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GERGELY HARCOS

Principle of Induction. Some equivalent and frequently used formulations:
(1) If a given statement holds for the number 1 and the validity of the statement

is inherited from any positive integer to its successor then the statement
holds for all positive integers.

(2) If the validity of a given statement for any given positive integer follows
from the validity of the statement for all smaller positive integers then the
statement holds for all positive integers.

(3) If any positive integer of a given property gives rise to a smaller positive
integer with the same property, then there is no positive integer of that
property.

(4) If a given property is satisfied by some positive integer then there is a
smallest positive integer with that property.

Remark 1. Formulation (1) is the method of mathematical induction, due to
Augustus de Morgan (1806–1871). Formulation (2) is the method of complete
induction, due to Richard Dedekind (1831–1916). Formulation (3) is the method of
infinite descent, due to Pierre de Fermat (1601–1665). Formulation (4) essentially
says that the standard ordering on the positive integers is a well-ordering, a notion
introduced by Georg Cantor (1845–1918).

1. Divisors and multiples

Definition 1. a | b if there is a′ such that b = aa′. We say that a is a divisor of b,
and b is a multiple of a.

Remark 2. Divisors come in pairs.

Example 1. a | 0. ±a | a. ±1 | a. If a | 1 then a = ±1.

Proposition 1. For arbitrary a, b, c, x, y we have the following.
(1) If a | b and b | c then a | c.
(2) If a | b then ac | bc.
(3) If ac | bc then a | b or c = 0.
(4) If a | b then a | bc.
(5) If a | b and a | c then a | b± c.
(6) If a | b and a | c then a | bx + cy.

Theorem 1. For arbitrary a and positive b there is a unique decomposition

a = bq + r, 0 ≤ r < b.

Proof. First we show that the claimed decomposition exists. As b is positive, there
are nonnegative numbers of the form a − bq. Let r = a − bq be the least such
nonnegative number (so we have specified q and r). The number r − b is less than

1



2 GERGELY HARCOS

r (since b is positive) and can be written as a − b(q + 1). Hence r − b must be
negative, so in fact 0 ≤ r < b as needed.

Second we show that the claimed decomposition is unique. This means that

bq + r = bq′ + r′, 0 ≤ r, r′ < b

can only hold when q = q′ and r = r′. Indeed, b(q−q′) = r′−r lies strictly between
−b and b, hence −1 < q−q′ < 1 (since b is positive), hence q = q′, hence r = r′. �

Remark 3. We say that when a is divided by b, q is the quotient and r is the
residue. From the proof it is easy to extract an algorithm that determines r.

Algorithm 1. Input: a ≥ 0 and b > 0.
(1) If a < b then output a.
(2) Replace a by a− b.
(3) Go to (1).

Proposition 2. For any input a ≥ 0 and b > 0, Algorithm 1 returns an r such
that 0 ≤ r < b and b | a− r.

Proof. We fix b > 0 and proceed by complete induction on a. That is, we assume
that the statement is true for all a′ < a in place of a. If a < b then the algorithm
returns a in step (1). This output has the required properties, since 0 ≤ a < b
by assumption and a − a = 0 is a multiple of b. If a ≥ b then step (1) is skipped
and then steps (2) and (3) are performed. After that the algorithm does exactly
what it would do for the input a′ := a− b ≥ 0 and b > 0. As a′ < a, the induction
hypothesis tells us that the algorithm returns an r such that 0 ≤ r < b and b | a′−r.
But a− r = (a′ − r) + b, hence b | a− r by part (5) of Proposition 1. �

Definition 2. If a or b is nonzero then (a, b) is the greatest common divisor of a
and b. If a and b are zero then (a, b) is zero. If (a, b) = 1 then we say that a and b
are coprime or relatively prime.

Definition 3. If a and b are nonzero then [a, b] is the positive least common multiple
of a and b. If a or b is zero then [a, b] is zero.

Example 2. (a, 0) = |a|. (±a,±b) = (a, b). [a, 0] = 0. [±a,±b] = [a, b].

Proposition 3. For arbitrary a, b, q we have

(a− bq, b) = (a, b).

Proof. We shall assume that a and b are not both zero for otherwise the statement
is trivial. If d | a and d | b then d | a− bq by part (6) of Proposition 1. If d | a− bq
and d | b then d | a also by part (6) of Proposition 1. This shows that a and b have
the same common divisors as a − bq and b. In particular, their greatest common
divisor is the same. �

Algorithm 2. Input: a, b ≥ 0 such that a + b > 0.
(1) If a < b then flip the values of a, b.
(2) If b = 0 then output a.
(3) Replace a by a− b.
(4) Go to (1).

Theorem 2 (Euclid). For any input a, b ≥ 0 such that a + b > 0, Algorithm 2
returns (a, b). Moreover, there exist x, y such that (a, b) = ax + by.
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Proof. We proceed by complete induction on a+ b. That is, we assume the validity
of the statement for any input a′, b′ ≥ 0 satisfying 0 < a′ + b′ < a+ b. If a < b then
step (1) is performed and after that the algorithm does exactly what it would do for
the input a′ := b and b′ := a which satisfies a′ ≥ b′ ≥ 0 and a′+b′ = a+b. Moreover,
(a′, b′) = a′x′ + b′y′ is the same as (a, b) = ay′ + bx′. Therefore we can certainly
assume that a ≥ b. In this case step (1) is skipped. If b = 0 then the algorithm
returns a in step (2) which of course equals (a, b). Moreover, (a, b) = 1.a + 0.b.
Therefore we can further assume that a ≥ b > 0. Then step (2) is also skipped
and steps (3) and (4) are performed. After that the algorithm does exactly what it
would do for the input a′ := a− b ≥ 0 and b′ := b > 0. As 0 < a′ + b′ = a < a + b,
the induction hypothesis tells us that the algorithm returns (a′, b′) and also that
(a′, b′) = a′x′+b′y′ for some x′, y′. But (a′, b′) = (a−b, b) = (a, b) by Proposition 3,
hence the algorithm indeed returns (a, b) and also

(a, b) = (a′, b′) = a′x′ + b′y′ = (a− b)x′ + by′ = ax′ + b(y′ − x′) = ax + by

upon setting x := x′ and y := y′ − x′. �

Remark 4. Algorithms 1 and 2 are called the Division Algorithm and the Euclid-
ean Algorithm. It is clear that these algorithms are closely related. In fact, it is
straightforward to check that step (3) in the Euclidean Algorithm could be replaced
by the more efficient step

(3’) Replace a by the output r of Algorithm 1 for the input a ≥ 0 and b > 0.

Remark 5. The Euclidean Algorithm and the proof of Theorem 2 highlight the
following property. Any pair 〈a, b〉 with a, b ≥ 0 and a + b > 0 can be moved
to 〈(a, b), 0〉 by only using moves of the type 〈a, b〉 → 〈b, a〉 (when a < b) and
〈a, b〉 → 〈a− b, b〉 (when a ≥ b > 0). This observation allows a kind of “Euclidean
Induction” for proving certain statements P (a, b) involving such pairs. Namely, for
the universal validity of P (a, b) it suffices to show that

(1) P (a, b) holds true when b = 0;
(2) P (a, b) follows from P (b, a) when a < b;
(3) P (a, b) follows from P (a− b, b) when a ≥ b > 0.

