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The upper half-plane as a quotient of SL2(R)

Notation

G := SL2(R), K := SO2(R), Γ := SL2(Z),

H := {x + yi : x ∈ R, y > 0}.

The Lie group G acts on the upper half-plane H transitively via

gP := (aP + b)(cP + d)−1︸ ︷︷ ︸
arithmetic in complex numbers

, g =

(
a b
c d

)
∈ G , P ∈ H.

The stabilizer of i ∈ H is the maximal compact subgroup K 6 G ,
hence we can identify each point gi ∈ H with the coset gK ⊂ G .
So we can identify H ∼= G/K , hence also Γ\H ∼= Γ\G/K .

The (two-sided) Haar measure on G gives rise to a G -invariant
measure on H, and we can identify L2(Γ\H) with the set of those
elements of L2(Γ\G ) that are fixed by the right action of K . This
closed subspace of L2(Γ\G ) is the space of spherical vectors.



Spectral decomposition of the automorphic L2 space

The advantage of L2(Γ\G ) is that G acts on it (from the right) by
unitary operators. By abstract theory (using only properties of G ),
this space decomposes uniquely as a direct integral of irreducible
unitary representations of G :

L2(Γ\G ) =

∫
Ĝ
Vπ dµsp(π).

This goes back to the work of Murray–Neumann (1936) and
Mautner (1950). Following the more concrete approach of Roelcke
(1955) and Selberg (1956), we also have an orthodecomposition

L2(Γ\G ) = C⊕ L2
cusp(Γ\G )⊕ L2

Eis(Γ\G ).

The Eisenstein subspace is rather explicit, and the restriction of
dµsp(π) to it has no point masses. In contrast, the cuspidal
subspace is elusive, and the restriction of dµsp(π) to it is a sum of
finite point masses. In other words, L2

cusp(Γ\G ) is an orthogonal
direct sum of irreducible G -spaces Vπ, each with finite multiplicity,
and the elements of these constituents are the cusp forms for Γ\G .



The unitary dual of SL2(R)
The unitary dual Ĝ was determined by Bargman (1947), perhaps
inspired by the work of Wigner (1939). The nontrivial irreducible
unitary representations of G are infinite dimensional, and the ones
relevant here (the tempered ones) come in 4 families:

spherical/non-spherical principal series π±it for t ∈ R>0;

holomorphic/antiholomorphic discrete series π±k for k ∈ Z>1.

These representations can be defined explicitly, e.g. by letting
G act on L2(R) in natural but different ways. We can clearly
distinguish between the above 4 types by looking at how they
decompose into irreducible K -spaces (we parametrize K̂ by Z):

V+
it =

⊕
`∈Z

`≡0 mod 2

V+,`
it V−it =

⊕
`∈Z

`≡1 mod 2

V−,`it

V+
k =

⊕
`>k

`≡k mod 2

V+,`
k V−k =

⊕
`6−k

`≡k mod 2

V−,`k

The summands here are one-dimensional (i.e. isomorphic to C).



The sup-norm problem for SL2(Z)\SL2(R) (1 of 2)

It is now clear that π+
it has a spherical vector (unique up to

scaling), while π−it and π±k have not. If π+
it occurs in L2

cusp(Γ\G ),
then its spherical vector is a classical Maass form of weight zero
and Laplacian eigenvalue 1

4 + t2. The spherical sup-norm problem
aims at bounding the sup-norm of these Maass forms non-trivially.

Theorem (Iwaniec–Sarnak 1995)

Let G = SL2(R) and Γ = SL2(Z). Let φ be an L2-normalized
spherical Hecke–Maass form on Γ\G of Laplacian eigenvalue λ.
Then for any ε > 0 we have ‖φ‖∞ �ε λ

5/24+ε.

This result was generalized in a natural fashion from Z to Z[i ] by
Blomer–Harcos–Milićević (2016), and then to the ring of integers
of any number field by Blomer–Harcos–Maga–Milićević (2020).
I will return to this later. Strong results in the level aspect are also
available, but will not be discussed in these lectures.



