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Equidistribution on the modular surface and L-functions

Gergely Harcos

Abstract. These are notes for two lectures given at the 2007 summer school

“Homogeneous Flows, Moduli Spaces and Arithmetic” in Pisa, Italy. The

first lecture introduces Heegner points and closed geodesics on the modular

surface SL2(Z)\H and highlights some of their arithmetic significance. The

second lecture discusses how subconvex bounds for certain automorphic L-

functions yield quantitative equidistribution results for Heegner points and

closed geodesics.

1. Lecture One

Let us start the discussion with the equivalence of integral binary quadratic

forms. The concept was introduced by Lagrange [15] and studied by Gauss [9] in
a systematic fashion.

An integral binary quadratic form is a homogeneous polynomial

〈a, b, c〉 := ax
2 + bxy + cy

2 ∈ Z[x, y]

with associated discriminant

d := b
2 − 4ac ∈ Z.

The possible discriminants are the integers congruent to 0 or 1 mod 4. We shall

assume that the form 〈a, b, c〉 is not a product of linear factors in Z[x, y], then d

is not a square, hence ac 6= 0. If d < 0 then ac > 0 and we shall assume that we

are in the positive definite case a, c > 0. Furthermore, we shall assume that d is a

fundamental discriminant which means that it cannot be written as d′e2 for some

smaller discriminant d′. Then 〈a, b, c〉 is a primitive form which means that a, b, c

are relatively prime. The possible fundamental discriminants are the square-free

numbers congruent to 1 mod 4 and 4 times the square-free numbers congruent to

2 or 3 mod 4.

Example 1. The first few negative fundamental discriminants are: −3, −4,

−7, −8, −11, −15, −19, −20, −23, −24. The first few positive fundamental dis-

criminants are: 5, 8, 12, 13, 17, 21, 24, 28, 29, 33.
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Lagrange [15] discovered that every form 〈a, b, c〉 with a given discriminant d

can be reduced by some integral unimodular substitution

(x, y) 7→ (αx + βy, γx+ δy),

(

α β

γ δ

)

∈ SL2(Z),

to some form with the same discriminant that lies in a finite set depending only

on d. Forms that are connected by such a substitution are called equivalent. It is

easiest to understand this reduction by looking at the simple substitutions

(1) (x, y)
T
7→ (x− y, y) and (x, y)

S
7→ (−y, x).

The induced actions on forms are given by

〈a, b, c〉
T
7→ 〈a, b− 2a, c+ a− b〉 and 〈a, b, c〉

S
7→ 〈c,−b, a〉.

Now a given form 〈a, b, c〉 can always be taken to some 〈a, b′, c′〉 with |b′| 6 |a| by
applying T or T−1 a few times. If |a| 6 |c′| then we stop our reduction. Otherwise

we apply S to get some 〈a′′, b′′, c′′〉 with |a′′| < |a| and we start over with this form.

In this algorithm we cannot apply S infinitely many times because |a| decreases at
each such step. Hence in a finite number of steps we arrive at an equivalent form

〈a, b, c〉 whose coefficients satisfy

(2) |b| 6 |a| 6 |c|, b
2 − 4ac = d.

These constraints are satisfied by finitely many triples (a, b, c). Indeed, we have

(3) |d| = |b2 − 4ac| > 4|ac| − b
2 > 3b2,

so there are only≪ |d|1/2 choices for b and for each such choice there are only≪ε d
ε

choices for a and c since the product ac is determined by b. We have shown that

the number of equivalence classes of integral binary quadratic forms of fundamental

discriminant d, denoted h(d), satisfies the inequality

(4) h(d) ≪ε |d|
1/2+ε

.

In the case d < 0 it is straightforward to compile a maximal list of inequiv-

alent forms satisfying (2). There is an algorithm for d > 0 as well but it is less

straightforward. In fact the subsequent findings of this lecture can be turned into

an algorithm for all d. Note that for d > 0 (3) implies 4ac = b
2 − d < 0, hence by

an extra application of S we can always arrange for a reduced form 〈a, b, c〉 with

a > 0.

Example 2. The equivalence classes for d = −23 are represented by the forms

〈1, 1, 6〉, 〈2,±1, 3〉. Hence h(−23) = 3. The equivalence classes for d = 21 are

represented by the forms 〈1, 1,−5〉, 〈−1, 1, 5〉. Hence h(21) = 2.

