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Abstract. We give a short, informal survey on the role of automorphic L-functions in number

theory. We present the strongest currently known subconvexity bounds for twisted L-functions

over number fields due to the authors and give various arithmetic applications. This is based on
a talk of the first author.

1. L-functions

Suppose you are given an interesting sequence a(n), n ∈ N, of complex numbers that you would
like to investigate. The method of analytic number theory is to encode this sequence in a generating
function. There are several choices, and if some multiplicativity is involved, one might consider the
Dirichlet series

(1) L(s) =

∞∑
n=1

a(n)

ns
.

If we assume a(n) �ε n
ε for all ε > 0, or even only an average bound

∑
n≤x |a(n)| �ε x

1+ε, then

(1) converges absolutely and uniformly on compacta in <s > 1, and thus defines a holomorphic
function. We can hope that in this way we translate the arithmetic of the sequence a(n) into ana-
lytic properties of the function L(s), and indeed there is very often a remarkable interplay between
arithmetic and analysis. Let us look at a few examples (see also [21, 27, 32]):

1) Let a(n) = 1 for all n. While it is debatable if this is an interesting sequence, it gives no doubt
an interesting object: the Riemann ζ-function

ζ(s) :=

∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1

, <s > 1.

The Euler product shows that ζ(s) 6= 0 in <s > 1, and it is a classical fact that the non-vanishing
of ζ on the line <s = 1 is equivalent1 to the prime number theorem

π(x) := #{p ≤ x | p prime} ∼ x

log x
, x→∞.

The ζ-function can be extended meromorphically to all of C, and one has more precisely an equiva-
lence2

ζ(s) 6= 0 in <s > 1− δ for some 0 < δ ≤ 1/2

⇐⇒ π(x) =

∫ x

2

dt

log t
+O(x1−δ+ε) for some 0 < δ ≤ 1/2 and all ε > 0.

2000 Mathematics Subject Classification. Primary: 11-02, Secondary: 11F66, 11E25.
The first author was supported by an NSERC grant and the second author was supported by European Community

grant MEIF-CT-2006-040371 under the Sixth Framework Programme and by OTKA grants K 72731 and PD 75126.
1Of course, since both statements are true, they are in particular equivalent. But even without knowing the truth

of either of these statements one can deduce one from the other.
2Here it is unknown if either of these statement holds for some δ > 0.

1



2 VALENTIN BLOMER AND GERGELY HARCOS

This shows a very precise translation of an arithmetic statement (distribution of prime numbers)
into an analytic statement (location of zeros).

2) Let K/Q be a number field and let a(n) := #{integral ideals a | Na = n}. This gives the
Dedekind ζ-function

ζK(s) :=

∞∑
n=1

a(n)

ns
=
∑
a

1

(Na)s
,

which has a simple pole at s = 1. The analytic class number formula states

res
s=1

ζK(s) =
2r1(2π)r2Rh

w
√
|D|

,

where as usual r1, r2 are the number of real resp. pairs of complex embeddings of K into C, R is the
regulator, h is the class number, w is the number of roots of unity in K and D is the discriminant.
In other words, we find all algebraic invariants of K in the Laurent expansion of ζK at s = 1.

3) Let χ be a primitive Dirichlet character to some large modulus q. This gives rise to a Dirichlet
L-function

L(s, χ) :=

∞∑
n=1

χ(n)

ns
,

which again can be continued to an entire function. In practice, one often encounters character sums
of the type

∑
n≤x χ(n), and one would expect that there is a lot of cancellation in such a sum. For

example, for x = q one even has
∑
n≤q χ(n) = 0. Cancellation becomes a very delicate matter if

the sum is short, i.e. if x is small compared to q. The Lindelöf hypothesis for L(s, χ) states that
L(1/2 + it, χ)�ε ((1 + |t|)q)ε for all ε > 0. This is not known, but it would imply∑

n≤x

χ(n)�ε x
1/2+ε

for all ε > 0 and for all x > 0. Again there is an intimate connection between an arithmetic state-
ment (equidistribution of character values to small arguments) and an analytic statement (growth
on vertical lines).

