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LI Beyond the
POS'thlty spherical sup-norm

problem 111

Let A be a positive operator on L2(I'\G), and assume it acts

Maga P.
on a finite orthonormal set B of eigenfunctions with :
eigenvalues (cs(A))ges. For any v € L2(T\G), let Hecke operators
gL =prgi(v) and Y = — Ygi. Then il

(A, ) = (AYg, B) + (AgL,pL)
> (Ayp,vs) = Y cs(A)|(W, ¢)[°.

peB
We will construct A in the form A = R(f)Rgn(x) where R(f)
and Rg,(x) are commuting and individually positive
operators. Here, R(f) is the convolution operator presented
by Gerg6é coming from a kernel function f, and

Rﬁn(x) = Z Xn Tna
neZ[i\{0}
where the T,’s are Hecke operators, and the finitely
supported coefficient sequence x = (x,)nez;) Will guarantee

that Rgn(x) is also positive. y
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Hecke operators

Denote by I, the set of Gauss-integral 2x2 matrices of
determinant n. For v € I, let ¥ = /+/n with an arbitrary
choice of the square-root. For any n € Z[i] \ {0}, the Hecke
operator T, on L?(I'\G) is defined as (¢ € L?(T'\G)):

(an)(g)zﬁ,, S v

’Yer\rn

a2 (6 0)e)

ad=n
bmodd

The Hecke operators are self-adjoint and form a commuting
family, more concretely, the product of any two is computed

as
ToTo= Y T
(d)|(m,n)

They also commute with the R(f).

Beyond the
spherical sup-norm
problem 111

Maga P.

Hecke operators
and the idea of
amplification
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Achieving positivity for R, (x) cohercal supmorm

problem 111

Maga P.

Let P C Z[i] \ {0} be a finite set of primes. Since the T}'s

themselves are self-adjoint, for any sequences (y))icp, (2/)icp  Hecke operators
and the idea of

of complex numbers, the operator amplification
Rﬁn(x <Z Yi Tl> ' (Z Yme>
Iep meP
+ (Z Z/T/2> . <Z Zme2> ,
lep mepP
i.e.
Xp = Z Yi¥m + Z Z|Zm
I,meP I,meP
(d)I(/;m) (d)|(7,m?)
n=Im/d? n=Pm?/d?
is positive.
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Beyond the

The amplified pre-trace inequality | sphrclsupnorm
Recall from Gergd's talk, how R(f) was defined: ’

Maga P.
R(f (g / E f g ’Yh dh Hecke operators
and the idea of

'yEF amplification

Now apply this to Ran(x)1) = >, Xa Tp?), after some
manipulation, we get that

1z
(A, ) = //F\G)ZZ S (g~ 5h)u(h)ile) dhdg.

WEF

Let V be the cuspidal component (of archimedean
parameters v, p) in which we want to estimate the
automorphic forms. Assume that

(V) L fup) .
(v = g1 194= 51 14
Rin(x)|v =X(V) -id =) " xsAy(n) -id

where \y(n) is the nth Hecke eigenvalue of V.
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Beyond the

The amplified pre-trace inequality |l e s

problem 111

Now the positivity argument together with an approximation
by v of the Dirac measure at a point g yield

Maga P.

Hecke operators
V)x( V 2 and tlh.e id'ea of
amplification
21 E [9(g)]” < E EEF (g7 8)-
’Y n

Analogously, we can focus on specific vectors in the Wigner
basis by considering R(fq) in place of R(f), with

1 27 . . .
falg) == o / f(gdiag(e', e'¢))e " do.
0

Then R(fy) projects the 74-isotypical component to the
one-dimensional subspace of functions which are transformed

as ¢(gdiag(e’®, 7)) = 1(g)e>.
A similar argument yields then

F(V)x
(2£)+(1 |6q(g Z Z (g Me)-

wern
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- ( Beyond the
Choice of the amplifier S

problem 111

Let L be a parameter (to be chosen at the very end). Let Maga P.

P(L) be the set of primes in Z[i] of argument between 0 and
/4, and norm between L and 2L, then P(L) # () for L > 7. B Sherators

Let yy = sgn(\(V)) and z = sgn(Ap2(V)) for I € P(L). auphisesen
hen
YiepyVP +27) < L/loglL, ifn=1,
(1 + 04 2)Yh iy + Op=ppznzi, < 1, if n=hh for some Iy, b € P(L),
" (L4 0p21)zn 21, < 1, if n= l12l22 for some I, b € P(L),
0, otherwise.