Remark 6. In the language of linear algebra the above two moves are linear maps
of determinants −1 and +1, respectively. Any successive application of these moves

is realized by right multiplication by a matrix
(

x w
y z

)
of determinant ±1 according

to whether an even or an odd number of flips were applied. If this matrix arises
from the steps performed by the Euclidean Algorithm on a particular pair 〈a, b〉,
then the entries x, y can be identified with those in Theorem 2, while the entries
w, z are equal to ∓b/(a, b),±a/(a, b) according to the parity of the number of flips
performed.

Theorem 3. For arbitrary a, b, n the equation

ax + by = n

has a solution x, y if and only if (a, b) divides n.

First proof (using Theorem 2). We shall assume that a and b are not both zero
for otherwise the statement is trivial. The “only if” part follows from part (6) of
Proposition 1. To prove the “if” part it suffices to show that there are x, y such
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that (a, b) = ax + by. By Example 2 we may restrict ourselves to the case when
a, b ≥ 0. Then the statement is part of Theorem 2. �

Second proof (using Theorem 1). We shall assume that a and b are not both zero
for otherwise the statement is trivial. Then at least one of ±a,±b is positive, so
there certainly are positive numbers of the form ax + by. Let d = ax0 + by0 be the
least such positive number. It is clear that each multiple of d can be written as
ax+ by. We claim that the converse is also true, that is, any number n = ax1 + by1

is a multiple of d. By Theorem 1 there is a unique decomposition n = dq + r where
0 ≤ r < d. Observe that r is of the form ax + by:

r = n− dq = a(x1 − x0q) + b(y1 − y0q).

This shows that r cannot be positive (since it is less than d), hence r = 0 and d | n
as claimed. In particular, taking n = a and n = b shows that d is a common divisor
of a and b. We claim that d is the greatest common divisor, that is, d = (a, b).
To see this let c be any common divisor of a and b. Then, from the representation
d = ax0 + by0 and part (6) of Proposition 1 it follows that c is a divisor of d, so it
cannot be greater than d. �

Corollary 1. For arbitrary a, b, c we have

(ca, cb) = |c|(a, b).

Proof. We shall assume that c is nonzero and also that a or b is nonzero for otherwise
the statement is trivial. By Theorem 3 the set of numbers of the form cax + cby
agrees with the set of multiples of (ca, cb). Since cax + cby = c(ax + by), the same
corollary shows that this set also agrees with the set of multiples of c(a, b). Therefore
(ca, cb) and |c|(a, b) are multiples of each other. These numbers are positive, hence
they are equal. �

Remark 7. The analogous relation

[ca, cb] = |c|[a, b]

holds for much simpler reasons.

Theorem 4 (Euclid). Let a and b be arbitrary.
(1) Any common multiple of a and b is a multiple of [a, b].
(2) Any common divisor of a and b is a divisor of (a, b).
(3) (a, b)[a, b] = |ab|.

First proof (using Theorem 1). If a = 0 then (a, b) = |b|, [a, b] = 0, whence all
statements are trivial. Similarly, the case of b = 0 is trivial. Therefore we shall
assume that a and b are nonzero. Switching the sign of a or b does not alter the
statements, therefore it suffices to prove the theorem for positive a, b.

(1): Put m := [a, b]. Assume that c is a common multiple of a and b. Let
c = mq + r with 0 ≤ r < m according to Theorem 1. By (6) of Proposition 1 a | c
and a | m implies that a | c −mq, that is, a | r. Similarly, b | r. Therefore r is a
common multiple of a and b, less than m. This shows that r cannot be positive, so
r = 0, so m | c.

(2)&(3): Applying (1) for c = ab it follows that m | ab. In other words, ab = dm
for some positive d. Since a = d(m/b), d is a divisor of a. Similarly, d is a divisor
of b. That is, d is a common divisor of a and b. Now let c be an arbitrary common
divisor of a and b. Then ab/c = a(b/c) = b(a/c) is a common multiple of a and b.
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By (1) it follows that ab/c = mk for some positive k. Now d = ab/m = ck shows
that c is a divisor of d. We have showed that any common divisor of a and b is a
divisor of d which itself is a common divisor. In particular, d = (a, b). �

Second proof (using Theorem 2). As observed in the first proof, we can assume that
a, b are positive.

(2): Put d := (a, b). Assume that c is a common divisor of a and b. By Theorem 2
there is a representation d = ax+ by with some x, y. This in combination with part
(6) of Proposition 1 shows that c is a divisor of d.

(1)&(3): By part (4) of Proposition 1 d | ab. In other words, ab = dm for some
positive m. Since m = a(b/d), m is a multiple of a. Similarly, m is a multiple of
b. That is, m is a common multiple of a and b. Now let c be an arbitrary common
multiple of a and b. By part (2) of Proposition 1 we have ab | ac and also ab | bc.
By part (6) of Proposition 1 it follows that ab | acx + bcy. That is, ab | dc. But
ab = dm, so that in fact dm | dc. By (3) of Proposition 1 m | c (since d is positive).
We have showed that any common multiple of a and b is a multiple of m which
itself is a common multiple. In particular, m = [a, b]. �

Theorem 5 (Euclid). If a, b are not both zero then ax = by if and only if x =
kb/(a, b), y = ka/(a, b) for some k.

Proof. If a = 0 then b 6= 0, b/(a, b) = ±1, hence the statement reduces to the
obvious claim that 0 = by if and only y = 0. Therefore we shall assume that a 6= 0.
For similar reasons we shall assume that b 6= 0. If x = kb/(a, b), y = ka/(a, b)
for some k then certainly ax = by. Now let x, y arbitrary such that ax = by.
Then ax = by is a common multiple of a, b, hence it equals k[a, b] for some k by
part (1) of Theorem 4. Combining with part (3) of Theorem 4, this means that
ax = by = kab/(a, b), that is, x = kb/(a, b), y = ka/(a, b). �

Remark 8. Theorem 4 and its first proof as well as Theorem 5 can be described
in geometric terms. Let us assume that a and b are positive. Common multiples
of a and b can be written as ax = by and hence correspond bijectively to the
lattice vectors 〈x, y〉 of slope a/b. Of these vectors there is a shortest with positive
coordinates, call it 〈x0, y0〉. Statement (1) says that any lattice vector of slope a/b
is a multiple of 〈x0, y0〉. Common divisors c of a and b correspond bijectively to
the lattice vectors 〈b/c, a/c〉 dividing 〈b, a〉. Statement (2) says that 〈x0, y0〉 is a
divisor of 〈b, a〉 which divides all the divisors of 〈b, a〉. Statement (3) says that
〈x0, y0〉 = 〈b/(a, b), a/(a, b)〉. Theorem 5 summarizes that the nonzero multiples
of 〈b/(a, b), a/(a, b)〉 are exactly the lattice vectors of slope a/b. It also expresses
the fact that the fraction a/b has a unique representation in lowest terms with a
positive denominator, namely y0/x0, where x0 = b/(a, b) and y0 = a/(a, b).