To obtain a geometric picture of equivalence classes of forms we shall think of

Q(
√
d) as embedded in C such that

√
d/i > 0 for d < 0 and

√
d > 0 for d > 0. For

q1, q2 ∈ Q we shall consider the conjugation

q1 + q2

√
d := q1 − q2

√
d.

Each form 〈a, b, c〉 decomposes as

ax
2 + bxy + cy

2 = a(x− zy)(x− z̄y),
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where

(5) z :=
−b+

√
d

2a
, z̄ :=

−b−
√
d

2a
.

Using (1) we can see that the action of SL2(Z) on z and z̄ is the usual one given

by fractional linear transformations:

z
T
7→ z + 1 and z

S
7→ −1/z.

Therefore in fact we are looking at the standard action of SL2(Z) on certain con-

jugate pairs of points of Q(
√
d) embedded in C. For d < 0 we consider the points

z ∈ H and obtain h(d) points on SL2(Z)\H. These are the Heegner points of dis-

criminant d < 0. For d > 0 we consider the geodesics Gz̄,z ⊂ H connecting the real

points {z̄, z} and obtain h(d) geodesics on SL2(Z)\H.

It is a remarkable fact that for d > 0 any geodesic Gz̄,z as above becomes closed

when projected to SL2(Z)\H, and its length is an important arithmetic quantity

associated with the number field Q(
√
d). To see this take any matrix M ∈ GL+

2
(R)

which takes 0 to z̄ and ∞ to z, for example1

(6) M :=

(

z z̄

1 1

)

,

then M takes the positive real axis (resp. geodesic) connecting {0,∞} to the

real segment (resp. geodesic) connecting {z̄, z}. In particular, using that M is a

conformal automorphism of the Riemann sphere, we see that Gz̄,z is the semicircle

above the real segment [z̄, z], parametrized as

Gz̄,z = {g(λ)i : λ > 0}, where g(λ) :=M

(

λ 0

0 λ
−1

)

.

Moreover, the unique isometry of H fixing the geodesic Gz̄,z and taking g(1)i to

g(λ)i is given by the matrix

(7) M

(

λ 0

0 λ
−1

)

M
−1 ∈ SL2(R).

Therefore we want to see that for some λ > 1 the matrix

(8) M

(

λ 0

0 λ
−1

)

M
−1 =

1

z − z̄

(

zλ− z̄λ
−1

zz̄(λ−1 − λ)

λ− λ
−1

zλ
−1 − z̄λ

)

is in SL2(Z), and then the projection of Gz̄,z to SL2(Z)\H has length

∫ λ2

1

dy

y
= 2 ln(λ)

for the smallest such λ > 1. A necessary condition for λ is that the sum and

difference of diagonal elements of the matrix (8) are integers and so are the anti-

diagonal elements as well. Using that

z − z̄ =

√
d

a
, z + z̄ =

−b

a
, zz̄ =

c

a

this is equivalent to:

λ+ λ
−1 ∈ Z, {a, b, c}

λ− λ
−1

√
d

⊂ Z.

1we assume here that a > 0 which is legitimate as we have seen
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As gcd(a, b, c) = 1 we can simplify this to

λ+ λ
−1 ∈ Z, and

λ− λ
−1

√
d

∈ Z.

In other words, there are integers m,n such that

(9) λ =
m+ n

√
d

2
and λ

−1 =
m− n

√
d

2
.

As λ > 1 the integers m,n are positive and they satisfy the diophantine equation

(10) m
2 − dn

2 = 4.

The equations (9)–(10) are not only necessary but also sufficient for (8) to lie in

SL2(Z). Namely, (8)–(10) imply that

(11) M

(

λ 0

0 λ
−1

)

M
−1 =

(

m−bn
2

−nc
na

m+bn
2

)

∈ SL2(Z)

since

m± bn ≡ m
2 − dn

2 ≡ 0 (mod 2).

