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The density of split primes (1 of 2)

Notation
Hσ := {s ∈ C : ℜ(s) > σ}

Dedekind (1894) associated a zeta function to any number field L:

ζL(s) :=
∑
I

1
N(I)s =

∏
P

(
1 − 1

N(P)s

)−1
, s ∈ H1.

As proved by Hecke (1918), this function is meromorphic on C with
a simple pole at s = 1 and no other pole. Moreover, it satisfies a
functional equation, generalizing the work of Riemann (1859).

By taking the logarithmic derivative of both sides, we obtain

−ζ ′
L
ζL

(s) =
∑
P

∞∑
r=1

log N(P)
N(P)rs ≈

∑
P

log N(P)
N(P)s ,

where f (s) ≈ g(s) means that f (s) − g(s) is a Dirichlet series
converging absolutely in H1/2.



The density of split primes (2 of 2)
Let L/Q be a Galois extension. Then with a bit of algebraic
number theory we see that

−ζ ′
L
ζL

(s) ≈
∑
P

log N(P)
N(P)s ≈

∑
p splits completely in L

[L : Q] log p
ps .

In particular, the right-hand side is meromorphic on H1/2 with
simple poles, and s = 1 is a pole:∑

p splits completely in L

log p
ps ∼ 1

[L : Q] · 1
s − 1 , s → 1.

Compare with the special case L = Q. The other poles are the
zeros of ζL(s) in H1/2. According to the generalized Riemann
hypothesis, there is no such zero. This is equivalent to:∑

p⩽x
p splits completely in L

log p = x
[L : Q] + OL,ε(x1/2+ε), ε > 0.



Dirichlet’s theorem on primes (1 of 2)

Now let L = Q(e2πi/q). Then the previous findings become a
special case of Dirichlet’s theorem on primes:

∑
p≡1 (mod q)

log p
ps ≈ 1

φ(q) · −ζ ′
L
ζL

(s) ∼ 1
φ(q) · 1

s − 1 , s → 1.

Question
How about the density of p ≡ a (mod q) for (a, q) = 1?

Hint
ζL(s)
ζQ(s) =

∏
χ mod q

χ ̸=χ0

L(s, χprim).

The factors on the right-hand side are entire functions, hence so is
the left-hand side. They do not vanish at the point s = 1.



Dirichlet’s theorem on primes (2 of 2)
Dirichlet (1837) realized that the non-vanishing at s = 1 of the
Dirichlet L-functions L(s, χ) is the key to the equidistribution of
primes in reduced residue classes modulo q:

∑
p≡a (mod q)

log p
ps =

∑
p

log p
ps

 1
φ(q)

∑
χ mod q

χ(p)χ(a)


= 1
φ(q)

∑
χ mod q

(∑
p

χ(p) log p
ps

)
χ(a)

≈ 1
φ(q)

∑
χ mod q

−L′

L (s, χ)χ(a)

≈ 1
φ(q)

∑
χ mod q

−L′

L (s, χprim)χ(a)

∼ 1
φ(q) · 1

s − 1 , s → 1.

The left-hand side is meromorphic on H1/2 with simple poles.



A supplement to Dirichlet’s theorem on primes (1 of 2)
Assume that s0 ∈ H1/2 is not a zero of the entire function

ζL(s)
ζQ(s) =

∏
χ mod q

χ ̸=χ0

L(s, χprim).

Then the point s0 is not a zero of any of the factors on the
right-hand side. We can reformulate this observation as follows.

Proposition
Assume that s0 ∈ H1/2 is not a pole of∑

p≡1 (mod q)

log p
ps − 1

φ(q)
∑

p

log p
ps ≈ 1

φ(q)

(
ζ ′
Q
ζQ

(s) − ζ ′
L
ζL

(s)
)
.

Then, for (a, q) = 1, the point s0 is not a pole of∑
p≡a (mod q)

log p
ps − 1

φ(q)
∑

p

log p
ps ≈ 1

φ(q)
∑

χ mod q
χ ̸=χ0

−L′

L (s, χprim)χ(a).



A supplement to Dirichlet’s theorem on primes (2 of 2)

In particular, by standard Mellin transform techniques, we obtain:

Corollary
Suppose σ ⩾ 1/2 is such that for any ε > 0 we have

∑
p⩽x

p≡1 (mod q)

log p = 1
φ(q)

∑
p⩽x

log p + O(xσ+ε).