Also, since T; =id = T;T; — T2 for any prime /,
max(|A/(V)], |[A2(V)]) > 1/2, hence

2 2

X(V)=|{ > MW + [ Do re(V) >>|L

.
1eP(L) 1eP(L) og”L
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Setting up the task of estimating generalized coherieal uperorm
B B . B problem 111
spherical functions and counting matrices | Maga P
This choice leads to Medle @paEEs
and the idea of
L2 € 2 | n’ amplification
—— > 6(g)] <<EIZ Z\fg 78)|
¢eB ’YErn

We have the elementary counting, for R > 1,
#{veTn: g 98l < R} <cq R*5[n|**=.

[To get an idea why this is true, think of g = id, then the norm conidition is
(a® + b? + c® + d?)/n < R?. There are O(R*n?) choices for a, d, then the
number of solutions to ad — bc = n can be estimated by the divisor bound
(unless ad = n, but then we start from counting b, ¢).]

Recalling f(g) < 2e=1og” gl and splitting into dyadic
ranges, we get that the contribution of large ||g~*5g] is
small.

8/45



Setting up the task of estimating generalized coherieal uperorm
: ; . B problem Il1
spherical functions and counting matrices Il Maga P
Recall also that f is the inverse transform of /f\ and the bizdte e
- e, . and the idea o
explicit inverse transform formula gives amplification

f(g) < € sup | 4(g)| + ¢
VG/

Collecting these, we arrive at

g 2 - [ —2+e g2 || sup 0 —1~ 1 2tep—48
i Soué g g
beB noehs [n] veir ™"

log [|g ™! 4g]|<8+/Tog £

and its sibling

— X 1~
|¢q(g)|2 <10 L 2+E€2 Z I nI sup |50V[(g 1 g)|+L2+€Z 48
nyely ‘n| =
log ¢ ™' 7g| <8+/Tog ¢
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Beyond the

BOundS on gpi F spherical sup-norm

problem 111
Recall the formula

b ulg) = (20 +1) / (k™ gk) dk,
K

Maga P.

Where Bounds on vﬁ,[

” (( )) = 2(Jaf2 + Py,

Obviously, cpfg is invariant under K-conjugations, hence we

can assume that g is upper triangular, i.e. g = (Z 251) for
some z € C* and u € C.

Theorem (Blomer, Harcos, M., Mili¢evi¢)

For ¢ > 1, we have

ellgll® /2te| g3
oL lg) <. min (13 lall® 22+ ) |

2-17 " 4
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lwasawa decomposition and simplifications

The bound

follows from that go ¢ is the restricted trace of the unitary
action 7, 5(g) on a 20 4 1-dimensional space. As for the

oh(g) <20+1

rest, after some manipulation, it suffices to prove that

4
[ttt g ar <. e min (J1E 181
K

|22 — 1|20’ lu|v/?

G = KAN, more concretely,

“((

a
Cc *

*)> _ (a/ TP D

).

where K(g) is the K-part of g in the Iwasawa decomposition

Beyond the
spherical sup-norm
problem 111

Maga P.

Bounds on (pf/ ¢
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Euler angles

Beyond the
spherical sup-norm
problem 111

Maga P.

It is convenient to parametrize K as

1 . . M y)
e’“ cos v /sinv e’W Bounds on ¢, ,
hlu, v, w) = e ) \isinv cosv e—iw |

where u € [0,7), v € [0,7/2], w € [-7, 7). This
parametrization is essentially one-layer, except for those
points with v-coordinate being an integer multiple of /2.
The Haar measure can be expressed then as

1
dk = 2 sin2vdudvdw.
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(Sketch of the) proof of the claimed bound |

With the notation

x = (2% — 1) cos 0 + ie 2% uzsin 6,

it suffices to prove that

I

Note that

20
14 X cosd 0 do
V|1 + X cosf]2 + [xsin 0]2
, lell* gl >
<L IF m|n< , .
c 122 — 1120 |u|V/?
2], |2| 7, |ul < [lg]].

Beyond the
spherical sup-norm
problem 111

Maga P.

Bounds on (pﬁ ¢
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(Sketch of the) proof of the claimed bound Il

Introduce the notation A = /log¢. If

1
tan 6, |x|sinf > 1004

N

then the contribution is

which is admissible.