The λ’s given by (9)–(10) are exactly the totally positive2 units in the ring of

integers Od of Q(
√
d). These units form a group isomorphic to Z by Dirichlet’s

theorem, therefore there is a smallest λ = λd > 1 among them (which generates

the group). In other words, the sought λ = λd > 1 exists and comes from the

smallest positive solution of (10). In classical language, the matrices (11) are the

automorphs of the form 〈a, b, c〉.
To summarize, the SL2(Z)-orbits of forms 〈a, b, c〉 with given fundamental dis-

criminant d give rise to h(d) Heegner points on SL2(Z)\H for d < 0 and h(d) closed

geodesics of length 2 ln(λd) for d > 0 where λd = (m + n

√
d)/2 is the smallest

totally positive unit of Od greater than 1. This geometric picture is even more

interesting in the light of the following refinement of (4) which is a consequence of

Dirichlet’s class number formula and Siegel’s theorem (see [5, Chapters 6 and 21]):

|d|1/2−ε ≪ε h(d) ≪ε |d|
1/2+ε

, d < 0,

d
1/2−ε ≪ε h(d) ln(λd) ≪ε d

1/2+ε
, d > 0.

(12)

This shows that the set of Heegner points of discriminant d < 0 has cardinality

about |d|1/2, while the set of closed geodesics of discriminant d > 0 has total length

about d1/2.

2. Lecture Two

In the light of (12) the natural question arises if the set Λd of Heegner points

(resp. closed geodesics) of fundamental discriminant d becomes equidistributed in

SL2(Z)\H as d → −∞ (resp. d → +∞). That is, given a smooth and compactly

supported weight function g : SL2(Z)\H → C do we have

1

h(d)

∑

z∈Λd

g(z) →

∫

SL2(Z)\H

g(z) dµ(z), d→ −∞,

1

h(d) 2 ln(λd)

∑

G∈Λd

∫

G

g(z) ds(z) →

∫

SL2(Z)\H

g(z) dµ(z), d→ +∞,

(13)

2i.e. positive under both embeddings Q(
√

d) →֒ R
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where dµ(z) abbreviates the SL2(R)-invariant probability measure on SL2(Z)\H
and ds(z) abbreviates the hyperbolic arc length? Duke [6] proved that the answer

is yes in the sharper form that the difference of the two sides is ≪g |d|−δ for

some fixed δ > 0. Earlier Linnik [16] established the above limits with error term

≪g (log |d|)−A for all A > 0 under the condition that
(

d
p

)

= 1 for a fixed odd

prime p.

We shall discuss Duke’s quantitative result and a refinement of it from the

modern perspective of subconvex bounds for automorphic L-functions. Our first

step is to decompose spectrally the weight function considered in (13) as

g(z) = 〈g, 1〉+

∞

∑

j=1

〈g, uj〉uj(z) +
1

4π

∫

∞

−∞

〈g, E(·, 1
2
+ it)〉E(z, 1

2
+ it) dt,

where

〈f1, f2〉 :=

∫

SL2(Z)\H

f1(z)f2(z)dµ(z),

the {uj} are Hecke–Maass cusp forms on SL2(Z)\H with 〈uj , uj〉 = 1, and the

Eisenstein series E(z, 1
2
+ it) are obtained by meromorphic continuation from

E(z, s) :=
1

2

∑

m,n∈Z

gcd(m,n)=1

ℑzs

|mz + n|2s
, ℜs > 1.

The above decomposition converges in L2(SL2(Z)\H) and also pointwise absolutely

and uniformly on compact sets, see [14, Theorem 7.3]. If

∆ := −y2
(

∂
2

∂x2
+

∂
2

∂y2

)

denotes the hyperbolic Laplacian and we use the notation and fact

∆uj(z) =
(

1

4
+ t

2

j

)

uj(z), ∆E(z, 1
2
+ it) =

(

1

4
+ t

2

)

E(z, 1
2
+ it),

then for any smooth and compactly supported g(z) and for any B > 0 we have

(14) 〈g, uj〉 ≪g,B (1 + |tj |)
−B

, 〈g, E(·, 1
2
+ it)〉 ≪g,B (1 + |t|)−B .

Therefore in order to establish Duke’s theorem with an error term ≪g |d|−δ
′

it

suffices to show that if g is a Hecke–Maass cusp form with 〈g, g〉 = 1 or a standard

Eisenstein seriesE(·, 1
2
+it) then for some fixed δ > 0 and A > 0 the sums considered

in (13) satisfy

(15)
∑

Λd

· · · ≪ (1 + |t|)A |d|
1
2−δ,

where t = tg is the spectral parameter of g, i.e.