4) If E/Q is an elliptic curve, we know by Mordell’s theorem that the set of rational points on
E is a finitely generated Abelian group, E(Q) ∼= Zr ⊕ Etor(Q). The rank r seems to be an elusive
object; however, it is relatively simple to count points on (the reduction of) E over finite fields, and
we can define

aE(p) :=
p+ 1−#E(Fp)√

p

for a prime p. This can be extended in a more or less natural way to all integers, and yields an
L-function LE(s) =

∑
aE(n)n−s. It is, in general, very hard to prove that this can be extended

to an entire function, and is part of the seminal work of Wiles (and others) [9, 39, 43]. Given that
LE(1/2) exists, the Birch and Swinnerton-Dyer conjecture states (among other things) that the rank
can be recovered from the Laurent expansion at 1/2, namely ords=1/2 LE(s) = r.

We observe that all four examples depend on an appropriate analytic continuation of the respec-
tive L-function and provide a connection between the arithmetic input and some analytic properties
outside the region of absolute convergence.

Every decent L-function has a functional equation of the form

(2) L(s)G(s) = ηL(1− s̄)G(1− s)
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where |η| = 1 and

G(s) = Ns/2
d∏
j=1

π−s/2Γ

(
s+ µj

2

)
for some integer N ∈ N and some complex numbers µ1, . . . , µd. The complexity of an L-function is
measured by its analytic conductor

(3) C := C(t) := N

d∏
j=1

(1 + |t+ µj |), t = =s.

Since we are assuming that L(s) converges absolutely in <s > 1, we have L(s) � 1 in <s = 1 + ε.
The functional equation (2) and Stirling’s formula translate this into3 L(s)� C1/2+ε on <s = −ε.
If we assume in addition that L is of finite order (in the sense of complex analysis), which is always
satisfied in applications, then a standard argument shows

(4) L(1/2 + it)� C(t)1/4+ε.

This is usually referred to as the convexity bound, and any exponent smaller than 1/4 is called a
subconvexity bound. If the generalized Riemann hypothesis holds for the L-function in question, then
1/4 can be replaced with 0.

2. Automorphic forms on GL2

Let G := PSL2(R). We have the Iwasawa decomposition G = NAK where

N :=

{(
1 x

1

) ∣∣∣∣ x ∈ R
}
, A :=

{(
y1/2

y−1/2

) ∣∣∣∣ y > 0

}
, K :=

{(
cos θ sin θ
− sin θ cos θ

) ∣∣∣∣ θ ∈ [0, π)

}
.

The group K = PSO2(R) is a maximal compact subgroup of G. Let

Γ := Γ0(N) :=

{(
a b
c d

)
∈ PSL2(Z) | c ≡ 0 (mod N)

}
.

Then G acts on L2(Γ\G) by the right regular representation, ρ(g)(φ)(x) := φ(xg) for φ ∈ L2(Γ\G),
and we have a G-equivariant decomposition

(5) L2(Γ\G) = C · 1⊕
⊕
π

Vπ ⊕
∑
a

∫
R
Ha(t) dt

into the constant functions, cuspidal irreducible representations (π, Vπ) and Eisenstein series for the
cusps a (that enter the picture because Γ\G is not compact). Each Vπ decomposes further according
to the characters of K:

Vπ =
⊕
q∈2Z

Vπ,q

(in the Hilbert space sense), and it is known that dimVπ,q ≤ 1. The left and right G-invariant
Laplace operator

∆ := −y2(∂2
x + ∂2

y) + y∂x∂θ

acts (by a generalized version of Schur’s lemma) on each Vπ as a scalar λπ ∈ R. In algebraic
terms, this is the Casimir element (up to normalization) of the universal enveloping algebra U(g).
Sometimes we need a variant of the space L2(Γ\G). For a character χ of modulus dividing N let
L2(Γ\G) denote the L2-space of functions G→ C that transform under Γ as f(( a bc d )g) = χ(d)f(g)
for ( a bc d ) ∈ Γ.

3Throughout this note, ε > 0 denotes an arbitrarily small constant, not necessarily the same on each occurrence.
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Why is the space L2(Γ\G) interesting? One reason is that it is equipped with additional structure.
In general there is no left action of G an L2(Γ\G): if f is Γ-invariant, then f(g · .) is only g−1Γg-
invariant. However, if Γ = Γ0(N) and g ∈ PSL2(Q), then g−1Γg contains some finite index subgroup
of Γ0(N), and using a suitable average, we can get back to Γ0(N). This is a special feature of groups
like Γ0(N) (as opposed to arbitrary discrete subgroups of G) and yields a family of naturally defined
operators {Tn | n ∈ N} that forms a commutative algebra, which also commutes with ∆, since ∆
is left G-invariant. Mostly for technical reasons we consider only the subspace L2

new(Γ\G) whose
irreducible representations are generated by so-called newforms, i.e. they do not come from subgroups
with smaller index in PSL2(Z). Then each operator Tn acts on each Vπ ⊆ L2

new(Γ\G) as a scalar
λπ(n), and a function φ ∈ Vπ,q has a Fourier-Whittaker expansion

