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The problem

g: primitive holomorphic or Maass cusp form

χ: primitive Dirichlet character of conductor q

s: point on critical line (<s = 1
2)

L(s, g ⊗ χ)
?¿s,g q

1
2−δ



Applications

• bounds for Fourier coefficients of half-integral
weight holomorphic or Maass cusp forms

• equidistribution of lattice points on
ellipsoids

• equidistribution of Heegner points

• equidistribution of closed geodesics on
hyperbolic surfaces

• subconvexity problem of Rankin–Selberg
L-functions

• equidistribution of incomplete Galois orbits
of Heegner points



Evolution of results

g: primitive holomorphic or Maass cusp form
χ: primitive Dirichlet character of conductor q
s: point on critical line (<s = 1

2)

• δ < 1
22 for g holomorphic of full level

(Duke–Friedlander–Iwaniec, 1993)

• δ < 1
8 for g holomorphic (Bykovskĭı, 1996)

• δ < 1
54 (Harcos, 2001)

• δ < 1
22 (Michel, 2002)

• δ < 1−2θ
10+4θ under Hypothesis Hθ

(Blomer, 2004)

• δ < 1−2θ
8 under Hypothesis Hθ

(Blomer–Harcos–Michel, 2004)



Hypothesis Hθ. For any cuspidal automorphic form π on GL2

over Q with local Hecke parameters α
(1)
π (p), α

(2)
π (p) for p < ∞

and µ
(1)
π (∞), µ

(2)
π (∞), one has the bounds

|α(j)
π (p)| 6 pθ, if πp is unramified;

|<µ
(j)
π (∞)| 6 θ, if π∞ is unramified.

• H0 is the classical Ramanujan–Selberg conjecture

• H 7
64

was proved by Kim–Sarnak–Shahidi (2003)



Theorem (BHM, 2004). Assume Hypothesis Hθ for any 0 6
θ < 1

2. Let g be a primitive (holomorphic or Maass) cusp form

of level D and arbitrary nebentypus, and let χ be a primitive

character of conductor q. For any ε > 0 and for <s = 1
2 one has

L(s, g ⊗ χ) ¿ε (|s|µgDq)ε|s|AµB
g DCq

1
2−1

8(1−2θ),

where

A :=
31 + 4θ

16
, B :=

73 + 12θ

16
, C :=

9

16
,

µg :=




1 +

kg−1
2 if g is a holomorphic form of weight kg,

1 + |tg| if g is a Maass form of eigenvalue 1
4 + t2g .



Approximate functional equation

L(s, g ⊗ χ) Ã N−1/2Σ(N, g ⊗ χ), N ¿s,g,ε q1+ε,

where

Σ(N, g ⊗ χ) :=
∑

n>1

λg(n)χ(n)WN,s(n)

for some smooth function WN,s supported in [N,2N ] satisfying

xiW
(i)
N,s(x) ¿i |s|i.



Amplification

For every character χ′ modulo q define

Σ(N, g ⊗ χ′) :=
∑

n>1

λg(n)χ′(n)WN,s(n),

and consider the amplified second mean for L ³ qη (η > 0 fixed):

∑

χ′ (mod q)

∣∣∣∣∣∣
∑

L6`62L

χ(`)χ′(`)

∣∣∣∣∣∣

2∣∣∣Σ(N, g ⊗ χ′)
∣∣∣2.

By orthogonality of characters, this is at most

ϕ(q)
∑

L6`1,`262L

χ(`1)χ(`2)
∑

h

∑

`1m−`2n=hq

λg(m)λg(n)WN,s(m)WN,s(n).



Overview

Σ(N, g ⊗ χ) ¿g,ε q1/2+εL−1/2N1/2

+ q1/2+ε max
`1,`2

∣∣∣∣∣∣
∑

h 6=0

∑

`1m−`2n=hq

λg(m)λg(n)WN,s(m)WN,s(n)

∣∣∣∣∣∣

1/2

Blomer’s optimal pointwise bound in h 6= 0 gives

Σ(N, g ⊗ χ) ¿g,ε q1/2+εL−1/2N1/2 + q2ε(NL)(3+2θ)/4.