Corollary 2. If a, b are not both zero and (a, b) divides n then the solutions of

ax + by = n

are of the form x = x0 + kb/(a, b) and y = y0 − ka/(a, b) with fixed x0, y0.

Proof. By Theorem 3 there exists a solution x0, y0 of the equation. Let us fix
this solution. Then the equation can be written as ax + by = ax0 + by0, that is,
a(x−x0) = b(y0−y). By Theorem 5 this holds true if and only if x−x0 = kb/(a, b)
and y0 − y = ka/(a, b). �
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Theorem 6. If (a, b) = 1 and a | bc then a | c.

First proof (using Theorem 5). As bc = ad for some d it follows from Theorem 5
that c = ak and d = bk for some k. In particular, a | c. �

Second proof (using Theorem 2). Clearly, a is a common divisor of ac and bc. By
part (6) of Proposition 1 a | acx + bcy for any x, y. By Theorem 2 we can choose
x, y so that ax + by = 1, and then a | c follows. �

Theorem 7 (Euclid). If (a, n) = 1 and (b, n) = 1 then (ab, n) = 1.

First proof (using Theorem 6). If n = 0 then a, b = ±1, so the statement is obvious.
We can therefore assume that n is nonzero. Put d := (ab, n). As d | n, every
common divisor of a and d is also a common divisor of a and n. This shows that
(a, d) = 1. In addition, d | ab, so by Theorem 6 we can conclude that d | b.
Therefore d is a positive common divisor of b and n, hence d = 1. �

Second proof (using Theorem 2). By Theorem 2 there are integers x1, y1, x2, y2 such
that

ax1 + ny1 = 1 and bx2 + ny2 = 1.

Multiplying these equations we get

abx1x2 + nby1x2 + nax1y2 + n2y1y2 = 1.

In particular,
x := x1x2 and y := by1x2 + ax1y2 + ny1y2

solve the equation
abx + ny = 1.

By part (6) of Proposition 1 (ab, n) divides the left hand side, hence (ab, n) = 1. �

2. Unique factorization

Definition 4. An integer n > 1 is called composite if it can be decomposed as
n = ab with a, b > 1. An integer n > 1 that is not composite is called prime.

Remark 9. In other words, n > 1 is prime if and only if 1 and n are its only
positive divisors.

Proposition 4. Every integer n > 1 is a product of primes.

Proof. We proceed by complete induction on n. If n is prime then the statement
is valid. Otherwise n decomposes as n = ab with a, b > 1. Observe that a, b < n,
therefore a, b are products of primes by the induction hypothesis. Hence n is a
product of primes. �

Corollary 3. Every integer n > 1 has a prime divisor. �

Theorem 8 (Euclid). There are infinitely many prime numbers.

Proof. Let p1, p2, . . . , pn be any finite sequence of positive integers. By Corollary 3
there is a prime p dividing p1p2 . . . pn + 1. Clearly, p does not divide p1p2 . . . pn,
therefore p is not among p1, p2, . . . , pn. This shows that no finite sequence can
contain all prime numbers. �

Proposition 5. If p is prime and a is arbitrary then either p | a or (a, p) = 1.
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Proof. As (a, p) is a positive divisor of p, either (a, p) = 1 or (a, p) = p. The second
case is equivalent to p | a. �

Theorem 9 (Euclid). If p is prime and p | ab then p | a or p | b.

Proof. Assume that p - a. Then (a, p) = 1 by Proposition 5, hence p | b by
Theorem 6. �

Theorem 10. Every integer n > 1 can be written uniquely as a product of primes,
apart from the order of the factors.

First proof (using Theorem 9). By Proposition 4 it suffices to show that there are
no two different decompositions of n as a product of primes, apart from the order
of the factors. Let

n = p1p2 . . . pr = q1q2 . . . qs

be two such decompositions. By reordering/renaming the factors we can achieve
that p1 ≤ p2 ≤ · · · ≤ pr and q1 ≤ q2 ≤ · · · ≤ qs. We need to show that r = s and
pi = qi for each i = 1, 2, . . . , r = s. We prove this reduced statement by complete
induction on n. Let p be the smallest prime divisor of n. By Theorem 9 p divides
one of the pi’s, hence it equals one of the pi’s. But then p equals the smallest of the
pi’s, that is, p = p1. The same reasoning shows that p = q1. Therefore p1 = q1 = p.
If n = p then r = s = 1 and we are done. Otherwise n/p > 1, hence r, s > 1 and

n/p = p2p3 . . . pr = q2q3 . . . qs.

By the induction hypothesis r − 1 = s− 1 and pi = qi for i = 2, 3, . . . , r = s. �

Second proof (using only induction). The heart of the previous proof was the de-
duction, with the help of Theorem 9, that p = p1. We shall redo this step without
using Theorem 9. Let us assume that p 6= p1. Then certainly r > 1 and p < p1 as
p is the smallest prime divisor of n. Consider the product n′ := (p1 − p)p2p3 . . . pr.
Observe that 1 < n′ < n and p | n′. By Proposition 4 there are primes p′1, p

′
2, . . . , p

′
t

and p′′1 , p′′2 , . . . , p′′u such that

n′/p = p′1p
′
2 . . . p′t and p1 − p = p′′1p′′2 . . . p′′u.

Then
n′ = pp′1p

′
2 . . . p′t = p′′1p′′2 . . . p′′up2p3 . . . pr

are two decompositions of n′ as a product of primes. By the induction hypothesis
these two decompositions only differ in the order of the factors. In particular, p
equals one of the factors on the right hand side. As p < pi for all i, we must
have p = p′′j for some j. This implies p | p1 − p, hence p | p1, a contradiction to
1 < p < p1. �

Corollary 4. Every integer n > 1 can be written uniquely as n = pα1
1 pα2

2 . . . pαr
r ,

where p1 < p2 < · · · < pr are distinct primes and the exponents αi are positive. �

Theorem 11. Let n = pα1
1 pα2

2 . . . pαr
r , where p1 < p2 < · · · < pr are distinct primes

and the exponents αi are positive. If d = pβ1
1 pβ2

2 . . . pβr
r with 0 ≤ βi ≤ αi then d

is a positive divisor of n. Moreover, every positive divisor d of n can be written
uniquely in this form.
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Proof. If d = pβ1
1 pβ2

2 . . . pβr
r with 0 ≤ βi ≤ αi, then the integers β′i := αi − βi are

nonnegative, hence d′ := p
β′1
1 p

β′2
2 . . . p

β′r
r is an integer satisfying n = dd′. This shows

that d is a positive divisor of n.
Now let d be an arbitrary positive divisor of n. By definition n = dd′ for some

positive d′. Let q1 < q2 < · · · < qs be the primes dividing d or d′. By Proposition 4

d = qβ1
1 qβ2

2 . . . qβs
s and d′ = q

β′1
1 q

β′2
2 . . . q

β′s
s

for some nonnegative exponents βi and β′i. Observe that βi +β′i is positive for each
i (since qi divides d or d′), and also

n = dd′ = q
β1+β′1
1 q

β2+β′2
2 . . . q

βs+β′s
s .

