
ADDENDUM TO “HYBRID BOUNDS FOR TWISTED L-FUNCTIONS”

VALENTIN BLOMER AND GERGELY HARCOS

The aim of this addendum to our paper [BH] is two-fold. Firstly we show that the same method
yields a more general version of Theorems 1 and 2 in [BH]. Secondly we correct an error in the proof
of Proposition 3 in [BH].

Starting with the former, we observe that Theorems 1 and 2 in [BH] hold almost verbatim without
the assumption that f has trivial nebentypus.

Theorem 1’. Let f be a primitive (holomorphic or Maaß) cusp form of archimedean parameter µ
as in [BH, (1.2)], level N and arbitrary nebentypus, and let χ be a primitive character modulo q.
Then for <s = 1/2 and for any ε > 0 the twisted L-function L(f ⊗ χ, s) satisfies

L(f ⊗ χ, s)�µ,ε (N |s|q)εN 4
5 (|s|q) 1

2−
1
40 ,

where the implied constant depends only on ε and µ.

Theorem 2’. Let f be a primitive (holomorphic or Maaß) cusp form of archimedean parameter µ,
level N and arbitrary nebentypus, and let χ be a primitive character modulo q. Then for <s = 1/2
and for any ε > 0 the twisted L-function satisfies

L(f ⊗ χ, s)�ε

(
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if f is holomorphic, and

L(f ⊗ χ, s)�ε
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otherwise.

Remark 1. The factor (N, q)
1
8 can be improved to (N, q)

1
8 /( N

Nψ
, q)

1
4 , where Nψ | N is the conductor

of the nebentypus. In particular, this factor can be omitted as long as N2
ψ | N , and this recovers

[BH, Theorem 2] when Nψ = 1.

Remark 2. Together with the convexity bound, we obtain

L(f ⊗ χ, s)�ε (|s|(1 + |µ|)Nq)ε|s| 12 (1 + |µ|)3N 1
2 q

3
8 .

Recently there has been a lot of interest in such bounds. In [FKM, Section 1.4], Theorem 2’ (with
an unspecified dependence on f and s and in the case of trivial nebentypus) has been derived from a
general result on exponential sums in Hecke eigenvalues of modular forms. Hoffstein [Ho] has devised
an alternative method based on double Dirichlet series to derive Theorem 2’ for holomorphic f and
with an unspecified dependence on f and s. Finally, Munshi [Mu] and Wu [Wu] have improved the
exponent in Theorem 1’.

We indicate the minor modifications to prove Theorem 2’. Then Theorem 1’ follows as in [BH,
Section 8]; we only remark that there is a small typo in [BH, (8.8)]: N0 should be N .

Let f be a newform of level N and nebentypus character ψ of conductor Nψ | N . The case
Nψ = 1 corresponds to the situation in [BH]. In [BH, (3.1)] we define

(1) D := 3[N,Nψq].
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We claim that in [BH, (3.9)] we can prove the slightly stronger bound
(2)
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)ε
and similarly for Q(`). Then we can proceed with the analysis on [BH, pp. 65–66], with the only

change that we use the new value of D in (1) and in the definition of L we replace (N, q)
3
4 by

( N
Nψ
, q)

1
2 (N, q)

1
4 . Hence it remains to show (2).

For (`,D) = 1 we define the twisted divisor sum

α
(χ,ψ)
1/2+iτ (`) =

∑
`1`2=`

ψ(`1)χ(`1)χ(`2)

(
`2
`1

)iτ
and the twisted Kloosterman-type sum

Sψ(m1,m2,−`; c) :=
∑

a1,a2 (c)
a1a2≡` (c)

ψ(a2)e

(
m1a1 +m2a2

c

)
.

If ψ is trivial, this coincides with the definition on [BH, p. 68]. Now [BH, (4.8)] holds in our more

general setting if we replace α
(χ)
1/2+iτ (`) by α

(χ,ψ)
1/2+iτ (`) in the diagonal term and S(m1,m2,−`; c)

by Sψ(m1,m2,−`; c) in the off-diagonal term. This follows exactly as in [By, (5.3)], but for the
convenience of the reader we provide the computation for the off-diagonal term. The off-diagonal
term of the trace formula is∑

m1,m2

(m2/m1)iτ

(m1m2)u
χ(m1)χ(m2)

∑
D|c

1

c

∑
d|(`,m1)
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2; c)φ
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4π
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)
.

We keep m1,m2 fixed, and manipulate the two inner sums over c and d. Since (`,D) = 1, we can
write these two sums as∑

d|(`,m1)

∑
dD|c

d
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We keep c fixed and consider the innermost sum over d. It equals∑
d|(`,m1,c)

dψ(d)
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.

If d | (`, c) and (a, c) = d, then the b-sum vanishes unless d | m1. Hence we can drop the condition
d | m1 in the first sum, because it is automatic. Next, if (a, c) = d, then the congruence ab ≡
` (c) forces d | `, hence we can also drop the condition d | `, so that the previous display equals
Sψ(m1,m2,−`; c) as desired.
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In Step 4 on [BH, p. 69], we apply [By, Lemma 2] to our new situation. Here we see that the
display after [By, (1.3)] has an additional factor ψ(a2), and hence the second display after [By, (1.4)]
has an additional factor

(3) ψ(−m2 + c2q/N),

in the notation of [By]. In the notation of [BH], q/N in (3) equals c/q, which in turn is divisible by
D/q. Our definition of D in (1) ensures that (3) is independent of c2, hence the only change in the
display [BH, (4.10)] is an extra factor ψ(−m2) inside the sum. Now (1) implies that the second line
of [BH, (4.12)] becomes

(`q)ε
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q

) 1
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(
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,

and similarly for [BH, (4.13)]. The rest remains unchanged. This proves (2).

Finally, we would like to correct an error in the proof of [BH, Proposition 3]. On [BH, p. 75] it
is assumed that V is independent of t. This is a priori not the case. Instead of the approximate
functional equation [BH, (2.12)] one should use the uniform approximate functional equation of
[BH1, Proposition 1]. This introduces an error of D1/2T−A in (7.2) and the argument goes through
as claimed.

We also remark that [BH, (7.3)] holds only on the support of the test function ψ (which is all
that is needed), and for the display after [BH, (7.4)] one has to first write V as an inverse Mellin
transform to separate variables.
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