By averaging over h 6= 0 we improve this to

Σ(N, g ⊗ χ) ¿g,ε q1/2+εL−1/2N1/2 + q(1+2θ)/4+2ε(NL)1/2.



Averages of shifted convolution sums

D(g, `1, `2, q) : =
∑

h6=0

φ(qh)
∑

`1m−`2n=qh

λg(m)λg(n)F (`1m, `2n)

=
∫ 1

0
H(α)K(α) dα,

where

H(α) : =
∑

h6=0

φ(qh)e
(
−αqh)

K(α) : =
∑

m,n>1

λg(m)λg(n)F (`1m, `2n)e
(
α(`1m− `2n)

)



Jutila’s circle method

We look at intervals of fixed radius centered at rational points a/c

with least denominators divisible by D′ := D`1`2 and of prescribed

size C. The contribution of such an interval has the form

∑

h6=0

e

(−aqh

c

) ∑
m,n

λg(m)λg(n)e
(

a`1m

c

)
e

(−a`2n

c

)
E(m, n, h).

The original circle integral can be approximated by averages of

such contributions. The error can be estimated by ‖H‖2, ‖K‖∞,

D′ and C.



Voronoi summation

By applying Voronoi summation in the variables m, n and sum-

ming over a, c we reduce the estimation of D(g, `1, `2, q) to bound-

ing certain averages of Kloosterman sums:

∑

c≡0 (D′)

∑

h6=0

∑

h′

S(qh, h′; c)

c

∑

`1m−`2n=h′
λg(m)λg(n)E(m, n, h; c).

Here E(m, n, h; c) is a Hankel-type transform of the previous weight

function E(x, y, h). The kernel involves Bessel functions depend-

ing on the cusp form g.



Sums of Kloosterman sums

The coefficients of the Kloosterman sums themselves are aver-
ages of shifted convolution sums

by,h′ :=
∑

n6y
`1m−`2n=h′

λg(m)λg(n).

It suffices to estimate averages of Kloosterman sums of the form

∑

c≡0 (D′)

∑

h>0

∑

h′>0

by,h′
S(qh, h′; c)

c
gy(qh, h′; c).

If the original F (x, y) is smooth and supported on [X,2X] ×
[Y,2Y ], then (assuming X 6 Y ) here the relevant range is

qh ¿ Y, h′ ¿g,ε P εC2

X
, c ∼ C, y ¿g,ε P ε C2

`2Y
.



Kuznetsov’s trace formula

For each h and h′, the average of Kloosterman sums in the c

variable can be expressed, by Kuznetsov’s formula, as an aver-

age of products ρf(qh)ρf(h
′), where f runs through the entire

spectrum of Γ0(D
′)\SL2(R) and ρf denotes Fourier coefficient.

By performing the averaging over h and h′ we encounter sums

of the form

 ∑

h∼H

ρf(qh)


×


 ∑

h′∼H ′
by,h′ρf(h

′)


 .



Spectral large sieve

We apply Cauchy–Schwartz and estimate the averages of
∣∣∣∣∣∣

∑

h∼H

ρf(qh)

∣∣∣∣∣∣

2

and

∣∣∣∣∣∣
∑

h′∼H ′
by,h′ρf(h

′)

∣∣∣∣∣∣

2

separately using the spectral large sieve of Dehouillers and Iwaniec.

In the first average we need to extract, using the multiplicative

properties of ρf , the factor q. This is by no means trivial, since

q is in general not coprime with D′ and Eisenstein series are in

general not Hecke eigenforms.



Spectral large sieve

In the second average we make use of the strong square mean
bound available for the shifted convolution sums

by,h′ :=
∑

n6y
`1m−`2n=h′

λg(m)λg(n).

This bound is a consequence of the identity

∑

h′∈Z

∣∣∣∣∣∣∣∣∣∣

∑

m6x, n6y
l1m−l2n=h′

λg(m)λg(n)

∣∣∣∣∣∣∣∣∣∣

2

=
∫ 1

0

∣∣∣Sg(`1α, x)Sg(`2α, y)
∣∣∣2 dα,

where

Sg(α, x) :=
∑

n6x

λg(n)e(nα).