The sup-norm problem for SL2(Z)\SL2(R) (2 of 2)

Inspired by the theory of newforms in the level aspect, the natural
non-spherical sup-norm problem would concern a minimal weight
vector in π+

k (or equivalently a maximal weight vector in π−k ),
which is again unique up to scaling. However, such a vector has
weight k Laplacian eigenvalue k

2

(
1− k

2

)
, which grows with k.

So the weight aspect is not separated from the eigenvalue aspect
in this variant of the problem.

To go genuinely beyond the spherical sup-norm problem, we are led
to work with SL2(C) rather than SL2(R).

If π+
k occurs in L2

cusp(Γ\G ), then the absolute value of its minimal
weight vector is invariant under K , and as a function on H it agrees
with F (x + iy) := yk/2|f (x + iy)|, where f is a holomorphic cusp
form of weight k and level 1 on H. Assuming that f is a Hecke
eigenform, we have ‖F‖∞/‖F‖2 �ε k

1/4+ε by a result of Xia
(2007). For co-compact Γ 6 SL2(R), a similar result was proved
by Khayutin–Steiner (2020), improving on Das–Sengupta (2015).



The upper half-space as a quotient of SL2(C)

Notation

G := SL2(C), K := SU2(C), Γ := SL2(Z[i ]),

H := {x + yi + zj : x , y ∈ R, z > 0}.

The Lie group G acts on the upper half-space H transitively via

gP := (aP + b)(cP + d)−1︸ ︷︷ ︸
arithmetic in quaternions

, g =

(
a b
c d

)
∈ G , P ∈ H.

The stabilizer of j ∈ H is the maximal compact subgroup K 6 G ,
hence we can identify each point gj ∈ H with the coset gK ⊂ G .
So we can identify H ∼= G/K , hence also Γ\H ∼= Γ\G/K .

Now things are as before, L2(Γ\H) is the space of spherical vectors
in L2(Γ\G ), while L2(Γ\G ) decomposes uniquely as a direct
integral of irreducible unitary representations of G . However, the
unitary dual of SL2(C) is quite different from that of SL2(R).



The unitary dual of SL2(C)

The unitary dual Ĝ was determined by Gelfand–Naimark (1947).
The nontrivial irreducible unitary representations of G are infinite
dimensional, and the ones relevant for the moment (the tempered
ones) come in a single family:

principal series πit,p for t ∈ R>0 and p ∈ 1
2Z.

These representations can be defined explicitly, e.g. by letting
G act on L2(C) in a natural way.

It is instructive (and crucial for us) to look at how these
representations decompose into irreducible K -spaces (we
parametrize K̂ by 1

2Z>0), and further into one-dimensional
subspaces under the action of the diagonal subgroup of K :

Vit,p =
⊕
`>|p|

`≡p mod 1

V `
it,p =

⊕
`>|p|

`≡p mod 1

⊕
|q|6`

q≡` mod 1

V `,q
it,p.

Here dimV `
it,p = 2`+ 1 and dimV `,q

it,p = 1.



The sup-norm problem for SL2(Z[i ])\SL2(C)

It is now clear that πit,p has a spherical vector (unique up to
scaling) when p = 0, and no spherical vector when p 6= 0. If πit,0
occurs in L2

cusp(Γ\G ), then its spherical vector is a Maass form of
weight zero and Laplacian eigenvalue 1 + t2. The spherical
sup-norm problem aims at bounding the sup-norm of these Maass
forms non-trivially.

Theorem (Blomer–Harcos–Milićević 2016)

Let G = SL2(C) and Γ = SL2(Z[i ]). Let φ be an L2-normalized
spherical Hecke–Maass form on Γ\G of Laplacian eigenvalue λ.
Then for any ε > 0 we have ‖φ‖∞ �ε λ

5/12+ε.

This theorem is a Gauss integer analogue of the celebrated result
of Iwaniec–Sarnak (1995). It was generalized further to the ring of
integers of any number field by Blomer–Harcos–Maga–Milićević
(2020). The cusp forms in this generalization are Γ-invariant
eigenfunctions on a product of upper half-planes and half-spaces.