If tan @ < 100A\/+/Z, then the measure of set of §'s in the
game is O(\/V/f), and because of the factor

sin20 = O(\/V/1), the contribution is O(\?/¢), which is also
admissible.

Beyond the
spherical sup-norm
problem 111

Maga P.

Bounds on (pf‘/ ¢
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(Sketch of the) proof of the claimed bound Il

If |x|sin® < 100\/v/¢, then we decompose the set of
possible 6's as into /(m, n) defined via sinf < 2~™,
cosf < 27", The contribution of max(m, n) > 2log ¢ is
admissible (it implies sin26 < 1/¢). Then it suffices to
prove the claimed bound for a fixed pair m, n. We may
assume that min(m, n) = 0.

There are two cases. Either both terms in

x= (2" —1)cosf + ie *®uzsinf

are O(2™\/+/{) (with some fixed implied constant). Then
the integrand together with the localization of 6 is as small

as promised:
///sin 20 dip df dep < 272 m(mn)

which is bounded as needed by the size conditions on the
terms.

Beyond the
spherical sup-norm
problem 111

Maga P.

Bounds on (pf/ ¢
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(Sketch of the) proof of the claimed bound IV

Or the two terms are individually large, but then their
moduli must essentially be the same, and their angles must
be essentially opposite of each other.

The moduli condition localizes 6 to a set of measure

O(2™\/|uz|VX)  (if sinf < cosf)
or a set of measure
O(N\/|22 = 1VE)  (if sin® > cosh).
The angle condition localizes ¢ to a set of measure
0(2%™\/|uz|V1).

Collecting everything, we arrive at admissible bounds both
for sin < cosf and sinf > cos .

Beyond the
spherical sup-norm
problem 111

Maga P.

Bounds on (pf/ ¢
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Beyond the

NOtatlonS spherical sup-norm
problem 111
We introduce the following notations: Maga P
aga P.

D(L,LY={neZ[i]: L <|n?<16L,

n=1orn=hhorn=I?2 for some h,h € P(L)}

and for § = ((51, (52) S R2>0, BrooHor

vector-valued
sup-norm bound

M(g,L,L,6) = E #{’yel—n:gflfyg:k(zzﬂdk*l
neD(L,L)

for some k € K, |z| > 1, min|z £ 1| < 61, |u] < 82}

The bounds on the x,'s and those on @fz altogether give

1 1
(g |2 <10 €3+5Le min (7’7)
> 9@ <o > B T

PEB § dyadic
1/VE<8;<ef
. M(g, Lv]-?é) + M(g1 Lv L216) M(g7 L7 L476) +L2+8£748.
L L3 L4
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. . . . Beyond the
Counting preliminaries | S

problem 111

We count then Gauss-integral matrices v = (i.’ 3) of Maga P.

determinant n with

g g =k (Z 231) k™' k€ K, lz| 2 1,min(lz £ 1]) < 61, |u] < 6.
. . . Proof of
By doubing (taking —v for v if needed), we may assume vector-valued
o . .. . sup-norm bound
that it is the + in the minimum, i.e. |z —1],|z71 — 1| < 41, g
which implies

a+d
ﬁ

Also, since g € Q,

- . z—1 u 1
15 —id|| = ||gk )k
z 1

— 2| = [tr(5)=2| = |z4z71=2| = |z—1||z71-1| < &2
1

<q 01 + 0.
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. . . . Beyond the
Counting preliminaries |l S

problem 111

Maga P.

Then (from now, not indicating the ¢, Q, /-dependence)

’a+d—2\/E| Sé%\/‘n‘, a—d,b,c<<(51+52)\/]n\. F’rotof_ofI ’
sup-norm bound

This, introducing the notation A < B for A < B¢ L,
implies |a + d| < +/|n|, and then

(a—d)® +4bc = (a+ d)? — 4n < 67|n|.

It will be useful, in some cases, to count separately the
parabolic and non-parabolic matrices.
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Countings |

Note that all along |n| < £/2.

Determinant one
We have M(g,L,1,6) < 1.

This is immediate from

la+d —2y/n| < 83+/]n],

and that 1,62 < 1.

a—d,b,c< (014 6)|nl,

On this point, it is useful to note that the baseline bound
< £3 follows even on this point.

Beyond the
spherical sup-norm
problem 111

Maga P.

