SELBERG'S IDENTITY FOR KLOOSTERMAN SUMS

GERGELY HARCOS AND GYULA KÁROLYI

1. INTRODUCTION

In this note, we give a simple and self-contained proof of Selberg's identity for the Kloosterman sum

(1)
$$
S(m,n;q) := \sum_{x \pmod{q}}^* e\left(\frac{mx+n\overline{x}}{q}\right).
$$

Here, *x* runs through the reduced residues modulo q , \bar{x} is the multiplicative inverse of *x* modulo q, and $e(t) := \exp(2\pi i t)$ denotes the standard additive character of the circle group \mathbb{R}/\mathbb{Z} . The identity was stated without proof by Selberg in his early paper [\[4\]](#page-2-0), rediscovered by Kuznetsov [\[2,](#page-2-1) Theorem 4] through his famous formula, and proved in an elementary way by Matthes [\[3\]](#page-2-2) and Andersson [\[1,](#page-2-3) Part III]:

Theorem. *For any positive integer q, and for any integers m and n, we have*

(2)
$$
S(m,n;q) = \sum_{d|(m,n,q)} d S\left(1, \frac{mn}{d^2}; \frac{q}{d}\right).
$$

2. THE PROOF

For the proof of the above Theorem, let us denote by $P(q)$ the statement that [\(2\)](#page-0-0) holds for all $m, n \in \mathbb{Z}$. Then, clearly, it suffices to show the following two results.

Lemma 1. If q_1 and q_2 are coprime positive integers, then $P(q_1)$ and $P(q_2)$ imply $P(q_1q_2)$.

Lemma 2. $P(p^{\alpha})$ *is true for any prime p and any nonnegative integer* α *.*

Proof of Lemma [1.](#page-0-1) Let us denote $q := q_1 q_2$, and let $m, n \in \mathbb{Z}$ be arbitrary. We start from the well-known identity $¹$ $¹$ $¹$ </sup>

(3)
$$
S(m, n; q) = S(m, n\overline{q_2}^2; q_1)S(m, n\overline{q_1}^2; q_2),
$$

where $\overline{q_2}$ is the multiplicative inverse of q_2 modulo q_1 , and $\overline{q_1}$ is the multiplicative inverse of q_1 modulo q_2 . To prove this identity, we represent *x* in [\(1\)](#page-0-3) as $x = x_1q_2 + x_2q_1$, where $x_1 \pmod{q_1}$ and $x_2 \pmod{q_2}$ are uniquely determined reduced residues. Then, it is straightforward to verify that

$$
\overline{x} \equiv \overline{q_2}^2 \overline{x_1} q_2 + \overline{q_1}^2 \overline{x_2} q_1 \pmod{q},
$$

whence

$$
e\left(\frac{mx+n\overline{x}}{q}\right)=e\left(\frac{mx_1+n\overline{q_2}^2\overline{x_1}}{q_1}\right)e\left(\frac{mx_2+n\overline{q_1}^2\overline{x_2}}{q_2}\right),
$$

¹ usually written in the more symmetric form $S(m,n;q) = S(m\overline{q_2}, n\overline{q_2}; q_1)S(m\overline{q_1}, n\overline{q_1}; q_2)$

and [\(3\)](#page-0-4) follows. Combining (3) with $P(q_1)$ and $P(q_2)$, we obtain

$$
S(m,n;q) = \sum_{\substack{d_1 \mid (m,n\overline{q_2}^2, q_1) \\ d_2 \mid (m,n\overline{q_1}^2, q_2)}} d_1 d_2 S\left(1, \frac{mn\overline{q_2}^2}{d_1^2}; \frac{q_1}{d_1}\right) S\left(1, \frac{mn\overline{q_1}^2}{d_2^2}; \frac{q_2}{d_2}\right)
$$

$$
= \sum_{\substack{d_1 \mid (m,n,q_1) \\ d_2 \mid (m,n,q_2)}} d_1 d_2 S\left(1, \frac{mn(\overline{q_2}d_2)^2}{(d_1 d_2)^2}; \frac{q_1}{d_1}\right) S\left(1, \frac{mn(\overline{q_1}d_1)^2}{(d_1 d_2)^2}; \frac{q_2}{d_2}\right)
$$

