LECTURE OUTLINE: A SPECIAL CUBIC MODULO PRIMES

GERGELY HARCOS

Theorem. Let $p \neq 3$ be a prime. If $p \equiv \pm 1 \pmod{9}$ then $x^3 - 3x - 1$ has three distinct roots modulo p. Otherwise $x^3 - 3x - 1$ has no root modulo p.

The main steps of proof are the following.

1. Let \mathbb{F}_p be the field of residues modulo p. For any positive integer n, the polynomial $x^n - 1$ splits into linear factors in some field F containing \mathbb{F}_p .

2. We assume $p \nmid n$. Then the linear factors of $x^n - 1$ in *F* are distinct for which we use the familiar notion of derivation on polynomials.

3. By induction on $m \mid n$, there are $\varphi(m)$ primitive *m*-th roots of unity in *F*. In particular, *F* contains some primitive *n*-th root of unity ξ and then $x^n - 1 = \prod_{i=0}^{n-1} (x - \xi^i)$ in *F*.

4. Let n = 9, $p \neq 3$, *F* and ξ as before. Then

 $x^{3} - 3x - 1 = (x + \xi + \xi^{-1})(x + \xi^{2} + \xi^{-2})(x + \xi^{4} + \xi^{-4}),$

and the factors on the right hand side are distinct.

5. The elements of \mathbb{F}_p are precisely the fixed points of the map $x \mapsto x^p$ in *F*. So the real question is: how many of the elements $\xi + \xi^{-1}$, $\xi^2 + \xi^{-2}$, $\xi^4 + \xi^{-4}$ are fixed by this map? The answer is 3 when $p \equiv \pm 1 \pmod{9}$ and 0 when $p \equiv \pm 2, \pm 4 \pmod{9}$.

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, POB 127, Budapest H-1364, Hungary

E-mail address: gharcos@renyi.hu