By Theorem 10 it follows that r = s, and qi = pi, βi+β′i = αi for all i. In particular,
0 ≤ βi ≤ αi, whence d has the form claimed. It also follows from Theorem 10 that
the exponents βi are uniquely determined by d. �

Definition 5. The number of positive divisors of n is denoted by τ(n). The sum
of positive divisors is denoted by σ(n).

Corollary 5. Let n = pα1
1 pα2

2 . . . pαr
r , where p1 < p2 < · · · < pr are distinct primes

and the exponents αi are positive. Then

τ(n) = (α1 + 1)(α2 + 1) . . . (αr + 1).

�

Theorem 12. Let

a = pα1
1 pα2

2 . . . pαr
r and b = pβ1

1 pβ2
2 . . . pβr

r ,

where p1 < p2 < · · · < pr are distinct primes and the exponents αi, βi are nonneg-
ative. Then

(a, b) = p
min(α1,β1)
1 p

min(α2,β2)
2 . . . pmin(αr,βr)

r

[a, b] = p
max(α1,β1)
1 p

max(α2,β2)
2 . . . pmax(αr,βr)

r .

Proof. By Theorem 11 the common divisors of a, b are exactly the divisors of

p
min(α1,β1)
1 p

min(α2,β2)
2 . . . pmin(αr,βr)

r ,

while the common multiples of a, b are exactly the multiples of

p
max(α1,β1)
1 p

max(α2,β2)
2 . . . pmax(αr,βr)

r .

Therefore these expressions agree with (a, b) and [a, b], respectively. �

Remark 10. Note that Theorem 12 and its proof imply Theorem 4.

Corollary 6. Let k be positive. Then for arbitrary a, b we have

(ak, bk) = (a, b)k and [ak, bk] = [a, b]k.

Proof. We can assume that a and b are nonzero for otherwise the statement is
obvious. Switching the sign of a or b does not alter the statement, therefore we can
further assume that a and b are positive. Then the statement follows at once from
Theorem 12 upon noting that

min(kα, kβ) = k min(α, β) and max(kα, kβ) = k max(α, β).

�
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Theorem 13. Let m and n be relatively prime. If d is a positive divisor of m and
e is a positive divisor of n then de is a positive divisor of mn. Moreover, every
positive divisor of mn can be written uniquely in this form.

Proof. Let
m = pα1

1 pα2
2 . . . pαr

r and n = qβ1
1 qβ2

2 . . . qβs
s

be the unique prime factorization of m and n. As m and n are relatively prime,
neither of the primes pi equal any of the primes qj , therefore the unique prime
factorization of mn reads

mn = pα1
1 pα2

2 . . . pαr
r qβ1

1 qβ2
2 . . . qβs

s

with distinct primes pi and qj . By Theorem 11 the numbers

pγ1
1 pγ2

2 . . . pγr
r qδ1

1 qδ2
2 . . . qδs

s

with 0 ≤ γi ≤ αi and 0 ≤ δj ≤ βj are positive divisors of mn, and every positive
divisor of mn can be written uniquely in this form. By introducing the notation

d := pγ1
1 pγ2

2 . . . pγr
r and e := qδ1

1 qδ2
2 . . . qδs

s

it follows that the products de are positive divisors of mn, and every positive divisor
of mn can be written uniquely in this form. Finally, by Theorem 11 again, d (resp.
e) is a positive divisor of m (resp. n) and every positive divisor of m (resp. n)
appears exactly once among the d’s (resp. e’s) considered. �

Remark 11. If m and n are relatively prime and k | mn then the components
d | m and e | n in Theorem 13 can be described as d = (k,m) and e = (k, n). This
follows at once from the proof and Theorem 12. In particular, k = (k, m)(k, n) for
all k | mn. More generally, Theorem 12 easily implies that (k, mn) = (k,m)(k, n)
for arbitrary k.

3. Congruences

Definition 6. a ≡ b (mod n) if n | a− b. We say that a is congruent to b modulo
n.

Example 3. 5 ≡ 0 (mod 5). −3 ≡ 19 (mod 11).

Proposition 6. For arbitrary a, b, c, d, m, n we have the following.
(1) a ≡ a (mod n).
(2) If a ≡ b (mod n) then b ≡ a (mod n).
(3) If a ≡ b (mod n) and b ≡ c (mod n) then a ≡ c (mod n).
(4) If a ≡ b (mod n) and c ≡ d (mod n) then a + c ≡ b + d (mod n).
(5) If a ≡ b (mod n) and c ≡ d (mod n) then ac ≡ bd (mod n).

Proof. (1): We need to show that n | a − a, that is, n | 0 which is obvious. (2):
We need to show that if n | a − b then n | b − a which is obvious. (3): We need
to show that if n | a − b and n | b − c then n | a − c. This follows at once from
(5) of Proposition 1. (4): We need to show that if n | a − b and n | c − d then
n | (a+ c)− (b+d). Observe that (a+ c)− (b+d) = (a− b)+(c−d). Therefore the
statement follows from (5) of Proposition 1. (5): We need to show that if n | a− b
and n | c− d then n | ac− bd. Observe that ac− bd = (a− b)c+(c− d)b. Therefore
the statement follows from (6) of Proposition 1. �

Proposition 7. If (a, n) = 1 then ax ≡ ay (mod n) implies x ≡ y (mod n).
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Proof. We need to show that n | ax− ay implies n | x− y. As ax− ay = a(x− y)
and (a, n) = 1 the statement follows from Theorem 6. �

Proposition 8. For arbitrary a and n the congruence

ax ≡ 1 (mod n)

has a solution if and only if (a, n) = 1. Moreover, the solutions x can be given as
x ≡ ā (mod n), where ā denotes any particular solution.

Proof. The given congruence is satisfied if and only if ax− ny = 1 holds for some
y. By Theorem 3 this equation has a solution x, y if and only if (a, n) = 1. If
this condition is satisfied then Corollary 2 shows that the solutions are of the form
x = x0 + kn and y = y0 + ka, where ax0 − ny0 = 1. In particular, putting ā := x0

we can see that x is admissible if and only if x ≡ ā (mod n). �

Remark 12. Any ā with the property that aā ≡ 1 (mod n) is called a multiplica-
tive inverse of a modulo n. By Theorem 8 ā exists if and only if (a, n) = 1 and in
that case ā is uniquely determined modulo n. Using ā we can obtain an alternate
proof of Proposition 7: simply multiply both sides of ax ≡ ay (mod n) by ā.

Proposition 9. Let n1, n2, . . . , nk be pairwise relatively prime and put n := n1n2 . . . nk.
Then for arbitrary x, y the congruences

x ≡ y (mod ni), i = 1, 2, . . . , k

hold simultaneously if and only if

x ≡ y (mod n).