In the last sum, we observe that $\overline{q_2}d_2$ is the multiplicative inverse of q_2/d_2 modulo q_1/d_1 , while $\overline{q_1}d_1$ is the multiplicative inverse of q_1/d_1 modulo q_2/d_2 . Therefore, adapting [\(3\)](#page-0-4) for the product of the last two Kloosterman sums, and introducing the notation $d := d_1 d_2$, we arrive at

$$
S(m,n;q) = \sum_{\substack{d_1 | (m,n,q_1) \\ d_2 | (m,n,q_2)}} d_1 d_2 S\left(1, \frac{mn}{(d_1 d_2)^2}; \frac{q_1 q_2}{d_1 d_2}\right)
$$

=
$$
\sum_{d | (m,n,q)} d S\left(1, \frac{mn}{d^2}; \frac{q}{d}\right).
$$

That is, $P(q)$ holds, and we are done. The proof Lemma [1](#page-0-1) is complete.

Proof of Lemma [2.](#page-0-5) We fix the prime p , and proceed by induction on α . We want to prove *P*(p^{α}). For $\alpha = 0$ the statement is trivial, so we assume that $\alpha \geq 1$ and *P*($p^{\alpha-1}$) holds. Let us denote $q := p^{\alpha}$, and let $m, n \in \mathbb{Z}$ be arbitrary. If $(m, p) = 1$ or $(n, p) = 1$, we get from [\(1\)](#page-0-3) by a simple change of variable that $S(m,n;q) = S(1,mn;q)$, which is [\(2\)](#page-0-0) in this situation. So from now on we assume that *p* divides both *m* and *n*. Then, using also the induction hypothesis $P(p^{\alpha-1})$, the equation [\(2\)](#page-0-0) that we want to prove simplifies to

(4)
$$
S(m,n;q) = S(1,mn;q) + pS\left(\frac{m}{p},\frac{n}{p};\frac{q}{p}\right).
$$

For $\alpha = 1$, i.e. $q = p$, equation [\(4\)](#page-1-0) is valid, because it is straightforward that

$$
S(m, n; p) = p - 1, \qquad S(1, mn; p) = -1, \qquad S\left(\frac{m}{p}, \frac{n}{p}; 1\right) = 1.
$$

So from now on we assume that $\alpha \geq 2$. Then, in the definition [\(1\)](#page-0-3), the coprimality condition $(x,q) = 1$ is equivalent to $(x,q/p) = 1$, whence in [\(4\)](#page-1-0) the left hand side is equal to the second term on the right hand side. That is, [\(4\)](#page-1-0) simplifies further to $S(1, mn; q) = 0$. Note that here $p^2 \mid mn$ by assumption. More generally, we shall show the following:

(5)
$$
S(1, r; p^{\alpha}) = 0
$$
 whenever $p | r$ and $\alpha \ge 2$.

We verify (5) by direct calculation. According to the definition (1) ,

$$
S(1,r;q) = \sum_{x \pmod{q}}^* e\left(\frac{x+r\overline{x}}{q}\right).
$$

Here, $q = p^{\alpha}$ is a prime power divisible by p^2 , and r is divisible by p. We claim that the map $x \mapsto x + r\overline{x}$ permutes the reduced residues modulo *q*. Clearly, $x + r\overline{x}$ is always coprime to q , hence it suffices to check that the map is injective modulo q . Assuming

 $x + r\overline{x} \equiv y + r\overline{y} \pmod{q}$,

where *x* and *y* are coprime to *q*, we infer

$$
(x - y) + r(\overline{x} - \overline{y}) \equiv 0 \pmod{q},
$$

\n
$$
xy(x - y) + r(y - x) \equiv 0 \pmod{q},
$$

\n
$$
(xy - r)(x - y) \equiv 0 \pmod{q}.
$$

.