New results

Notation

G := SL2(C), K := SU2(C), Γ := SL2(Z[i ]).

Theorem (Blomer–Harcos–Maga–Milićević 2021)

Let ` > 1 be an integer, I ⊂ R and Ω ⊂ G be compact sets. Let
Vπ ⊂ L2

cusp(Γ\G ) be a cuspidal representation such that π ' πit,p,
where t ∈ I and |p| = `. As usual, we assume that Vπ consists of
Hecke eigenfunctions. Let us choose an orthonormal basis
{φq : |q| 6 `} of V `

π, with φq ∈ V `,q
π . Then for any ε > 0 we have∑

|q|6`

|φq(g)|2 �ε,I ,Ω `8/3+ε, g ∈ Ω.

For the individual summands we have

φq(g)�ε,I ,Ω `26/27+ε, g ∈ Ω.

Finally, for q = 0 (resp. for q = ±` under a technical assumption),
we can improve the exponent to 7/8 + ε (resp. to 1/2 + ε).



The *-algebra L1(G )

Consider the convolution algebra L1(G ) with the involution

f ∗(g) := f (g−1), g ∈ G .

This is an anti-automorphism, making L1(G ) into a *-algebra.

Each π ∈ Ĝ determines a non-degenerate representation of L1(G )
on Vπ and vice versa:

π(f ) :=

∫
G
f (g)π(g) dg ∈ End(Vπ).

For f = u∗ ? u, the operator π(f ) = π(u)∗π(u) is positive:

〈π(f )v , v〉 = 〈π(u)v , π(u)v〉 > 0, v ∈ Vπ.



Plancherel theorem (1 of 2)

For f ∈ Cc(G ), the operators π(f ) for π ∈ Ĝ are Hilbert–Schmidt.
Moreover, there is a unique measure µPl on Ĝ such that∫

G
|f (g)|2 dg =

∫
Ĝ
‖π(f )‖2

HS dµPl(π), f ∈ Cc(G ).

The support of µPl is the tempered unitary dual Ĝtemp. The map
f 7→ (π 7→ π(f )) extends to a unitary G × G -equivariant map

L2(G ) ∼=
∫
Ĝ
HS(Vπ)dµPl(π),

where the representation ηπ of G × G on HS(Vπ) is given by
ηπ(x , y)(T ) = π(x)Tπ(y−1).



Plancherel theorem (2 of 2)

For f ∈ C∞c (G ), the operators π(f ) for π ∈ Ĝ are of trace class,
and the following inversion formula holds:

f (g) =

∫
Ĝ
tr
(
π(f )π(g−1)

)
dµPl(π), f ∈ C∞c (G ).

Here one can restrict to g = 1 without any loss of generality.
Then, the inversion formula follows from the Plancherel identity
and the theorem of Dixmier–Malliavin (1978): C∞c (G ) is spanned
by the functions f = u∗ ? u for u ∈ C∞c (G ).

These formulae hold in great generality (see next slide). For the
case at hand, G = SL2(C), they were proved by Gelfand–Naimark
(1947 & 1950). In this case, for an appropriate Haar measure dg
on G , the Plancherel measure on Ĝ can be described explicitly as

dµPl(πit,p) = (t2 + p2)dt dp,

where dt is the Lebesgue measure on R>0, and dp is the counting
measure on 1

2Z.



Historical remarks on the Plancherel theorem

The above results hold almost verbatim for any second countable,
unimodular, locally compact, type I group G . This was proved
independently by Mautner (1950) and Segal (1950), based on the
work of Murray–Neumann (1936) and Neumann (1949). They are
the synthesis of several earlier major developments in number
theory, group theory, analysis, and the theory of operator algebras.

circle: Parseval (1799), Fourier (1807), Riesz–Fischer (1907)

finite abelian groups: Gauss (1801), Dirichlet (1837)

finite groups: Frobenius (1896), Burnside (1904),
Schur (1905), Noether (1925)

compact groups: Hurwitz (1897), Schur (1924), Weyl (1926),
Peter–Weyl (1927), Haar (1933)

real line: Plancherel (1910), Riesz (1910)

locally compact abelian groups: Pontryagin (1934),
van Kampen (1935), Weil (1940)

semisimple Lie groups: Gelfand–Naimark (1947 & 1950),
Gelfand–Graev (1953), Harish–Chandra (1951–1976)