Proof. We need to show that ni | x−y holds for all i if and only if n | x−y. As the
ni’s are pairwise relatively prime, the statement follows at once from Theorem 4. �

Theorem 14 (Chinese Remainder Theorem). Let n1, n2, . . . , nk be pairwise rela-
tively prime positive integers and let a1, a2, . . . , ak be arbitrary. The congruences

x ≡ ai (mod ni), i = 1, 2, . . . , k

can be satisfied simultaneously. Moreover, the solutions x can be given as

x ≡ x0 (mod n),

where n := n1n2 . . . nk and x0 is any particular solution.

Proof. Let us first show that the congruences x ≡ ai (mod ni) can be satisfied
simultaneously. Let Ri := {0, 1, . . . , ni − 1} and R := {0, 1, . . . , n − 1}. In the
light of Theorem 1 and Proposition 6 we can assume that each ai is taken from
Ri. Let x ∈ R be arbitrary. By Theorem 1 for each i there is a unique xi ∈ Ri

satisfying x ≡ xi (mod ni). Putting f(x) := (x1, x2, . . . , xk) we have defined a
function f : R → R1 × R2 × . . . Rk. Observe that the domain R and the target
R1 × R2 × . . . Rk of f are of the same size n := n1n2 . . . nk. We need to show the
surjectivity of f which by the previous remark is equivalent to the injectivity of f .
We prove the latter. If f(x) = f(y) for x, y ∈ R then x ≡ y (mod ni) for all i by
Proposition 6, hence x ≡ y (mod n) by Proposition 9. However, −n < x− y < n,
therefore n | x − y implies x = y. We have now shown that some x0 satisfies
all the congruences x ≡ ai (mod ni). In particular, Proposition 6 shows that the
congruences are equivalent to x ≡ x0 (mod ni). By Proposition 9 these congruences
hold simultaneously if and only if x ≡ x0 (mod n). �
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Proposition 10. If (a, n) = 1 then ak ≡ 1 (mod n) for some 1 ≤ k ≤ n.

Proof. Consider the n+1 numbers ai (i = 0, 1, . . . , n). By the pigeon-hole principle
at least two of them share the same residue modulo n, that is, ai ≡ aj for some
0 ≤ i < j ≤ n. By applying Proposition 7 i times (or alternately by multiplying
both sides by āi) we conclude 1 ≡ aj−i (mod n). Hence the proposition follows
upon putting k := j − i. �

Definition 7. If (a, n) = 1 then the least positive k satisfying ak ≡ 1 (mod n) is
denoted ordn(a) and is called the order of a modulo n.

Theorem 15. If (a, n) = 1 and k ≥ 0 then

ak ≡ 1 (mod n) ⇐⇒ ordn(a) | k.

Proof. Let m := ordn(a) then by Theorem 1 there is a unique decomposition k =
mq + r, where 0 ≤ r < m. Note that k ≥ 0 implies m ≥ 0, therefore

ak = amq+r = (am)qar ≡ 1mar = ar (mod n).

Since 0 ≤ r < m, the right hand side is congruent to 1 mod n if and only if r = 0,
that is, if and only if m | k. �

Theorem 16. If (a, n) = 1 and u > 0 then

ordn(au) =
ordn(a)

(u, ordn(a))
.

Proof. Let v := ordn(a) and k > 0 be arbitrary. Clearly, (au)k = auk, therefore
Theorem 15 shows that ordn(au) is the least positive k that satisfies v | uk. In
other words, we are looking for the least positive k occurring in the solution of the
equation uk = vl. By Theorem 5 the solutions are of the form k = mv/(u, v), l =
mu/(u, v), hence the least positive k (corresponding to m = 1) equals v/(u, v). �

Definition 8. ϕ(n) is the number of elements in {0, 1, . . . , n− 1} coprime with n.

Example 4. ϕ(1) = 1. If n = 10 then 1, 3, 5, 7 are the elements in {0, 1, . . . , 9}
that are coprime with 10, therefore ϕ(10) = 4.

Proposition 11. If p is prime and α > 0 then ϕ(pα) = (p−1)pα−1. In particular,
ϕ(p) = p− 1.

Proof. It follows by unique factorization that the elements in {0, 1, . . . , pα−1} that
are not coprime with pα are exactly those divisible by p, that is, the numbers pk
with 0 ≤ k < pα−1. This shows that ϕ(pα) = pα − pα−1 = (p− 1)pα−1. �

Theorem 17. Let n1, n2, . . . , nk be pairwise relatively prime positive integers.
Then

ϕ(n1n2 . . . nk) = ϕ(n1)ϕ(n2) . . . ϕ(nk).

Proof. Let us use the notations in the proof of Theorem 14. The map f : R →
R1 × R2 × . . . Rk was shown to be bijective in that proof. In particular, for any
subset S ⊆ R the image set f(S) := {f(x) | x ∈ S} is of the same size as S. Let
us consider S := {x ∈ R | (x, n) = 1}. We claim that f(S) = S1 × S2 × . . . Sk,
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where Si := {xi ∈ Ri | (xi, ni) = 1}. Clearly, |S| = φ(n) and |Si| = ϕ(ni), hence
the claim implies the theorem:

ϕ(n1n2 . . . nk) = ϕ(n)

= |S|
= |f(S)|
= |S1 × S2 × . . . Sk|
= |S1| · |S2| · . . . · |Sk|
= ϕ(n1)ϕ(n2) . . . ϕ(nk).

So it suffices to show the claim that f(S) = S1 × S2 × . . . Sk. Using that f is
bijective this can be reformulated as: if x ∈ R and f(x) = (x1, x2, . . . , xk), then
x ∈ S if and only if xi ∈ Si for all i. In other words, we need to show that (x, n) = 1
if and only if (xi, ni) = 1 for all i. Combining the congruence x ≡ xi (mod ni) (the
definition of f) with Proposition 3 we can infer that (xi, ni) = (x, ni). So we are
left with proving that (x, n) = 1 if and only if (x, ni) = 1 for all i. The “only if”
part is obvious, since (x, ni) is a common divisor of x and n. The “if” part follows
immediately from Theorem 7 or Theorem 10. �

Corollary 7. Let n = pα1
1 pα2

2 . . . pαk

k , where p1 < p2 < · · · < pk are distinct primes
and the exponents αi are positive. Then

ϕ(n) = (p1 − 1)pα1−1
1 (p2 − 1)pα2−1

2 . . . (pk − 1)pαk−1
k .

Proof. Theorem 17 applied for ni := pαi
i gives

ϕ(n) = ϕ(n1)ϕ(n2) . . . ϕ(nk),

and here ϕ(ni) = (pi − 1)αi−1 by Proposition 11. �

Remark 13. The above formula can be written in the more elegant form

ϕ(n)
n

=
∏
p|n

(
1− 1

p

)
,

where the product runs over the prime divisors of n. The left hand side can be
interpreted as the probability of the event E that a random number x taken from
{0, 1, . . . , n− 1} with uniform distribution is relatively prime to n. The right hand
side can be interpreted as the product of the probabilities of the events Ep that the
same random number x is not divisible by p. Of course we know that event E holds
if and only if all the events Ep hold simultaneously. Therefore the above formula
is a special case of the probabilistic statement that the events Ep (for p a prime
divisor of n) are independent. The proof given above could be modified easily to
yield this more general statement, that is, the equation

Prob
(∧

p|n

Fp

)
=

∏
p|n

Prob(Fp),

where each Fp equals either Ep or the negation of Ep.