Then for (a, q) = 1 and any ε > 0 we have

∑
p⩽x

p≡a (mod q)

log p = 1
φ(q)

∑
p⩽x

log p + O(xσ+ε).



Chebotarev’s density theorem
Chebotarev (1923) proved a far-reaching generalization of
Dirichlet’s theorem, originally conjectured by Frobenius (1896).

To fix ideas, let L/K be a Galois extension of number fields with
Galois group G := Gal(L/K ). To an unramified prime ideal p in K ,
we associate a conjugacy class Frob(p) ⊂ G as follows. For any
prime divisor P | p in L, there is a unique Frob(P) ∈ G satisfying

xFrob(P) ≡ xN(p) (mod P)

for all integers x in L. The class Frob(p) is the set of Frob(P)’s.

Theorem
For each conjugacy class C ⊂ G, consider the Dirichlet series

DG(s,C) :=
∑

Frob(p)=C

log N(p)
N(p)s , s ∈ H1.

This function is meromorphic on H1/2 with simple poles, and it
has a simple pole at s = 1 with residue |C |/|G |.



Artin L-functions
In order to prove Chebotarev’s density theorem (and more), we
shall use the L-functions introduced by Artin (1923). These Artin
L-functions are associated to (characters of) Galois representations.

Basic properties
1 For the trivial character χ0 of G, we have L(s, χ0) = ζK (s).
2 L(s, χ1 + χ2) = L(s, χ1)L(s, χ2).
3 For a subgroup H ⩽ G and a character ψ of H, we have

L(s, IndG
H ψ) = L(s, ψ).

Corollary
ζL(s)
ζK (s) =

∏
χ∈Irr(G)

χ ̸=χ0

L(s, χ)χ(1).

Artin (1923) conjectured that the factors on the right-hand side
are entire functions. It follows from the celebrated reciprocity law
of Artin (1927) that the conjecture is true when G is abelian.



Chebotarev’s density theorem via Artin reciprocity (1 of 2)
The definition of L(s, χ) yields readily that

−L′

L (s, χ) ≈
∑
p

χ(Frob(p)) log N(p)
N(p)s .

Hence if gC ∈ C is any element, then we get by Schur orthogonality

DG(s,C) =
∑
p

log N(p)
N(p)s

 |C |
|G |

∑
χ∈Irr(G)

χ(Frob(p))χ(gC )


= |C |

|G |
∑

χ∈Irr(G)

(∑
p

χ(Frob(p)) log N(p)
N(p)s

)
χ(gC )

≈ |C |
|G |

∑
χ∈Irr(G)

−L′

L (s, χ)χ(gC ).

We claim that the last sum is meromorphic on C with simple
poles, and it has a simple pole at s = 1 with residue 1. By Artin
reciprocity, the claim holds when G is abelian. Hence it suffices to
show that the sum remains the same when G is replaced by ⟨gC ⟩.



Chebotarev’s density theorem via Artin reciprocity (2 of 2)
Notation

UG(s, g) :=
∑

χ∈Irr(G)

L′

L (s, χ)χ(g), s ∈ H1, g ∈ G .

Master relation
For any subgroup H ⩽ G, we have ResG

H UG(s, ∗) = UH(s, ∗).

Proof.
Let us fix s ∈ H1. For any character χ of G , we have

⟨UG(s, ∗), χ⟩G = L′

L (s, χ).

Hence for any character ψ of H, Frobenius reciprocity gives that

⟨ResG
H UG(s, ∗), ψ⟩H = ⟨UG(s, ∗), IndG

H ψ⟩G =

= L′

L (s, IndG
H ψ) = L′

L (s, ψ) = ⟨UH(s, ∗), ψ⟩H .



The meromorphicity of L′(s, χ)/L(s, χ)

The previous proof used a fundamental idea of Heilbronn (1973).

Corollary
For any character χ ∈ Irr(G), the function L′(s, χ)/L(s, χ) is
meromorphic on C with simple poles. Moreover, for χ ̸= χ0, the
point s = 1 is not a pole.

Proof.
We have seen that UG(s, g) is meromorphic on C with simple
poles, and it has a simple pole at s = 1 with residue −1. Hence
both statements follow upon noting that

L′

L (s, χ) = ⟨UG(s, ∗), χ⟩G .