∆g(z) =
(

1

4
+ t

2

)

g(z).

At this point we remark that any such g has a Fourier decomposition of the form

g(x+ iy) = c1y
1
2+it + c2y

1
2−it +

√
y

∑

n6=0

ρg(n)Kit(2π|n|y)e
2πinx

,
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where c1,2 are some constants3 andKit is a Bessel function. The Fourier coefficients

ρg(n) are proportional to the Hecke eigenvalues of g, and by a result of Hoffstein–

Lockhart [10] we have the uniform bound (see also [14, (3.25)])

(16) |ρg(1)| ≪ε (1 + |t|)εe
π
2 |t|

.

We note that for t bounded away from zero we have a similar lower bound, with

exponent −ε in place of ε, as proved by Iwaniec [13] (see also [14, Theorem 8.3]).

Now we state a formula which can be attributed to several people4 and relates

the sums in (15) to central values of automorphic L-functions:

(17)

∣

∣

∣

∣

∣

∑

Λd

. . .

∣

∣

∣

∣

∣

2

= cd |d|
1
2 |ρg(1)|

2 Λ
(

1

2
, g
)

Λ
(

1

2
, g ⊗ (d

·

)
)

,

where the factor cd is positive and takes only finitely many different values. In

this formula Λ(s,Π) denotes the completed L-function; the finite part L(s,Π) of

the L-function is defined in terms of Hecke eigenvalues; the infinite part of the L-

function is a product of exponential and gamma factors whose contribution in (17)

is ≪ (1 + |t|)e−π|t| by Stirling’s approximation. Using also (16) we conclude that

(15) follows by a subconvex bound of the form

L
(

1

2
, g ⊗ (d

·

)
)

≪ (1 + |t|)A |d|
1
2−δ,

where δ > 0 and A > 0 are some fixed constants (different from those in (15)).

In the case when g is a cusp form such a bound was proved by Duke–Friedlander–

Iwaniec [7] for any δ <
1

22
, by Bykovskĭı [3] for any δ <

1

8
, and by Conrey–

Iwaniec [4] for any δ < 1

6
. In the case when g is an Eisenstein series E(·, 1

2
+ it) the

above becomes
∣

∣L
(

1

2
+ it, (d

·

)
)∣

∣

2

≪ (1 + |t|)A |d|
1
2−δ,

and this was established by Burgess [2] for any δ < 1

8
, and by Conrey–Iwaniec [4]

for any δ < 1

6
.

We shall now formulate a refinement of (13) using the natural action of the

narrow ideal class group Hd of Q(
√
d) on Λd. This action comes from the natural

bijection Hd ↔ Λd which we describe in the Appendix. Note in particular that

|Hd| = h(d) by this bijection. Given some z0 ∈ Λd when d < 0 and some G0 ∈ Λd
when d > 0, and given some subgroup H 6 Hd one can ask if

1

|H |

∑

σ∈H

g(zσ
0
) →

∫

SL2(Z)\H

g(z) dµ(z), d→ −∞,

1

|H | 2 ln(λd)

∑

σ∈H

∫

Gσ
0

g(z) ds(z) →

∫

SL2(Z)\H

g(z) dµ(z), d→ +∞.

(18)

Using characters of the abelian group Hd we can decompose the sums over H into

twisted sums over Hd:

∑

σ∈H

. . . =
∑

σ∈Hd

1

(Hd : H)

∑

ψ∈Ĥd

ψ|H≡1

ψ(σ) . . . =
|H |

|Hd|

∑

ψ∈Ĥd

ψ|H≡1

∑

σ∈Hd

ψ(σ) . . .

3
c1 = c2 = 0 if g is a cusp form, c1 = |c2| = 1 if g is an Eisenstein series E(·, 1

2
+ it)

4Dirichlet, Hecke, Siegel, Maass, Shimura, Waldspurger, Kohnen–Zagier, Duke, Katok–

Sarnak, Guo, Zhang, Popa; see the references for (20) of which (17) is a special case
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Note that the number of characters of Hd restricting to the identity character on

H is (Hd : H). Therefore if we have, uniformly for all characters ψ : Hd → C× and

for all L2-normalized Hecke–Maass cusp forms or standard Eisenstein series in the

role of g,
∑

σ∈Hd

ψ(σ)g(zσ
0
) ≪ (1 + |t|)A |d|

1
2−δ, d < 0,

∑

σ∈Hd

ψ(σ)

∫

Gσ
0

g(z) ds(z) ≪ (1 + |t|)A |d|
1
2−δ, d > 0,

(19)

where δ > 0 and A > 0 are fixed constants, then by the same discussion as above,

the limits (18) follow with a strong error term ≪g |d|
−δ′ as long as

(Hd : H) ≪ |d|η

for any fixed constant 0 < η < δ.