φ

((
y1/2 xy−1/2

0 y−1/2

)(
cos θ sin θ
− sin θ cos θ

))
= eiqθ

∑
n 6=0

λπ(n)√
|n|

W
sgn(n)q/2,

√
1/4−λπ

(4π|n|y) e(nx),

where as usual e(x) denotes the additive character e2πix, Wα,β is the Whittaker function4 [42, Chap-
ter 16] and λ(−n) = ηλ(n) with η ∈ {−1, 0, 1}. This is relevant for us, because the Hecke eigenvalues
λπ(n) carry often number theoretic information.

Examples. 1) Hecke [25] - Maaß [31]: Let N be the discriminant of the field K = Q(
√
N) and

χ the character of the extension K/Q. Then there is a representation (π, Vπ) ⊆ L2
new(Γ\G,χ) with

λπ = 1/4, such that λπ(n) = #{ideals a ⊆ OK | Na = n}.

2) Wiles et al. [9, 39, 43]: Let E/Q be an elliptic curve. Then there is a representation
(π, Vπ) ⊆ L2

new(Γ\G) with λπ = 0, such that λπ(p) = (p+ 1−#E(Fp))/
√
p for all primes p.

Langlands’ philosophy suggests that “all interesting objects” arise in this way for suitable Γ and
G. In any case, for each representation (π, Vπ) ⊆ L2

new(Γ\G) we can define an L-function

L(π, s) :=

∞∑
n=1

λπ(n)

ns
,

and we hope to learn more about Hecke eigenvalues by studying L(π, s) from an analytic point of
view.

If we work over a number field K/Q with class number h > 1, the above setup is not appropriate.
One could work with h copies of G modulo certain conjugates of Γ, but it is better to work adelically.
For each place v of K let Kv be the completion and Ov the ring of integers (if v | ∞, then Ov = Kv).
Then the adele ring is the restricted product

A =
∏
v

′
Kv

with respect to the sets Ov, with K embedded diagonally. There is a natural surjection from A×
to the group of non-zero fractional ideals of K, and we often do not distinguish between an idele
and its image. Again GL2(A) acts by the right regular representation on L2(A×GL2(K)\GL2(A))
where A× is identified with the center of GL2(A). This setting has no dependence on the level of
the subgroup any more, since it treats simultaneously all subgroups Γ0(c), with c an ideal in K. If
we want to make the level explicit, we define

K(c) :=
∏

p finite

K(cp) ⊆ GL2(Afin)

4In the special case q = 0, this reduces essentially to a Bessel K-function.
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for a nonzero ideal c, where

K(cp) :=

{(
a b
c d

)
∈ GL2(Kp)

∣∣∣∣ a, d ∈ Op, b ∈ d−1
p , c ∈ dpc, ad− bc ∈ O×p

}
with d the different of K. The conductor of an irreducible representation (π, Vπ) contained in
L2(A×GL2(K)\GL2(A)) is the smallest ideal such that Vπ contains a right K(c)-invariant vector
(which is automatically a “newvector”). The Fourier expansion in the adelic setting reads

φ

((
y x

1

))
=
∑
r∈K×

λπ(ryfin)√
N (ryfin)

Wφ(ry∞)ψ(rx),

where y = y∞ × yfin ∈ A×, x ∈ A, φ a smooth vector in some cuspidal irreducible representation
π, N the norm, Wφ a product of Whittaker functions, ψ the standard additive character on A, and
λπ(ryfin) depends only on the fractional ideal represented by ryfin and is non-zero only if this ideal
is integral.

How can we get new automorphic forms out of given ones? A typical way is twisting, and the
simplest twist is by a character (that is, by an automorphic form on GL1). Let χ : K×\A× → S1 be
a Hecke character of conductor q (that is, q is the largest ideal such that χ is trivial on finite ideles
≡ 1 mod q), and define the twist of a representation π on GL2 with χ by

π ⊗ χ(g) := χ(det g)π(g).

This is another representation on GL2, and if the integral ideal a is coprime to the conductors of π
and χ, then λπ⊗χ(a) = λπ(a)χ(a). If χ has conductor q and π has conductor c coprime to q, then
π ⊗ χ has conductor cq2, so the conductor of the character enters quadratically.