Proof of
vector-valued
sup-norm bound
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Beyond the

COU ntl ngS | I spherical sup-norm

problem 111

Maga P.

Parabolic matrices
We have MP(g, L, L,8) < LY? + L£53.

In the parabolic case, the preliminary bounds hold in the
stronger form

a+d=2yn, a—d,b,c < /||

If bc #£ 0, then there are O(£1/2) choices for a + d,
O(L/263) choices for a — d # 0. Since a + d determines n,
bc is fixed, and the divisor bound implies a < 1 multiplier on
the number of choices. This is admissible.

If bc = 0, then there are O(L£/?) choices for a=d = \/n,
and O(1 + L£/243) choices for one of b and c (the other is
zero). This is admissible again.

Proof of
vector-valued
sup-norm bound
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Beyond the

COU ntl ngS | I I spherical sup-norm
problem 111
Maga P.
Note that

(a—d)? +4bc = (a+d)* — 4n < 52|n|

Proof of
vector-valued

implies that if there are non-parabolic matrices at all, then e
L1/4 < 1. We assume this from now on.

Non-parabolic matrices

We have
M™(g, L, L%, 8) = L*7(0F + 03),
M™(g, L, L*,6) < L°63(63 + 63).

22/45



Countings IV
If bc # 0, then

a—d,b,c < (014 62)\/|n|
gives O(LY/2(82 + 63)) choices for a — d, then
(a—d)? +4bc = (a+d)* — 4n < 52|n|

gives O(L37) choices for bc, the divisor bound splits this to
b, ¢ on the cost of a multiplier < 1.

If bc = 0, then first we choose b, ¢, there are

O(LY?(62 + 63)) options, then O(Ld}) many choices for

a — d. Altogether, there are O(L£3/26%(62 + 63)) choices for
the triple (a — d, b, ¢).

Using a+ d < L£/4, there are O(£/?) choices for a + d,
which is sufficient for the middle range (£ = L?) bound.

In the high range (£ = L*), observe that a + d is determined

up to a divisor count, since in this case, the determinant is
the square /213, i.e.

(a—d)?+4bc = (a+d)*>—4n= (a+d+2hhk)(a+d—2Ih).

Beyond the
spherical sup-norm
problem 111

Maga P.

Proof of
vector-valued
sup-norm bound
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. Beyond the
Summing up <pherical up-norm

problem 111

Maga P.

Collecting everything, we get

Proof of
vector-valued

Z |¢ (1 —+ i —+ L2> sup-norm bound
N

oeB

We optimize this by choosing L ~ ¢/3, which gives the
promised power-saving 3 —1/3 = 8/3.
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Beyond the
spherical sup-norm
problem IV

Maga P.

Beyond the spherical sup-norm problem IV
Sercotocf:/falued
sup-norm bound

Maga Péter

November 9
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Recall

Recall from the previous talks that we want to estimate
automorphic forms among the following circumstances.
Assume ¢ : T\G — C is L?-normalized Hecke cusp form,
which generates, as a G-representation, a principal series
representation of parameter (v, p) with v € /, and, as a
K-representation, a 2¢ + 1 = 2|p| + 1-dimensional irreducible
unitary representation. Let g € Q for some Q C I'\G
compact, our goal is to estimate |¢(g)| by a power of ¢ with
implied constants possibly depending on €, /.

Last time, we proved a bound for Y-, [|¢(g)||? for any

orthonormal basis of the 2/ 4 1-dimensional

K-representation. The goal for today is, for a very specific
choice of B, to obtain a good bound for individual forms ¢.
Our choice is the Wigner basis {¢q : g = —¢, ..., ¢}, where

¢q spans that one-dimensional subspace V44, whose
elements 1) transform under the diagonal part of K as

v (e (eig o) ) = €U

Beyond the
spherical sup-norm
problem IV

Maga P.

