NOTE ON FULLY CHARACTERISTIC SUBMODULES OVER PRINCIPAL IDEAL DOMAINS

Gergely Harcos

Abstract. We give a description of the fully characteristic submodules of a finitely generated torsion module over a principal ideal domain.

1. Introduction

For a finite group G it is sometimes of interest to determine the fully characteristic subgroups of G, that is, those subgroups which are mapped into themselves under all endomorphisms of G. For example, the commutator subgroup H of G is always of this kind. We have $H \neq G$ whenever G is solvable and $H \neq 1$ whenever G is non-commutative. While it is hopeless to find the fully characteristic subgroups of a finite group G in general, even in the non-solvable case, one can expect a complete description in the commutative case.

Such a description will now be given in a slightly more general setting, namely for a finitely generated torsion module M over a principal ideal domain R . A submodule N of M is called fully characteristic if $\varphi(N) \subseteq N$ holds for all endomorphisms φ of M. In other words, the fully characteristic submodules of M are exactly the submodules of the (R, E) -bimodule $_R M_E$ where $E = \text{End}_R(M)$. With these notations we shall prove

Theorem. Write M as a direct sum of cyclic submodules

$$
(1) \t\t\t M = M_1 \dot{+} \cdots \dot{+} M_n
$$

with exponents satisfying

(2) ann M¹ | · · · | ann Mn.

Then the fully characteristic submodules of M are the ones given by

$$
(3) \t\t N = N_1 + \cdots + N_n
$$

with $N_i \leq M_i$ $(i = 1, ..., n)$ and exponents satisfying

(4)
$$
\operatorname{ann} N_1 | \cdots | \operatorname{ann} N_n \quad \text{and} \quad \frac{\operatorname{ann} M_1}{\operatorname{ann} N_1} | \cdots | \frac{\operatorname{ann} M_n}{\operatorname{ann} N_n}.
$$

In particular, this set of submodules is independent of the decomposition (1).

Typeset by $A_{\mathcal{M}}S$ -T_FX

2 GERGELY HARCOS

2. Proof of the theorem

First of all we observe that it suffices to prove the statement in the case when R is a local ring. To see this consider the prime ideal decomposition of the exponent of M

$$
\operatorname{ann} M = (\pi_1)^{e_1} \cdots (\pi_g)^{e_g}.
$$

For any R-module L and any $t \in L$ let $L[t]$ be the set of those elements of L which are annihilated by t. Then

$$
M = M[\pi_1^{e_1}] + \cdots + M[\pi_g^{e_g}]
$$

where each component $M[\pi_i^{e_i}]$ is isomorphic to an R_{π_i} -module with R_{π_i} the localization of R at the prime ideal (π_i) . Similarly, any submodule N of M can be written as

$$
N = N[\pi_1^{e_1}] + \cdots + N[\pi_g^{e_g}]
$$

where of course the component $N[\pi_i^{e_i}]$ is a submodule of $M[\pi_i^{e_i}]$. The decompositions of M and N into n terms given in the theorem correspond bijectively to a set of similar decompositions of the components $M[\pi_i^{e_i}]$ and $N[\pi_i^{e_i}]$ into *n* terms. Finally, it is also clear from the definition of these components that N is fully characteristic in M if and only if each $N[\pi_i^{e_i}]$ is fully characteristic in $M[\pi_i^{e_i}]$.

Hence we assume that R is a local ring with the unique prime ideal (π) and M is an Rmodule with the decomposition (1) as a direct sum of cyclic submodules M_i and exponents satisfying (2). Let N be a fully characteristic submodule of M. For any $i = 1, \ldots, n$ let N_i be the image of N under the projection of M onto its *i*th component M_i in (1). Since this projection is an endomorphism of M and N is fully characteristic in M, we get $N_i \leq N$. Therefore

$$
N_1 \dotplus \cdots \dotplus N_n \leq N.
$$

On the other hand, it is obvious without any assumption on the submodule N of M that

$$
N\leq N_1\dotplus\cdots\dotplus N_n.
$$

Therefore (3) holds with the submodules $N_i \leq M_i$ $(i = 1, \ldots, n)$.

Now take any submodule N in M of the form (3) with $N_i \leq M_i$ $(i = 1, \ldots, n)$. Introduce the notations ann $M_i = (\pi)^{e_i}$ and ann $M_i/N_i = (\pi)^{f_i}$ for $i = 1, ..., n$. Then (2) can be written as

$$
(5) \t\t e_1 \leq \cdots \leq e_n
$$

and we need to prove that N is fully characteristic in M if and only if (4) holds. Clearly, (4) is the same as

(6)
$$
e_1 - f_1 \leq \cdots \leq e_n - f_n \quad \text{and} \quad f_1 \leq \cdots \leq f_n.
$$

Choose a generator m_i for each of the cyclic components M_i $(i = 1, ..., n)$ and take any endomorphism φ of M. Such an endomorphism can be described by an $n \times n$ matrix $(a_{ij}) \in M_n(R)$ satisfying

(7)
$$
\varphi(m_i) = \sum_{j=1}^n a_{ij} m_j.
$$

If we write $a_{ij} = \pi^{e_{ij}} b_{ij}$ where $b_{ij} \in R^{\times} \cup \{0\}$ then

$$
0 = \varphi(0) = \varphi(\pi^{e_i} m_i) = \pi^{e_i} \sum_{j=1}^n a_{ij} m_j = \sum_{j=1}^n \pi^{e_i + e_{ij}} b_{ij} m_j
$$

shows that $\pi^{e_i+e_{ij}}b_{ij}m_j = 0$ for all $i, j \in \{1, ..., n\}$, that is,

(8)
$$
b_{ij} \neq 0 \Longrightarrow e_j - e_i \leq e_{ij} \quad (1 \leq i, j \leq n).
$$

Conversely, if this condition holds on the matrix (a_{ij}) then it determines uniquely an endomorphism φ of M via (7). If we observe that for each $i = 1, \ldots, n$ the element $n_i = \pi^{f_i}$ generates the module N_i , it becomes clear that φ maps N into itself if and only if $\varphi(n_i)$ lies in N for all i. But then

$$
\varphi(n_i) = \varphi(\pi^{f_i} m_i) = \pi^{f_i} \sum_{j=1}^n a_{ij} m_j = \sum_{j=1}^n \pi^{f_i + e_{ij}} b_{ij} m_j
$$

shows that $\varphi(N) \subseteq N$ is equivalent to

(9)
$$
b_{ij} \neq 0 \Longrightarrow f_j - f_i \leq e_{ij} \quad (1 \leq i, j \leq n).
$$

We can summarize our result as follows. N is fully characteristic in M if and only if (8) implies (9) for any choice of the elements $b_{ij} \in R^{\times} \cup \{0\}$ and the nonnegative integers e_{ij} . By choosing $b_{ij} = 1$ and $e_{ij} = \max(0, e_j - e_i)$ we find that

$$
f_j - f_i \le \max(0, e_j - e_i) \quad (1 \le i, j \le n)
$$

is a necessary condition for N to be fully characteristic in M . Clearly, the condition is sufficient at the same time. By (5) , we can rewrite this condition as (6) which completes the proof of the theorem. \Box