3. Subconvexity for automorphic L-functions

The following result is a combination of the results in [5, 6, 7]. We are interested in bounding
a twisted automorphic L-functions in terms of the conductor of the twisting character, where the
other parameters are essentially kept fixed.

Theorem 1. Let K be a totally real number field of degree d, π an irreducible cuspidal representation
on GL2(A), χ a Hecke character of conductor q and C = C(t, π) the analytic conductor of L(s, π)
in the sense of (3). Then

L(π ⊗ χ, 1/2 + it)� CA(N q)1/2−δ+ε

where N denotes the norm, A is some absolute constant, ε > 0 is arbitrarily small, and δ = 1
11 in

general, and δ = 1
8 if K = Q.

More precisely, the constant δ in the general case5 is 1
8 (1 − 2θ) > 1

11 where θ is the a bound
towards the Ramanujan conjecture (currently θ ≤ 1/9 is known [29] and θ = 0 is conjectured).

The convexity bound in this context is L(π ⊗ χ, 1/2 + it)�t,π,ε (N q)1/2+ε. The first subconvex
bound in this direction was δ = 1/22 for K = Q by Duke, Friedlander and Iwaniec [19] and
an important contribution came from Bykovskĭı [12] that inspired both [13] and [6]. Our bound
δ = 1/8 matches the quality of Burgess’ celebrated bound [11], where the case π an Eisenstein series
is treated.

Over a number field K other than Q a subconvexity bound was for a long time an open problem.
In an unpublished manuscript [15] (see also [14]), Cogdell, Piatetskii-Shapiro and Sarnak obtained
δ = 1/18 for holomorphic Hilbert cusp forms using deep bounds for triple products [35]. As an
application of an ingenious and very flexible geometric method, Venkatesh [40] (see also [33]) proved
recently – among other things – Theorem 1 with δ = 1/24. Our method is quite different from all
of these works and will yield in particular as a by-product a solution of a problem of Selberg, see

5At the time of writing, we need some technical assumptions that can most likely be removed with a little extra
work.
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Theorem 2 below.

We will only sketch briefly the ideas that go into the proof; it rests on the following ingredients6:

• the amplification method [19] and an approximate functional equation [23] (this is essentially
standard),

• the spectral decomposition of Dirichlet series associated with a shifted convolution sum [5]
(solving a problem of Selberg) which makes good use of

• the Kirillov model and Sobolev norms [2].

Let us look at the first point. To start with, we have to find a way to work conveniently with
the values L(π ⊗ χ, 1/2 + it) since a priori they exist only by analytic continuation (or perhaps as
a conditionally convergent series which is not useful in practice either). However, often a suitably
truncated part of a divergent or conditionally convergent series gives a good approximation of the
quantity that one is interested in. For L-functions this can be made precise with an approximate
functional equation, and in fact the first about C1/2 terms of an L-function with analytic conductor
C are a very good approximation on the critical line <s = 1/2. In other words, for all practical
purposes

(6) L(1/2, π ⊗ χ) ∼
∑
Na∼Nq

λπ(a)χ(a)

(Na)1/2

and similarly for other points on the critical line, where ∼ has to be understood in a very broad
sense. Note by the way, that the trivial bound would recover the convexity estimate. Now that we
have an explicit description of L(s, π ⊗ χ) as a finite sum, let us try to exhibit cancellation in such

sums. Let us first look at a simple example7. Suppose you want to prove that | sinx+ cosx| ≤
√

2.
There are certainly many ways of proving this. Here is one: Square the left hand side and add a
“spectrally useful” nonnegative quantity:

| sinx+ cosx|2 + | sinx− cosx|2 = 2.

Now drop the second term, and the proof is complete. In a similar way, it is useful to embed an
L-function into a family. First let us cut the sum (6) into h pieces according to the ideal class of
the ideal a. For simplicity we will only work with the principal class. We consider now the second
moment ∑