Bounding the sup-norm via an automorphic kernel (1 of 2)

Recall the notations of the main theorem. Following Selberg
(1956), consider a rapidly decaying continuous function f ∈ L1(G ),
and its action on L2(Γ\G ) given by

(R(f )ψ)(g) :=

∫
G
f (h)ψ(gh) dh =

∫
Γ\G

(∑
γ∈Γ

f (g−1γh)

)
ψ(h) dh.

Assume that R(f ) is a positive operator, and π(f ) acts by a scalar
c(π, `) on V `

π. Then R(f ) preserves the orthogonal decomposition

V `
π ⊕ V `,⊥

π . Moreover, R(f ) composed with the projection to V `
π

has a simple kernel just like R(f ):

(R(f )`πψ)(g) =

∫
Γ\G

(
c(π, `)

∑
|q|6`

φq(g)φq(h)

)
ψ(h) dh.



Bounding the sup-norm via an automorphic kernel (2 of 2)

By a simple approximation argument, on the diagonal g = h, the
kernel of R(f )`π is upper bounded by the kernel of R(f ):

c(π, `)
∑
|q|6`

|φq(g)|2 6
∑
γ∈Γ

f (g−1γg), g ∈ G .

To make this work in practice, we consider all functions f ∈ L2(G )
for which every πit,p(f ) acts by a scalar on the component V `

it,p,
and by zero on the other components Vm

it,p. These functions form

a Hilbert subspace H(τ`) ⊂ L2(G ) defined by the conditions

f (g) = f (kgk−1) for almost every g ∈ G and k ∈ K ;

f = χ` ? f ? χ`, where χ` is 2`+ 1 times the character of τ`.

For f ∈ H(τ`) rapidly decaying and continuous, the scalar c(π, `)
exists, and assuming π ∼= πit,p it equals f̂ (it, p)/(2`+ 1), where

f̂ (it, p) := tr
(
πit,p(f )

)
=

∫
G
f (g)ϕ`it,p(g) dg ,

ϕ`it,p(g) := tr
(
πit,p(χ`)πit,p(g)πit,p(χ`)

)
.



Generalized spherical transform

The Plancherel theorem yields readily the Hilbert space
isomorphism H(τ`) ∼= L2(Ĝ (τ`)) with the Plancherel identity∫

G
|f (g)|2 dg =

1

2`+ 1

∑
|p|6`

p≡` mod 1

∫ ∞
0
|f̂ (it, p)|2 (t2 + p2)dt.

Moreover, for f ∈ C∞c (G ) ∩H(τ`), we have the inversion

f (g) =
1

2`+ 1

∑
|p|6`

p≡` mod 1

∫ ∞
0

f̂ (it, p)ϕ`it,p(g−1) (t2 + p2) dt.

In practice we define f (g) in terms of its generalized spherical
transform f̂ (it, p). We need to ensure that f (g) is continuous,
rapidly decaying, and of reasonable size. For this we need to
understand the spherical trace function ϕ`it,p(g) in some detail.



Spherical trace function

The spherical trace function has an integral representation over K
involving the diagonal matrix coefficients of τ`. As a result, it
extends holomorphically to (ν, p, g) ∈ C× 1

2Z× G , and it satisfies
a soft general bound that we skip for simplicity. In particular,

ϕ`ν,`(g) = (2`+ 1)

∫
K
κ`(k

−1gk) dk,

where

κ`

((
a b
c d

))
:= ā2`

(
|a|2 + |c |2

)ν−`−1
.

The spherical trace function also has remarkable symmetries:

ϕ`ν,p(g) = ϕ`−ν,p(g) = ϕ`ν,p(g−1),

ϕ`ν,p(g) = ϕ`p,ν(g), ν ≡ p (mod 1), |ν|, |p| 6 `.