In the last congruence, $xy - r$ is coprime to q, whence $x \equiv y \pmod{q}$ as claimed. From here (5) is immediate:

$$
S(1,r;q) = \sum_{k \pmod{q}} {e\left(\frac{k}{q}\right)} = \sum_{1 \leq k \leq q} e\left(\frac{k}{q}\right) - \sum_{\substack{1 \leq k \leq q \\ p \mid k}} e\left(\frac{k}{q}\right) = 0 - 0 = 0.
$$

The proof Lemma [2](#page-0-5) is complete.

3. CONCLUDING REMARKS

The proof of Lemma [2](#page-0-5) shows that, for a prime power modulus $q = p^{\alpha}$, all but the last two terms in Selberg's identity [\(2\)](#page-0-0) vanish. More precisely, if either *m* or *n* is not divisible by *q*, then $d := (m, n, q)$ is the only divisor that contributes to [\(2\)](#page-0-0). If *m* and *n* are both divisible by *q*, then the divisors $d = q$ and $d = q/p$ contribute (*q* and $-q/p$, respectively), but the others do not. By refining this observation and combining it with the proof of Lemma [1,](#page-0-1) we can see that, for a general modulus *q*, only those divisors $d \mid (m, n, q)$ contribute to [\(2\)](#page-0-0) for which both $(m,q)/d$ and $(n,q)/d$ are square-free. For example, in the special case $n = 0$, Selberg's identity [\(2\)](#page-0-0) yields the usual evaluation of Ramanujan sums:

$$
S(m,0;q) = \sum_{d|(m,q)} d S\left(1,0;\frac{q}{d}\right) = \sum_{d|(m,q)} d \mu\left(\frac{q}{d}\right).
$$

4. ACKNOWLEDGEMENTS

First author supported by NKFIH (National Research, Development and Innovation Office) grants NK 104183, ERC_HU_15 118946, K 119528, and by the MTA Rényi Intézet Lendület Automorphic Research Group. Second author supported by NKFIH (National Research, Development and Innovation Office) grants K 119528 and K 120154.

REFERENCES

- [1] J. Andersson, *Summation formulae and zeta functions*, Ph.D. thesis, Stockholm University, 2006, available at <http://www.diva-portal.org>
- [2] N. V. Kuznecov, *The Petersson conjecture for cusp forms of weight zero and the Linnik conjecture. Sums of Kloosterman sums*, Math. USSR Sbornik 39 (1981), 299–342.
- [3] R. Matthes, *An elementary proof of a formula of Kuznecov for Kloosterman sums*, Results Math. 18 (1990), 120–124.
- [4] A. Selberg, Über die Fourierkoeffizienten elliptischer Modulformen negativer Dimension, C. R. Neuvième Congres Math. Scandinaves, Helsingfors (1938), 320–322, In: Collected papers I, Springer-Verlag, Berlin, ` 1989.

ALFRÉD RÉNYI INSTITUTE OF MATHEMATICS, HUNGARIAN ACADEMY OF SCIENCES, POB 127, BUDAPEST H-1364, HUNGARY

E-mail address: harcos.gergely@renyi.mta.hu

MTA RÉNYI INTÉZET LENDÜLET AUTOMORPHIC RESEARCH GROUP *E-mail address*: harcos.gergely@renyi.mta.hu

CENTRAL EUROPEAN UNIVERSITY, NADOR U. 9, BUDAPEST H-1051, HUNGARY *E-mail address*: harcosg@ceu.hu

ALFRÉD RÉNYI INSTITUTE OF MATHEMATICS, HUNGARIAN ACADEMY OF SCIENCES, POB 127, BUDAPEST H-1364, HUNGARY

E-mail address: karolyi.gyula@renyi.mta.hu

INSTITUTE OF MATHEMATICS, EÖTVÖS UNIVERSITY, PÁZMÁNY P. SÉTÁNY 1/C, BUDAPEST H-1117, HUNGARY

E-mail address: karolyi@cs.elte.hu