ω∈Ω

|L(π ⊗ ω, 1/2 + it)|2,

where Ω is a family of characters containing χ, for example the family of all characters of (O/q)×.
These characters are in general not Hecke characters, because they may not be trivial on units, and
so strictly speaking the expression L(π⊗ω, 1/2+it) does not make sense as a value of an automorphic
L-function. It is typical in this context to consider such “fake-moments”; after all, we are free to add
to our original quantity L(π ⊗ χ, 1/2 + it) whatever we want as long as it is non-negative. Here the
expression L(π⊗ω, 1/2 + it) is just a notation for a suitable Dirichlet polynomial whose coefficients
behave roughly like λπ((α))ω(α) on principal ideals (α). This family is of size about N q; so even
if we assume a sort of Generalized Lindelöf hypothesis in the sense L(π ⊗ ω, 1/2 + it) �t,π 1, we
can bound the above sum only by N q which after taking the square-root just recovers the convexity
bound. The problem here is that our family, although very convenient to work with, is quite large.
One could try to evaluate a fourth moment instead of a second moment, in which case one could take
the fourth root at the end, but our current analytic techniques are not strong enough to estimate
a fourth moment appropriately. The idea of Duke-Friedlander-Iwaniec [19] is to weight the sum in

6The proof for K = Q uses a somewhat different methods which avoid the dependence on Ramanujan bounds, see
[6].

7which can be viewed as an instance of arts and science in mathematics: it is art to find the second term, and it
is science to prove the trigonometric identity
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our favor so as to highlight the one term we are interested in, but not the other ones that we drop
at the end anyway. Hence as a refinement, we consider

(7)
∑
ω∈Ω

|A(ω)|2|L(π ⊗ ω, 1/2 + it)|2,

where A(ω) is an “amplifier” that is large for ω = χ, and rather small otherwise. In practice, A(ω)
will be a short Dirichlet polynomial, e.g.

A(ω) =
∑

N (α)∼L

χ(α)ω̄(α),

where L is a parameter that we can optimize later. Now we open the square and sum over ω. This
shows that we have to bound nontrivally sums roughly of the form

(8)
∑

n1,n2∈OK∩B
α1n1≡α2n2 (mod q)

λπ(n1)λ̄π(n2),

where α1, α2 are of norm about L (they come from the amplifier), and B is a box in Minkowski
space of the form

nσ1 , . . . , nσd � (N q)1/d

with σ1, . . . , σd the embeddings of K into R. We break this sum into pieces according to the value
of

(9) q := α1n1 − α2n2 ∈ q.

The term q = 0 is the diagonal term, and pretty straightforward to handle. Let us now assume
q 6= 0. Expressions of the type (8) with a summation condition of type (9) are usually called shifted
convolution sums. Selberg [37] considered in 1965 Dirichlet series (over Q) of the type

Dq(s) :=
∑

n1−n2=q

λπ(n1)λ̄π(n2)

(n1 + n2)s

(which is not an automorphic L-function!) and proved in some cases an analytic continuation to
some right half plane <s > 1 − δ with δ > 0, however, without good control of the size in s and q
(which is crucial for all known applications). Progress in this respect has been made by Good [22],
Jutila [28], Sarnak [35] and Motohashi [34]. Our method, based on the Kirillov model and Sobolev
norms gives not only the analytic continuation with good growth estimates, but also the pleasing
structural insight that the series Dq(s) can be decomposed according to the decomposition (5). We
present the result in the simplest case [5]. The general case is treated in [7].

Theorem 2. Let k > 60 and q > 0 be any integers, and λ(n) Hecke eigenvalues of any irreducible
cuspidal representation on GL2 of conductor 1. Then there exist holomorphic functions Fπ in the
strip 1/2 < <s < 3/2 (depending on k) such that∑

m−n=q

λ(n)λ(m)(nm)(k−1)/2

(n+m)s+k−1
= q1/2−s

∫
λπ(q)Fπ(s) dπ, <s > 1,

and ∫
|Fπ(s)| dπ �ε |s|22,

1

2
+ ε ≤ <s ≤ 3

2
,

where the integral is taken over the union of the discrete spectrum and the continuous spectrum.

Armed with Theorem 2 (or rather a slight generalization thereof) it is relatively straightforward
to complete the proof of Theorem 1.
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4. Applications

Although at first sight Theorem 1 may seem as some purely analytic trickery, it has, in accordance
with the general philosophy of L-functions, interesting arithmetic applications. Perhaps the most
appealing application of Theorem 1 is in combination with the formula of Waldspurger [41] and its
extensions to number fields. More precisely, let π̃ be a cuspidal representation on the double cover

S̃L2, generated by a half-integral weight modular form satisfying some technical assumptions, and π
the representation on GL2 given by theta correspondence (“Shimura lift”). Then for squarefree m,
Waldspurger’s formula relates the square of the m-th Fourier coefficient of π̃ to L(π⊗χm, 1/2) where
χm is the quadratic character corresponding to the extension K(

√
m)/K. In this way, Theorem 1

yields the currently best known bounds for Fourier coefficients of half-integral weight Hilbert modular
forms.