The
one-dimensional
problem
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Beyond the

The prO_]eCtOI’ tO Vﬁq spherical sup-norm

To select the space V%9, instead of the earlier R(f), we problem IV
apply R(fy), where Wikge (2
27 i
f4(g) ::/ f(gdiag(el?, e~12))e?9 e dp.
0
Then R(fy) = R(f)Ng = MNgR(f), where My is the
orthogonal projection of V¢ to V%9, The inversion formula
looks as
The
1 i 222 — one-dimensiona
R Dl A e
|pl<e
where
l,q 1 2 £ . io —ig —2qip
SDit,p(g) = ;-/O Sou,p(gdlag(e ) € ))e dg~

Again, fq(g) drops very fast as ||g|| gets large, hence we
have, just like last week,

- |xn| L —1x —
|¢q(g)|2 <<S,I,Q L 2+5z2 Z ‘,;7| Sg%hpy’}(g l'yg)|+L2+5€ 48.
n,y€lnp ve!
log [|lg " 7g | <8+/Tog £
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‘
Bounds on ¢ ]

Therefore, we need good bounds on gpf’j. Denote by D the

set of diagonal matrices.

Theorem (Blomer, Harcos, M., Mili¢evi¢)

Let ¢,q € Z such that ¢ > 1,|q|. Then for any A,e > 0, we

have

o19(8) e £° min (

lgll

1,
Vidist(g,

K)2dist

(g,D)> !

—A

Beyond the
spherical sup-norm
problem IV

Maga P.

Bounds on (pi"}
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Sketch of the proof |

We write g in Cartan coordinates, i.e.

Then writing explicitly out the formula for gof’g gives that up

g = k(u1, vi, wy)diag(r, ril)k(uz, Vo, Wo).

to constant, it is

(2£+ 1) /Ogugrr
o<v<m/2
o<w<2m
0< <27

g (k(—

e~242sin2v dudvdwdp,

where

“((

a b

*

*

w, —v, —u)k(u, vi, wi)diag(r, r)k(u2, v2, w2)k(0,0, 0) k(u, v, w))

)) = a1y

Beyond the
spherical sup-norm
problem IV

Maga P.

Bounds on (pi"}
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Sketch of the proof Il
Changing the variables

k(uz, v, w2)k(0,0, 0)k(u, v,w) — k(u,v,w), dropping the

irrelevant w-integration (which does not affect k), and

changing again the variables o — ¢ — u; — wp, we see that

the quantity in question is, up to constant and phase,

2£+1)/ e—iel 4 el eie) e*Z’qQ(r cos? v+r2sin? v)¥ ¢ Lsin2v dudv dg,
where
| = (771672’117’.‘4/1 sin v cos vy + re™1 cos v sin vl) (ez'.ufiuz sin v cos vy — €2 cos v sin V2) s

J = (7r71e72'”7“”1 sin vsin vy 4 re'1 cos v cos vl) (ez'uf'uz sin vsin vy 4 €2 cos v cos v2) .

On this point, we can evaluate the ¢ integral to get, up to

constant and phase

sin2v

(20 + 1)(Effq> /u (

r2cos? v 4 r—2sin? v)r—¢-1

T¢ragl=aqudy.

Beyond the
spherical sup-norm
problem IV

Maga P.

Bounds on (pi"}
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Sketch of the proof Il

Setting now t := r~ltanv, ¢ := 2u, massaging a little
further, then changing ¢ — ¢ + u» — wy and setting

A := up + wy, we finally arrive at, up to constant and phase
as usual,

20\ [ t
£+ q) /0 (T +(t/r)) A+ (tr)?)

27
i . ¢ ib—i . ¢
></ }e’¢+’Atcosv1+S|nv1| +q|e"7’ ’AtCOSVQ—smvz} +a
0

(2€+1)(

}ei¢+’Atsin Vi — COS Vi |£7q|ei¢_iAtsin Vo + cos v2|£7q dodt.

Recall the earlier notation A = +/log {.

Beyond the
spherical sup-norm
problem IV

Maga P.

Bounds on (pi"}
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Interlude: a Young-type inequality i

spherical sup-norm
problem IV

Maga P.
Lemma

Let £, g, A as in the Theorem. Let further X > 0. (a) If A, B > 0 satisfy A2 + B2 = X2, then

( 20 )(2+q)/2< 20 )(“q)nAquefquze'
£+q L—q

Moreover, the left-hand side is Op(X2¢£~") unless

20

y; A2 4 22—
A2 = jx2+o,\ ()8%) ,

Bounds on (pi"}
2¢ ’

20— A2 4 a2 —
B2= ——9x2 4 0, (x2%|ql)
(b) If A, B, C, D > 0 satisfy A2 + B2 = C2 + D? = X2, then
2¢ ) 04q gl—q ~l+q o l— x4
Attagt-acttapt-a « __ — |
(Z+q 1+ /€ —|q|