Theorem 18 (Euler–Fermat). If (a, n) = 1 then aϕ(n) ≡ 1 (mod n).
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Proof. Let r1, r2, . . . , rϕ(n) be the elements in {0, 1, . . . , n−1} coprime with n (note
that ϕ(n) ≥ 1). By Theorem 7 the numbers ar1, r2, . . . , arϕ(n) are also coprime with
n. Using Theorem 1 and Proposition 3 we can see that for each i there is some j
such that

ari ≡ rj (mod n).
Different i’s yield different j’s by Proposition 6, hence the assignment i 7→ j is in-
jective. As the i’s and the j’s are taken from the same finite set {0, 1, . . . , n−1}, the
assignment i 7→ j is a permutation. In other words, the numbers ar1, r2, . . . , arϕ(n)

modulo n are the same as r1, r2, . . . , rϕ(n) in some order. It follows that

ar1 · ar2 · . . . · arϕ(n) ≡ r1 · r2 · . . . · rϕ(n) (mod n).

By Proposition 7 we can divide both sides by r1, then by r2, and so on, finally by
rϕ(n), and in this way we obtain

aϕ(n) ≡ 1 (mod n).

�

Corollary 8. If (a, n) = 1 then ordn(a) | ϕ(n).

Proof. This follows at once from Theorems 18 and 15. �

Corollary 9. If p is prime then ap ≡ a (mod p) for all a.

Proof. If p | a then the statement is obvious. If p - a then (a, p) = 1, therefore
aϕ(p) ≡ 1 (mod p) by Theorem 18. Here ϕ(p) = p − 1, hence in fact ap−1 ≡ 1
(mod p). Multiplying both sides by a we get ap ≡ a (mod p). �

Theorem 19. If p is prime then every prime factor of 2p − 1 is congruent to 1
modulo p.

Proof. Let q be a prime factor of 2p − 1. Then 2p ≡ 1 (mod q) which shows by
Theorem 15 that ordq(2) | p. As ordq(2) = 1 is clearly impossible, we conclude that
ordq(2) = p. By Corollary 8 it follows that ordq(2) | ϕ(q), where ordq(2) = p and
ϕ(q) = q − 1, hence p | q − 1. �

Remark 14. Theorem 19 shows that for each prime p there is some prime q con-
gruent to 1 modulo p. As q is larger than p we obtained a new proof of Theorem 8.

Definition 9. Let a > 1 be an integer. A positive integer n is called a pseudoprime
to the base a if n is composite and an−1 ≡ 1 (mod n).

Theorem 20 (Cipolla). There are infinitely many pseudoprimes to each base a > 1.

Proof. Let p > a2 be any prime number. We will show that

n :=
a2p − 1
a2 − 1

is a pseudoprime to the base a. As different p’s yield different n’s we will have
constructed infinitely many pseudoprimes to the base a this way.

First note that

n =
ap − 1
a− 1

· ap + 1
a + 1

= (ap−1 + ap−2 + · · ·+ a2 + a + 1)(ap−1 − ap−2 ± · · ·+ a2 − a + 1),
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therefore n is clearly composite. For later reference we also note that n is odd as
on the right hand side both factors are odd. For a even this is clear while for odd
a it follows because a sum of an odd number of odd numbers is always odd. Now
observe that (a2 − 1)n = a2p − 1, so n | a2p − 1, therefore

a2p ≡ 1 (mod n).

If we show that 2p | n−1 then we are done, since raising both sides to the (n−1)/2p-
th power we can conclude

an−1 ≡ 1 (mod n).

The relation 2p | n− 1 is equivalent to 2 | n− 1 and p | n− 1. We have already
seen that n is odd, so 2 | n− 1. For p | n− 1 observe that by Corollary 9

(a2 − 1)n = a2p − 1 ≡ a2 − 1 (mod p),

since p > a2 implies (a2, p) = 1. On the two sides a2 − 1 is coprime with p (since
p > a2), therefore by Proposition 7 it follows that

n ≡ 1 (mod p).

In other words, p | n− 1, and the proof is complete. �

Remark 15. From the proof it follows (taking a = 2 and p = 5) that n = 341 is a
pseudoprime to the base 2.

Definition 10. A positive integer n is called a Carmichael number if n is composite
and satisfies an−1 ≡ 1 (mod n) for any integer a coprime with n.

Theorem 21 (Korselt). Let n = p1p2 . . . pk where p1 < p2 < · · · < pk are distinct
primes and k > 1. If pi − 1 | n− 1 for all i, then n is a Carmichael number.

Proof. Let a be any integer coprime with n. We need to show that an−1 ≡ 1
(mod n). By Proposition9 this holds true if and only if an−1 ≡ 1 (mod pi) for all
i. As (a, n) = 1 we also have (a, pi) = 1, so api−1 ≡ 1 (mod pi) by Theorem 18.
We assume that pi−1 | n−1, so raising both sides to the (n−1)/(pi−1)-th power
we obtain an−1 ≡ 1 (mod pi) as needed. �

Corollary 10. 561 is a Carmichael number.

Proof. The prime decomposition of 561 reads 561 = 3 · 11 · 17. The prime factors
satisfy the hypothesis of Theorem 21, since 3− 1 = 2, 11− 1 = 10, and 17− 1 = 16
are all divisors of 561− 1 = 560. �

Remark 16. It can be shown that the condition in Theorem 21 (observed by
Korselt in 1899) characterizes all Carmichael numbers. The proof relies on the fact
that if p > 2 is a prime then for each α > 0 there is an a such that ordpα(a) = ϕ(pα).
Such an a is called a primitive root mod pα. Carmichael conjectured in 1912 that
there are infinitely many Carmichael numbers. Based on Korselt’s criterion, Alford,
Granville, and Pomerance managed to prove this conjecture in 1994.
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4. Quadratic residues

Definition 11. Let p be an odd prime and let a be coprime with p. We say that
a is a quadratic residue modulo p if there is an x satisfying the congruence x2 ≡ a
(mod p). If there is no such x then we say that a is a quadratic nonresidue modulo
p.

Theorem 22. Let p be an odd prime. The set {1, 2, . . . , p− 1} contains (p− 1)/2
quadratic residues and (p− 1)/2 quadratic nonresidues modulo p.