One particular situation where such bounds are needed, are asymptotic formulae for the number
of representations of totally positive integers by ternary quadratic forms, see [3] for an overview of
this topic over Q. Hilbert’s eleventh problem asks more generally which integers are (integrally)
represented by a given n-ary quadratic form Q over a number field K. If Q is a binary form, it
corresponds to some element in the class group of a quadratic extension of K (see [17] for a nice
account over Q). If Q is indefinite at some archimedean place, Siegel [38] for n ≥ 4 and Kneser [30]
and Hsia [26] for n = 3 proved a local-to-global principle, so Siegel’s mass formula tells us exactly
which integers are represented by Q. If Q is positive definite at every archimedean place and n ≥ 4,
again Siegel’s mass formula and simple bounds for Fourier coefficients of Hilbert modular forms give
a complete answer (some care has to be taken in the case n = 4). The only remaining case of Q
positive definite and n = 3 was solved by Duke and Schulze-Pillot [20] for K = Q. For arbitrary
totally real K, the result was announced in [15] with a sketch of the proof being given in [14] in the
class number one case. Combining the argument in [14] with Theorem 1 and Waldspurger’s formula
e.g. in the version of Baruch-Mao [1] one derives:

Theorem 3 (cf. [14, 15]). Let K be a totally real number field and let Q be a positive integral ternary
quadratic form over K. Then there is an ineffective constant c > 0 such that every totally positive
squarefree integer m ∈ OK with Nm ≥ c is represented integrally by Q if and only if it is integrally
represented over every completion of K.

The representation of non-squarefree integers is quite subtle, but in principle can again be char-
acterized by more involved local considerations, cf. e.g. [36].

Theorem 3 can be refined in various ways and also made quantitative, which yields for example
applications of the following type: Gauß proved in his Disquisitiones that a rational integer n can
be written as a sum of three squares if and only if it is not of the form 4k(8m + 7), and if it is
in addition not divisible by a very high power of 2, the number of such representations is about
L(1, χn)

√
n which by Siegel’s theorem is n1/2+o(1). Hence one may ask if all integers satisfying some

natural congruence conditions can still be written as a sum of three squares of numbers with certain
restrictions, e.g. sums of three squares of primes, or sums of three squares of squarefree numbers
or sums of three squares of smooth numbers etc. Combining the previous results with a carefully
designed sieve (the vector sieve as developed by Brüdern and Fouvry [10]) one can for example prove
[4, 3]:

Theorem 4. Let8 n ≡ 3 (mod 24), 5 - n, be sufficiently large, and let γ = 1/567. Then n is the
sum of three squares of integers with all their prime factors greater than nγ . The number of such
representations exceeds � n1/2−ε. In particular, every such n is the sum of three squares having at
most 284 prime factors.

For similar results of this flavor see [3].

8In [3, Proposition 3.1] the condition n ≡ 3 (mod 8) has to be replaced by n ≡ 3 (mod 24).
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A different type of application of Theorem 1 can be found in [16] (cf. also [40, 44]) that generalizes
work of Duke [18]: Under the assumption of a subconvex bound as above it is proved that a certain
family of Heegner points and certain d-dimensional subvarieties are equidistributed on the Hilbert
modular variety PSL2(OK)\Hd. For example, if K = Q, and −D is the discriminant of an imagi-
nary quadratic field, then each ideal class a = (a, 1

2 (b−
√
−D)), say, in the class group of Q(

√
−D)

gives a Heegner point z = (b −
√
−D)/(2a) in X := PSL2(Z)\H. If D → ∞, these points become

denser and denser in X, and the above statement says that they become actually equidistributed
(with an explicit rate of decay) with respect to the standard measure y−2dxdy on X. In order to
prove this, one has to sum the values of a test function at these Heegner points, and by a spectral
decomposition one can assume that the test function is an eigenform of the Laplacian. This leads to
certain Weyl sums, which can be expressed as central values of twisted L-functions. Using bounds
for the L-values as in Theorem 1, one derives an equidistribution statement.

Finally we note that the subconvex bound in Theorem 1 (in particular for K = Q) is a crucial
input for certain subconvex bounds of higher degree L-functions, which in turn have other arithmetic
applications. We refer the reader to [24, 8] for more details.
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