Moreover, the left-hand side is O,\(XMZ_A) unless A, B are in the above-indicated domains, and the

analogous estimates for C, D are satisfied.
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Proof of the Young-type inequality |

Assume for simplicity that |g| < ¢. The first bound is exactly
the Young inequality upon choosing

L+q
£

B 20 A\
o l+qgX ’ T l+q

7{7
- 2¢ B\ o 2
Y= \We=qx) Ti—q

which in particular implies 1/a+1/b = 1.
Also, the left-hand side in the display in (a) is Op(X?071),
unless

xy >1/2, xy =1+ Op(9), 5= N/t

This implies 1/3 < x,y < 3/2 by x?/a+y?/b= 1.

Beyond the
spherical sup-norm
problem IV

Maga P.

Bounds on (pi"}
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Proof of the Young-type inequality Il
Let, say g > 0, i.e. a < b, then x? < a < 2. Also,

blogx < (b/a)loga < (b/a)(a—1) =1,

which, from xy =1+ Oa(6), gives that
blogy > —14 Op(bd), i.e. if b6 < 1, then y? >p 1.
Introduce the function
a tb
F(t) .= — 4+ — — xt.

(t)=—+ 5 —x
At t == yp := x> both F and F’ vanishes, therefore, from
the Taylor expansion (with Lagrange remainder term) shows
that

Ipl=xy=F(y) > — min(yg 2, ¥"" ) (y — »0)*.

Here yé’*2 =x%>"2> 1. Now if y® > 1 or b§ < 1, then
y?>p 1, and then y — yo = Op(1/3/b).

Beyond the
spherical sup-norm
problem IV

Maga P.

Bounds on (pi"}
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Beyond the

Proof of the Young-type inequality Il i
problem IV
Then we have the following two approximations on bxy: Maga P.

bxy = bxyg + OA(Vb6) = bx? 4+ Op(V'bd),
bxy = b+ Oa(bS) = (b — 1)x% + y? + Op(b9),

and comparing them, we obtain
x? — yP < p b6+ VbS.

This inequality is immediate in the complement case y? <1 Bounds on %
and bd > 1. Writing back, this means

aA? — bB? = X?(b§ + V'bé),

and solving the system coming from this and A% + B2 = X2,
we obtain the statement. The case |g| = £ is trivial.
The claim (b) follows from (a) and Stirling’s approximation

on factorials in the binomials.
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Sketch of the proof IV

Returning to the proof, this buys us strong localizations, i.e.

the integral is negligible (admissibly) outside a set M of
pairs (¢, t) given by

and

2tsin 2vq cos(¢p + A) = (1 — tz)c052\/1 + g(l + tz) + Op <(1 + t2)

A2 AL — \q\)
¢

2tsin2v cos(¢p — A) = (t° — 1) cos 2vy — g(l + %)+ 0p ((1 +t%) )

N AT \q\>

Recall that we want to prove

.. - lel )+et
Kpae Ffmin |1, +e
1,0(8) Sn.e ( Vidist(g, K)2dist(g, D)

Beyond the
spherical sup-norm
problem IV

Maga P.

Bounds on (pi"}
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Sketch of the proof V

The first one in the red set of equations provides an equation
of the form
5 2q o

put — 2tpcos(op + A) + 7 + Oa (z) =0,
where 1, p, o are expressed in terms of £, g, v1. Going by
cases according to the size of the discriminant of this
quadratic (in t) and the relative size of g to ¢, a fixed ¢
localizes t or a fixed t localizes ¢ to small sets. (In certain
cases, we also need some dyadic localization of certain
quantities, including the discriminant.) Applying Fubini, the
integration domain is small in all cases, and the resulting
integral is admissible for the bound ¢¢.
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spherical sup-norm
problem IV
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Sketch of the proof VI

Unless
gl < Vidist(g, K)dist(g, D),

then we are done, since the second bound is weaker. In the
remaining case, either the integration domain M is void, or
not, and in the second case, we can fix some (¢, t) € M.
Feeding it into red, and utilizing also blue, we can squeeze v;
close (in terms of t) to an integer multiple of 7/2 (with
parity depending only on the signature of g). Now t is ruled
by blue, hence we finally obtain

dist(g, D) < | (dist(g/\K)ﬂ MR V\/é_ ’q’> .