Proof. Consider the sets S := {1, 2, . . . , (p − 1)/2} and T := {1, 2, . . . , p − 1}. For
each x ∈ S there is a unique a ∈ T satisfying x2 ≡ a (mod p). The assignment
x 7→ a defines a function f : S → T . The image f(S) of this function consists
of the quadratic residues modulo p in T . We claim that f is injective, that is, if
x, y ∈ S satisfy f(x) = f(y) then x = y. Indeed, if f(x) = f(y) then x2 ≡ y2

(mod p), therefore (x− y)(x + y) = x2 − y2 ≡ 0 (mod p), hence x− y ≡ (mod p)
or x + y ≡ 0 (mod p). The second congruence cannot hold, since 0 < x + y < p,
while the first congruence forces x = y, since −p < x − y < p. The injectivity
of f implies that f(S) is of the same size as S. In other words, there are exactly
(p−1)/2 quadratic residues modulo p in T . It follows, in addition, that the number
of quadratic nonresidues modulo p in T is p− 1− (p− 1)/2 = (p− 1)/2. �

Definition 12. Let p be an odd prime. The Legendre symbol of a modulo p is
defined as (

a

p

)
:=


+1, if a is a quadratic residue modulo p ;
−1, if a is a quadratic nonresidue modulo p ;

0, if a is divisible by p .

Proposition 12. Let p be an odd prime. For arbitrary a, b we have the following.

(1) If a ≡ b (mod p) then
(

a
p

)
=

(
b
p

)
.

(2) If p - b then
(

a
p

)
=

(
ab2

p

)
.

Proof. (1): If either of a, b is divisible by p then both of them are divisible by p,
hence the statement is obvious. Otherwise the statement means that the congruence
x2 ≡ a (mod p) has a solution if and only if the congruence x2 ≡ b (mod p) has
a solution. This is immediate from a ≡ b (mod p). (2): If a is divisible by p
then the statement is obvious. Otherwise the statement means that the congruence
x2 ≡ a (mod p) has a solution if and only if the congruence x2 ≡ ab2 (mod p) has
a solution. If the first congruence has some solution x0 then x1 := x0b solves the
second congruence. If the second congruence has some solution x1 then x0 := x1b̄
solves the first congruence, where bb̄ ≡ 1 (mod p) (cf. Remark 12). �

Theorem 23 (Euler). Let p be an odd prime and let a be arbitrary. Then(
a

p

)
≡ a

p−1
2 (mod p).

Proof. We can assume that a is not divisible by p for otherwise the statement is
obvious. Let T := {1, 2, . . . , p − 1}. We know by Corollary 2 that for every x ∈ T
there is a unique y ∈ T satisfying xy ≡ a (mod p). In fact, y is the unique element
of T congruent to ax̄ mod p (see Proposition 8 and Remark 12). If a is a quadratic
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nonresidue mod p then x and y are always different and therefore T decomposes
into a disjoint union of (p − 1)/2 subsets {x, y} each consisting of two elements
whose product is congruent to a mod p. As a result, the product of all elements of
T is congruent to a

p−1
2 mod p. If a is a quadratic residue mod p then there is an

x0 ∈ T such that a ≡ x2
0 (mod p). The congruence a ≡ x2 (mod p) has exactly two

solutions in T , namely x = x0 and x = p−x0 (note that these are different because
p is odd). This is because a ≡ x2 (mod p) can be written as (x − x0)(x + x0) ≡
(mod p) which is equivalent to x ≡ ±x0 (mod p). Therefore unless x = x0 or
x = p − x0 the element y satisfying xy ≡ a (mod p) is different from x and also
from x0 and p − x0. This shows that T now decomposes into a disjoint union of
(p−3)/2 subsets {x, y} each consisting of two elements whose product is congruent
to a mod p plus an additional subset {x0, p− x0} consisting of two elements whose
product is x0(p−x0) ≡ −x2

0 ≡ −a (mod p). As a result, the product of all elements
of T is congruent to −a

p−1
2 mod p. With the Legendre symbol notation we can

summarize the findings in both cases as

(p− 1)! ≡ −
(

a

p

)
a

p−1
2 (mod p).

In the special case of a = 1 this congruence reads

(p− 1)! ≡ −1 (mod p),

and therefore we even have

−1 ≡ (p− 1)! ≡ −
(

a

p

)
a

p−1
2 (mod p).

Multiplying the two sides by −
(

a
p

)
we obtain(

a

p

)
≡

(
a

p

)2

a
p−1
2 = a

p−1
2 (mod p).

�

Corollary 11 (Euler). Let p be an odd prime. Then(
−1
p

)
=

{
+1, p ≡ +1 (mod 4);
−1, p ≡ −1 (mod 4).

Proof. By Theorem 23 the two sides are congruent modulo p. As p > 2 and both
sides are either +1 or −1, they are equal. �

Theorem 24 (Wilson’s Theorem1). If p is prime then

(p− 1)! ≡ −1 (mod p).

Proof. This congruence is trivial for p = 2 and it was derived in the proof of
Theorem 23 for p > 2. �

Theorem 25. Let p be an odd prime. For arbitrary a and b we have(
ab

p

)
=

(
a

p

) (
b

p

)
.

1proved by Lagrange
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First proof (using Theorem 23). By Theorem23(
ab

p

)
≡ (ab)

p−1
2 = a

p−1
2 b

p−1
2 ≡

(
a

p

) (
b

p

)
(mod p).

The two sides are elements of {−1, 0, 1}, therefore p > 2 forces them to be equal. �

Second proof (using Theorem 22). If a or b is divisible by p then both sides of the
equation are zero, so the statement holds. Otherwise the statement means that ab
is a quadratic residue mod p if and only if a and b are both quadratic residues mod
p or both quadratic nonresidues mod p. By Theorem 22 the quadratic resides mod
p between 0 and p can be labeled as

0 < r1 < r2 < · · · < r(p−1)/2 < p,

while the quadratic nonresidues mod p between 0 and p can be labeled as

0 < s1 < s2 < · · · < s(p−1)/2 < p.

It suffices to show that rirj is always a quadratic residue, risj is always a quadratic
nonresidue, and sisj is always a quadratic residue.

It is clear that rirj is always a quadratic residue, because there are xi and xj

such that x2
i ≡ ri (mod p) and x2

j ≡ rj (mod p), and then x := xixj solves the
conruence x2 ≡ rirj (mod p). Now fix i and consider the products rirj and risj .
These are pairwise incongruent mod p by Proposition 7, therefore by Theorem 22
exactly (p − 1)/2 of them are quadratic residues mod p. As the rirj ’s are already
known to be quadratic residues mod p, none of the risj ’s can be quadratic residues
mod p. In other words, risj is always a quadratic nonresidue. Now fix j and
consider the products risj and sisj . These are pairwise incongruent mod p by
Proposition 7, therefore by Theorem 22 exactly (p − 1)/2 of them are quadratic
nonresidues mod p. As the risj ’s are already known to be quadratic nonresidues
mod p, none of the sisj ’s can be quadratic nonresidues mod p. In other words, sisj

is always a quadratic residue. �

Theorem 26 (Gauss’s Lemma). Let p be an odd prime and let a be coprime with
p. Let s denote the number of elements k of {1, 2, . . . , (p − 1)/2} for which ak is
congruent modulo p to some element of {−1,−2, . . . ,−(p− 1)/2}. Then(

a

p

)
= (−1)s.