The twisted sums in (19) can be related to central automorphic L-values sim-

ilarly as in (17). The formula is based on the deep work of Waldspurger [21] and
was carefully derived by Zhang [22] when d < 0 and by Popa [19] when d > 0:

(20)

∣

∣

∣

∣

∣

∑

σ∈Hd

ψ(σ) . . .

∣

∣

∣

∣

∣

2

= cd |d|
1
2 |ρg(1)|

2 Λ
(

1

2
, g ⊗ fψ

)

.

Here fψ is the so-called Jacquet–Langlands lift of ψ, discovered by Hecke [12] and
Maass [17] in this special case: it is a modular form onH of level |d| and nebentypus
(

d
·

)

with the same completed L-function as ψ. In particular, when g is an Eisenstein

series E(·, 1
2
+ it) the identity (20) follows from [20, pp. 70 and 88] and [14, (3.25)].

If the character ψ : Hd → C× is real-valued then it is one of the genus characters

discovered by Gauss [9]. In this case, as observed by Kronecker [20, p. 62],

Λ(s, ψ) = Λ(s, (d1
·

))Λ(s, (d2
·

)),

where d = d1d2 is a factorization of d into fundamental discriminants d1 and d2,

whence (20) simplifies to
∣

∣

∣

∣

∣

∑

σ∈Hd

ψ(σ) . . .

∣

∣

∣

∣

∣

2

= cd |d|
1
2 |ρg(1)|

2 Λ
(

1

2
, g ⊗ (d1

·

)
)

Λ
(

1

2
, g ⊗ (d2

·

)
)

.

In fact (17) is the special case of this formula when ψ is the trivial character (d1 = 1,

d2 = d). The necessary estimate (19) follows by the subconvex bounds discussed

before:

L
(

1

2
, g ⊗ (di

·

)
)

≪ (1 + |t|)A |di|
1
2−δ, i = 1, 2.

If the character ψ : Hd → C× is not real-valued then fψ is a cusp form of level

|d| and nebentypus
(

d
·

)

, and we need a subconvex bound of the form

L
(

1

2
, g ⊗ fψ

)

≪ (1 + |t|)A |d|
1
2−δ.

In the case when g is a cusp form such a bound was proved by Harcos–Michel [11]
with δ = 1

3000
. In the case when g is an Eisenstein series E(·, 1

2
+ it) the above

becomes
∣

∣L
(

1

2
+ it, ψ

)
∣

∣

2

≪ (1 + |t|)A |d|
1
2−δ,

and this was established by Duke–Friedlander–Iwaniec [8] with δ = 1

12000
and by

Blomer–Harcos–Michel [1] with δ = 1

1000
.



384 GERGELY HARCOS

Finally we remark that the above ideas have been greatly extended by several

researchers. The interested reader should consult the excellent survey of Michel–

Venkatesh [18].

3. Appendix

In this Appendix we consider an arbitrary fundamental discriminant d and re-

gard
√
d as a complex number which lies on the positive real axis or positive imagi-

nary axis depending on the sign of d. We show that the equivalence classes of forms

of fundamental discriminant d can be mapped bijectively to narrow ideal classes of

the quadratic number field Q(
√
d) in a natural fashion. As the latter classes form

an abelian group under multiplication this will exhibit a natural multiplication law

on the equivalence classes of forms. This law, discovered by Gauss [9], is called

composition in the classical theory.

Recall that a fractional ideal of Q(
√
d) is a finitely generated Od-module con-

tained in Q(
√
d) and two nonzero fractional ideals are equivalent (in the narrow

sense) if their quotient is a principal fractional ideal generated by a totally positive

element of Q(
√
d). Here “totally positive element” can clearly be changed to “ele-

ment of positive norm” where the norm of µ ∈ Q(
√
d) is given byN(µ) = µµ̄. Recall

also that we can represent equivalence classes of forms of fundamental discriminant

d by some

Qi(x, y) = aix
2 + bixy + ciy

2 = ai(x− ziy)(x− z̄iy), i = 1, . . . , h(d),

with

ai > 0, zi :=
−bi +

√
d

2ai
, z̄i :=

−bi −
√
d

2ai
.