Massaging this a little further (and using the assumption on
llg|l), we obtain the claimed bound.

Beyond the
spherical sup-norm
problem IV
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Bounds on wi"‘}

38/45



The setup of the counting problem

As earlier, for § = (61, 02) € R2,, introduce

M'(g,L, L,6) =

> #{yer dist (g*lﬁgg K) <51, dist(g 98, D) < b },

neD(L,L)

and supressing the ¢, €2, [-dependence from the notation,

lbq(g)]® < £2*°L°

g

M (g, L,1,6
(g7 77)+

>

§ dyadic, 6/§ZE
626,>1/VE

1
V625,

Mg, L L?3) M(gL L5
+

L

13

L4

>—|—L2+E£_48.

Beyond the
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problem IV
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Away from the diagonal — preparation |

For

with

g = (gl g2> €G,
83 &4
_1(a b . # —+ L]_ L2
£ C d g = L3 % — Ll ’

(a—d)(3 + gog3) + bgags — cg182,

(a —d)gega
—(a—d)g1g3

+ bg?
— bg?

2
— C8,

+ Cg12.

Beyond the
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problem IV
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. . Beyond the

Away from the diagonal — preparation |l b
problem IV
If we consider this as a linear system with unknowns e

a—d, b, c, then fixing one of the unknowns, and solving the
last two equations when Ly, L3 are (close to) 0, we get linear
expressions (with some error) for the other two unknowns.
This is expressed as follows.

Lemma

For a,b,c,d € C and A > 0, if L, L3 < A, then
(a - d7 b7 C) = 5()\17 >\27 )\3) + O(A)7
The counting

problem

where A\153 < 1, and s is one of a—d, b, c.
Also, if (a — d)? +4bc =0, then a — d, b,c < A.

We bound now, for £ € {1, L2, L*} as before,

Mp(g, L, L,e,00) = Y #{yveTa: g '9g| < ¢, dist(g"'5g,D) < 6} .
neD(L,L)
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Away from the diagonal — counting |

We obviosuly have
= £ Lo ks < £
The first bound gives immediately
My(g, L, 1,,02) < 1.
Record for the rest, i.e. £ € {L?, L%},

(a—d)?+4bc = (a+d)? —4n.

Beyond the
spherical sup-norm
problem IV

Maga P.
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Away from the diagonal — counting Il

Lemma
We have

M'E)(ga L7 L2a57 52) j L2 + L4(Sg’
Mé)(ga La L4757 62) = L2 I L65§

We can apply the preparational Lemma with A = £1/46,. In
the parabolic case (a — d)? + 4bc = 0, by the addition to the
lemma, a—d, b, c K E1/452. If bc # 0, then there are

< L2 choices for a+ d = £2./n, also < £1/263 choices
for a— d # 0. Then bc is fixed, and we finish by the divisor
bound. If bc =0, then a = d = £/n, hence there are

< L2 choices for a, d, and for the nonzero one of b, c,

=< El/zég choices. In any case, the contribution is admissible.

Beyond the
spherical sup-norm
problem IV
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Away from the diagonal — counting Il

In the non-parabolic case, we can choose the s of the
preparational Lemma in < £1/2 ways. It determines the
other two component up to a A = £1/45, error, hence in
total, we have < L1/2(1 4 £Y46,)* <« £Y? 4 £3/265 choices
for the triple (a — d, b, ¢).

In the middle range £ = L2, we have < £1/2 choices for
a+ d, while in the high range, we can again apply the divisor
bound, using that n = 112l22 is a square on

(a—d)? +4bc = (a+d+2hb)(a+d—2hh),

to see it is determined up to an e-power.

Beyond the
spherical sup-norm
problem IV

Maga P.
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. Beyond the
Summing up <pherical up-norm

ki “ . " problem IV
The counting “away from the maximal compact” already

appears in the spherical case, and we can borrow the counts
of an earlier Blomer—Harcos—Mili¢evi¢ paper (in Duke,
2016). Together with those, we see that

Maga P.

Mg, L,1,6) <1,
M'(g, L, L2,8) < min (L% + L*61, L? + L*63) ,
M'(g, L, L*,8) < min (L* + L5, L + L%67) .

Summing over the dyadic intervals in &, we arrive at
112
2 2
[2210:9 | m (L + 62/9> :
The optimal choice is L ~ £2/27 which leads to

[0q(g)| < €252,

The counting
problem
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