These properties become transparent by analytically continuing the
representations πit,p to (non-unitary Frechét) representation πν,p.



Generalized principal series (1 of 2)

For (ν, p) ∈ C× 1
2Z, let Vν,p be the space of functions v : C2 → C

that are infinitely many times differentiable on C2 \ {(0, 0)} with
respect to both variables and their conjugates, and satisfy

v(λz1, λz2) = |λ|2ν−2(λ/|λ|)−2pv(z1, z2), λ ∈ C×.

A sequence of functions is said to converge to zero if, on every
compact subset of C2 \ {(0, 0)}, they converge uniformly to zero
together with all their derivatives. This makes Vν,p into a Fréchet
space. The action of G = SL2(C) on Vν,p is given by

πν,p

((
a b
c d

))
v(z1, z2) := v(az1 + cz2, bz1 + dz2).

This space has an invariant Hermitian inner product if and only if:

ν ∈ iR;  principal series  tempered unitary dual Ĝtemp

or p = 0 and ν ∈ (−1, 0) ∪ (0, 1).  complementary series



Generalized principal series (2 of 2)

Using the action of K = SU2(C) and its diagonal subgroup{
diag(e i%, e−i%) : % ∈ R

}
, we can decompose the K -finite part of

each Vν,p into finite-dimensional subspaces and further into
one-dimensional subspaces:

VK -finite
ν,p =

⊕
`>|p|

`≡p mod 1

V `
ν,p =

⊕
`>|p|

`≡p mod 1

⊕
|q|6`

q≡` mod 1

V `,q
ν,p

If ν 6≡ p mod 1 or |ν| 6 |p|, then πν,p ∼= π−ν,−p is irreducible.

If ν ≡ p mod 1 and |ν| > |p|, then πν,p and π−ν,−p are
reducible. Assume ν > 0, say. Then the sum of V `

ν,p with
|p| 6 ` < ν is a closed invariant subspace of Vν,p, and the
representation induced on the quotient is irreducible. The
closure of the sum of V `

−ν,−p with ` > ν is an invariant
subspace of V−ν,−p, and the representation induced on it is
irreducible. Both of these representations of G are isomorphic
to πp,ν ∼= π−p,−ν .



Paley–Wiener space and Schwartz space

Now we see that if f ∈ L1(G ) ∩H(τ`) decays rapidly, then its
transform f̂ extends holomorphically to C× 1

2Z such that

f̂ (ν, p) = f̂ (p, ν), ν ≡ p (mod 1), |ν|, |p| 6 `. (∗)
This means that ν and p are not independent as we thought!

Theorem (Wang 1974)

For f ∈ H(τ`) and R > 0, the following conditions are equivalent.

1 f is smooth, and f (k1ahk2) = 0 for |h| > R and k1, k2 ∈ K.

2 f̂ extends holomorphically to C× 1
2Z such that (∗) holds true,

and we also have f̂ (ν, p)�C (1 + |ν|)−CeR|<ν|.

Theorem (Blomer–Harcos–Maga–Milićević 2021)

For f ∈ H(τ`), the following conditions are equivalent.

1 f is smooth, and ∂m

∂hm f (k1ahk2)�m,A e−A|h| for k1, k2 ∈ K.

2 f̂ extends holomorphically to C× 1
2Z such that (∗) holds true,

and we also have f̂ (ν, p)�B,C (1 + |ν|)−C for |<ν| 6 B.



Choice of test function

We ended up using the function f ∈ H(τ`) whose transform equals

f̂ (ν, p) =

{
e(p2−`2+ν2)/2, ν ∈ C, p ∈ 1

2Z, |p| 6 `;
0, ν ∈ C, p ∈ 1

2Z, |p| > `.

This provides a positive operator R(f ) on L2(Γ\G ) such that

c(π, `)� 1/` and f (g)� `2e− log2 ‖g‖.

However, this only yields the baseline bound∑
|q|6`

|φq(g)|2 � `3.

In order to improve on this, we need to amplify π by Hecke
operators. This idea was introduced by Iwaniec–Sarnak (1995).