It will suffice to show that each fractional ideal I of Q(
√
d) is equivalent to some

fractional ideal

Ii := Z+ Zzi, i = 1, . . . , h(d),

and that the fractional ideals Ii are pairwise inequivalent.

Any fractional ideal I can be written as

I = Zω1 + Zω2 with
ω̄1ω2 − ω1ω̄2√

d
> 0.

We associate to I (and ω1, ω2) the binary quadratic form

QI(x, y) :=
(xω1 − yω2)(xω̄1 − yω̄2)

N(I)
,

where N(I) > 0 is the absolute norm of I, i.e. the multiplicative function that

agrees with (Od : I) for integral ideals I. We claim first that QI(x, y) has integral

coefficients and discriminant d. To see the claim we can assume that I is an integral

ideal since QI(x, y) does not change if we replace I by nI (and ωi by nωi) for some

positive integer n. Then ω1, ω2 and their conjugates are in Od and the claim

amounts to:

• N(I) | ω1ω̄1, ω1ω̄2 + ω̄1ω2, ω2ω̄2;

• (ω1ω̄2 − ω̄1ω2)
2 = N(I)2d.
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The first statement follows from the fact that ω1, ω2, ω1 + ω2 are elements of I,

hence their norms are divisible by N(I). The second statement follows by writing

Od as Z+ Zω and then noting that
∣

∣

∣

∣

ω1 ω̄1

ω2 ω̄2

∣

∣

∣

∣

2

= (Od : I)
2

∣

∣

∣

∣

1 1

ω ω̄

∣

∣

∣

∣

2

= N(I)2d.

The claim implies that there is a unique i and a unique

(

α β

γ δ

)

∈ SL2(Z) such

that

QI(αx+ βy, γx+ δy) = Qi(x, y).

We can write this as

N(αω1 − γω2)

N(I)
(x− zy)(x− z̄y) = ai(x− ziy)(x− z̄iy),

where

(21) z :=
−βω1 + δω2

αω1 − γω2

.

This implies immediately that

(22) N(αω1 − γω2) = aiN(I) > 0.

Then a straightforward calculation yields

z − z̄
√
d

=
αδ − βγ

N(αω1 − γω2)

ω̄1ω2 − ω1ω̄2

√
d

> 0

which by
zi − z̄i
√
d

=
1

ai
> 0

forces that z = zi. But then (21)–(22) imply that

I = Zω1 + Zω2 = Z(αω1 − γω2) + Z(−βω1 + δω2)

is equivalent to

Z+ Zz = Z+ Zzi = Ii.

Now assume that Ii and Ij are equivalent, i.e. there is some µ ∈ Q(
√
d) such

that

µ(Z+ Zzi) = Z+ Zzj, N(µ) > 0.

Then we certainly have some

(

α β

γ δ

)

∈ GL2(Z) such that

µ = α+ βzj, µzi = γ + δzj .

In particular,

zi =
γ + δzj

α+ βzj
with N(α+ βzj) > 0.

By a straightforward calculation as before,

zi − z̄i
√
d

=
αδ − βγ

N(α+ βzj)

zj − z̄j
√
d

,

which shows that

αδ − βγ = 1 and N(α+ βzj) =
zj − z̄j

zi − z̄i
=
ai

aj
.
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Now we obtain

ai(x− ziy)(x− z̄iy) = aj

(

(α+ βzj)x− (γ + δzj)y
)(

(α + βz̄j)x− (γ + δz̄j)y
)

,

i.e.

Qi(x, y) = Qj(αx− γy,−βx+ δy),

(

α −γ
−β δ

)

∈ SL2(Z).

This clearly implies that i = j, since otherwise the formsQi andQj are inequivalent.

Incidentally, we see that the equivalence class of the associated form QI(x, y)

only depends on the narrow class of I (in particular, it is independent of the choice

of ordered basis of I) and two fractional ideals I and J are in the same narrow class

if and only if QI(x, y) and QJ(x, y) are equivalent.
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