A supplement to Chebotarev’s density theorem

Theorem
For each conjugacy class C ⊂ G, consider the Dirichlet series

FG(s,C) :=
∑

Frob(p)=C

log N(p)
N(p)s − |C |

|G |
∑
p

log N(p)
N(p)s , s ∈ H1.

This function is meromorphic on H1/2 with simple poles. For any
point s0 ∈ H1/2, the following statements are equivalent:
(a) s0 is a zero of ζL(s)/ζK (s);
(b) s0 is a pole of FG(s, {1});
(c) s0 is a pole of FG(s,C) for some conjugacy class C ⊂ G;
(d) s0 is a pole of L′(s, χ)/L(s, χ) for some nontrivial χ ∈ Irr(G).
Moreover,

∑
C

|G |
|C |

∣∣∣∣ res
s=s0

FG(s,C)
∣∣∣∣2 ⩽

(
ord
s=s0

ζL(s)
)2

−
(

ord
s=s0

ζK (s)
)2
. (∗)



The Foote–Murty inequality (1 of 2)
First we prove the key bound (∗). Proceeding as in the proof of
Chebotarev’s density theorem, we see that

FG(s,C) ≈ −|C |
|G |

VG(s, gC ),

where
Notation

VG(s, g) :=
∑

χ∈Irr(G)
χ ̸=χ0

L′

L (s, χ)χ(g), s ∈ H1, g ∈ G .

Hence it suffices to prove the following inequality that is essentially
due to Foote–Murty (1989):

1
|G |

∑
g∈G

∣∣∣∣ res
s=s0

VG(s, g)
∣∣∣∣2 ⩽

(
ord
s=s0

ζL(s)
)2

−
(

ord
s=s0

ζK (s)
)2
.



The Foote–Murty inequality (2 of 2)
Let us work with an arbitrary s0 ∈ C. Since

VG(s, g) = UG(s, g) − ζ ′
K
ζK

(s),

the bound is clear when s0 = 1:
res
s=1

VG(s, g) = res
s=1

UG(s, g) + 1 = 0.

For s0 ̸= 1, we combine the Master relation with Artin reciprocity:∣∣∣∣ res
s=s0

UG(s, g)
∣∣∣∣ =

∣∣∣∣ res
s=s0

U⟨g⟩(s, g)
∣∣∣∣ ⩽

⩽ res
s=s0

U⟨g⟩(s, 1) = res
s=s0

U{1}(s, 1) = ord
s=s0

ζL(s).

We square this bound and average over G . We get that
1

|G |
∑
g∈G

∣∣∣∣ res
s=s0

VG(s, g) + ord
s=s0

ζK (s)
∣∣∣∣2 ⩽

(
ord
s=s0

ζL(s)
)2
.

This is what we need, since the average of VG(s, g) over G is zero.



The final equivalences

The Foote–Murty inequality yields in particular that

ord
s0
ζK (s) ⩽ ord

s0
ζL(s), s0 ∈ C,

hence ζL(s)/ζK (s) is an entire function. This is originally due to
Aramata (1931), and re-discovered by Brauer (1947).

Now we can prove that the statements (a), (b), (c) are equivalent.
If (a) holds, then s0 is a pole of the logarithmic derivative

ζ ′
L
ζL

(s)− ζ ′
K
ζK

(s) = U{1}(s, 1)− ζ ′
K
ζK

(s) = UG(s, 1)− ζ ′
K
ζK

(s) = VG(s, 1),

which then implies (b). Now (b) trivially implies (c), while (c)
implies (a) by (∗). Finally, (c) is equivalent to (d), because the
functions VG(s, g) for g ∈ G span the same C-vector space as the
functions L′(s, χ)/L(s, χ) for χ ̸= χ0.



A supplement to Chebotarev’s density theorem (cont.)

In particular, by standard Mellin transform techniques, we obtain:

Corollary
Suppose σ ⩾ 1/2 is such that for any ε > 0 we have

∑
N(p)⩽x

Frob(p)={1}

log N(p) = 1
|G |

∑
N(p)⩽x

log N(p) + O(xσ+ε).

Then for any conjugacy class C ⊂ G and any ε > 0 we have

∑
N(p)⩽x

Frob(p)=C

log N(p) = |C |
|G |

∑
N(p)⩽x

log N(p) + O(xσ+ε).


