣
ζ ′(c)
ζ(c)

∣∣∣∣ < 4.746 log x .

Finally, there are two n’s satisfying |x − n| < 1, and by (20) their contribution to (19)
is less than

0.501

(
x

x − 1
+ x

x

)
log x < 1.003 log x .

Collecting everything, we arrive at (with room to spare)

ψ(x) = 1

2π i

∫ c+iT

c−iT
f + O∗(A(x) + B(x) + 6 log x). (27)

We note here that A(x) + B(x) is less than 2.1 log x log log x .
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On the other hand, the residue theorem combined with (8) and Lemma 2.4 shows
that

1

2π i

(∫ c+iT

c−iT
f +

∫ −∞+iT

c+iT
f +

∫ c−iT

−∞−iT
f

)

= x −
∑

|�ρ|<T

xρ

ρ
− log(2π) − 1

2
log(1 − x−2),

where each integral is over a directed line segment or half-line.We estimate the second
integral with the help of (8) and Lemma 2.4:

∣∣∣∣
∫ −∞+iT

c+iT
f

∣∣∣∣ <
log2 z + 20 log z

z − 2

∫ c

−∞
xσ dσ < (log x + 20)

ex

x − 2
.

The third integral obeys the same bound, hence we infer that

1

2π i

∫ c+iT

c−iT
f = x −

∑

|�ρ|<T

xρ

ρ
+ O∗(log x + 20).

By Lemma 2.6, we can extend the ρ-sum to |�ρ| < z at the cost of an error of
O∗(2 log x). Therefore, going back to (27), we conclude for x /∈ Z that

ψ(x) = x −
∑

|�ρ|<z

xρ

ρ
+ O∗(A(x) + B(x) + 9 log x + 20).

Finally, if x is an integer, then we make use of the following simple observation.
For a fixed z > 1018, the ρ-sum on the right-hand side is continuous in x ∈ (1018, z),
while the left-hand side equals ψ(x−) + �(x). Therefore, the previous formula is
valid at x with an extra error term of O∗(log x). We finish the proof of Theorem 1.9
by noting that

A(x) + B(x) + 10 log x + 20 < 5 log x log log x, x > 1018.
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16. Kharel, S., Mezei, T.R., Chung, S., Erdős, P.L., Toroczkai, Z.: Degree-preserving network growth. Nat.

Phys. 18, 100–106 (2022). https://doi.org/10.1038/s41567-021-01417-7
17. Maynard, J.: On the difference between consecutive primes, arXiv:1201.1787 (2012), 41 pages
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