Proof. Let us use the notation S := {1, 2, . . . , (p−1)/2}. If k is an arbitrary element
of S then ak is coprime with p, hence ak ≡ εkmk for some εk ∈ {±1} and some
mk ∈ S. Note that εk and mk are uniquely determined by a and k, therefore s is
the number of times −1 occurs in the sequence ε1, ε2, . . . , ε(p−1)/2. We claim that
m1,m2, . . . ,m(p−1)/2 are all different. Indeed, if mi = mj then either ai − aj or
ai + aj is divisible by p, whence by Theorem 9 either i − j or i + j is divisible by
p. As −p < i − j < p and 0 < i + j < p, this forces i = j. The mk’s are elements
of S, hence in fact they are all the elements of S in some order. It follows that

a(p−1)/2
∏
k∈S

k =
∏
k∈S

(ak) ≡
∏
k∈S

(εkmk) =
∏
k∈S

εk

∏
k∈S

mk =
∏
k∈S

εk

∏
k∈S

k (mod p).

Using Proposition 7 for the two sides it follows that

a(p−1)/2 ≡
∏
k∈S

εk = (−1)s (mod p).
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Combining with Theorem 23 we obtain(
a

p

)
≡ (−1)s (mod p).

As p > 2 and both sides are either +1 or −1, they are equal. �

Theorem 27. For a > 0 and (r, 2a) = 1 put

sa(r) :=
∑

1≤m≤a/2

(⌊mr

a

⌋
−

⌊mr

a
− r

2a

⌋)
.

For all primes p satisfying p ≡ ±r (mod 4a) we have(
a

p

)
= (−1)sa(r).

Proof. Clearly, (p, 2a) = (r, 2a) = 1, therefore p is an odd prime coprime with a.
We shall use the notation of the proof of Theorem 26.

We prove first that s = sa(p). Let us dissect the interval (0, p/2] into a subin-
tervals of equal length:

In :=
(

(n− 1)p
2a

,
np

2a

]
, n = 1, 2, . . . , a.

Each element k ∈ S lies in exactly one of these intervals. If k ∈ S ∩ In then

(n− 1)
2

p < ak ≤ n

2
p.

For n odd the left hand side is an integer divisible by p, so εk = +1 and mk =
ak − (n−1)

2 p ∈ S. For n even the right hand side is an integer divisible by p, so
εk = −1 and mk = n

2 p− ak ∈ S. This shows that εk = −1 if and only if n is even,
therefore

s =
∑

1≤m≤a/2

|S ∩ I2m|.

Using the notation
Jn :=

(
0,

np

2a

]
, n = 1, 2, . . . , a

we can see that I2m is just the set-theoretic difference of J2m and its subset J2m−1,
hence

|S ∩ I2m| = |S ∩ J2m| − |S ∩ J2m−1|.
Clearly,

|S ∩ Jn| =
⌊np

2a

⌋
, n = 1, 2, . . . , a,

therefore

|S ∩ I2m| = |S ∩ J2m| − |S ∩ J2m−1| =
(⌊mp

a

⌋
−

⌊mp

a
− p

2a

⌋)
.

This shows that

s =
∑

1≤m≤a/2

|S ∩ I2m| =
∑

1≤m≤a/2

(⌊mp

a

⌋
−

⌊mp

a
− p

2a

⌋)
= sa(p).

By Theorem 26 it follows that (
a

p

)
= (−1)sa(p).
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To complete the proof we shall show that sa(p) ≡ sa(r) (mod 2). We know that
p = 4aq+r or p = 4aq−r for some q. Let n be an arbitrary integer not divisible by
2a, then np is also not divisible by 2a as follows from Theorem 6 and (p, 2a) = 1.
Therefore

p = 4aq + r =⇒
⌊np

2a

⌋
= 2nq +

⌊mr

a

⌋
≡

⌊mr

a

⌋
(mod 2),

while

p = 4aq − r =⇒
⌊np

2a

⌋
= 2nq − 1−

⌊mr

a

⌋
≡ 1 +

⌊mr

a

⌋
(mod 2).

If 0 < m < a then in either case we obtain, by subtracting the relevant congruences
for n = 2m and n = 2m− 1,⌊mp

a

⌋
−

⌊mp

a
− p

2a

⌋
≡

⌊mr

a

⌋
−

⌊mr

a
− r

2a

⌋
(mod 2).

By summing up these congruences for 1 ≤ m ≤ a/2 we obtain

sa(p) ≡ sa(r) (mod 2).

Finally, (
a

p

)
= (−1)sa(p) = (−1)sa(r).

�

Corollary 12 (Lagrange). Let p be an odd prime. Then(
2
p

)
=

{
+1, p ≡ ±1 (mod 8);
−1, p ≡ ±3 (mod 8).

and (
−2
p

)
=

{
+1, p ≡ +1,+3 (mod 8);
−1, p ≡ −1,−3 (mod 8).

Proof. The first identity follows immediately from Theorem 27 upon remarking
that

s2(1) =
⌊

1
2

⌋
−

⌊
1
2
− 1

4

⌋
= 0 and s2(3) =

⌊
3
2

⌋
−

⌊
3
2
− 3

4

⌋
= 1.

The second identity follows from the first identity combined with Theorem 25 and
Corollary 11. �

Theorem 28 (Gauss). Let a be a positive integer. If p and q are odd primes such
that p ≡ ±q (mod 4a) then (

a

p

)
=

(
a

q

)
.

Proof. The statement follows immediately from Theorem 27:(
a

p

)
= (−1)sa(q) =

(
a

q

)
.

�
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Theorem 29 (Gauss). If p and q are distinct odd prime numbers then(
p

q

) (
q

p

)
= (−1)

p−1
2

q−1
2 .

Proof. We assume first that p 6≡ q (mod 4). Then p + q is some positive integer
divisible by 4 and coprime with p and q. If 4a denotes this positive integer then
clearly p ≡ −q (mod 4a), hence by Proposition 12 and Theorem 28 we have(

q

p

)
=

(
p + q

p

)
=

(
4a

p

)
=

(
a

p

)
=

(
a

q

)
=

(
4a

q

)
=

(
p + q

q

)
=

(
p

q

)
.

Multiplying both sides by
(

p
q

)
we obtain(

p

q

) (
q

p

)
= +1.

We assume now that p ≡ q (mod 4). Without loss of generality p < q and then
q−p is some positive integer divisible by 4 and coprime with p and q. If 4a denotes
this positive integer then clearly p ≡ q (mod 4a), hence by Proposition 12 and
Theorem 28 we have(

q

p

)
=

(
q − p

p

)
=

(
4a

p

)
=

(
a

p

)
=

(
a

q

)
=

(
4a

q

)
=

(
q − p

q

)
=

(
−p

q

)
.

Applying Theorem 25 for the right hand side and then multiplying both sides by(
p
q

)
we obtain (

p

q

) (
q

p

)
=

(
p

q

) (
p

q

) (
−1
q

)
=

(
−1
q

)
.

Finally by Corollary 11 we conclude that(
p

q

) (
q

p

)
=

{
+1, p ≡ q ≡ +1 (mod 4);
−1, p ≡ q ≡ −1 (mod 4).

In both cases we arrived at the conclusion of the theorem, since the exponent
p−1
2

q−1
2 is odd if and only if p ≡ q ≡ −1 (mod 4). �
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