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The density of split primes (1 of 2)

={seC:R(s) >0}

Dedekind (1894 ) associated a zeta function to any number field L:
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As proved by Hecke (1918), this function is meromorphic on C with
a simple pole at s = 1 and no other pole. Moreover, it satisfies a
functional equation, generalizing the work of Riemann (1859).

By taking the Iogarithmic derivative of both sides, we obtain
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where f(s) ~ g(s) means that f(s) — g(s) is a Dirichlet series
converging absolutely in Hy /5.




The density of split primes (2 of 2)

Let L/Q be a Galois extension. Then with a bit of algebraic
number theory we see that
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In particular, the right-hand side is meromorphic on H;, with
simple poles, and s =1 is a pole:
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Compare with the special case L = Q. The other poles are the
zeros of (;(s) in Hy/p. According to the generalized Riemann

hypothesis, there is no such zero. This is equivalent to:

Z logp = L XQ] + OL’E(X1/2+€), e>0.
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Dirichlet's theorem on primes (1 of 2)

Now let L = Q(e*//9). Then the previous findings become a
special case of Dirichlet’s theorem on primes:
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How about the density of p = a (mod q) for (a,q) = 17
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The factors on the right-hand side are entire functions, hence so is
the left-hand side. They do not vanish at the point s = 1.




Dirichlet's theorem on primes (2 of 2)

Dirichlet (1837) realized that the non-vanishing at s = 1 of the
Dirichlet L-functions L(s, x) is the key to the equidistribution of
primes in reduced residue classes modulo g:
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The left-hand side is meromorphic on H; /> with simple poles.



A supplement to Dirichlet’s theorem on primes (1 of 2)

Assume that sp € H;» is not a zero of the entire function
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Then the point sp is not a zero of any of the factors on the
right-hand side. We can reformulate this observation as follows.

Proposition

Assume that sy € Hy o is not a pole of
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Then, for (a,q) = 1, the point sy is not a pole of
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A supplement to Dirichlet’s theorem on primes (2 of 2)

In particular, by standard Mellin transform techniques, we obtain:

Suppose o > 1/2 is such that for any € > 0 we have

> logp= ﬁ > logp + O(x7T%).
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Then for (a,q) =1 and any ¢ > 0 we have

> logp= ( ] > logp+ O(x7F9).
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Chebotarev's density theorem

Chebotarev (1923) proved a far-reaching generalization of
Dirichlet’s theorem, originally conjectured by Frobenius (1896).

To fix ideas, let L/K be a Galois extension of number fields with

Galois group G := Gal(L/K). To an unramified prime ideal p in K,

we associate a conjugacy class Frob(p) C G as follows. For any

prime divisor B | p in L, there is a unique Frob(*B) € G satisfying
xFrobF) = XN (mod )

for all integers x in L. The class Frob(p) is the set of Frob(*B)’s.

For each conjugacy class C C G, consider the Dirichlet series

log N
De(s,C) = 3 °I%I(p§f), s €.
Frob(p)=C

This function is meromorphic on H; j» with simple poles, and it
has a simple pole at s = 1 with residue |C|/|G]|.




Artin L-functions

In order to prove Chebotarev's density theorem (and more), we
shall use the L-functions introduced by Artin (1923). These Artin
L-functions are associated to (characters of ) Galois representations.

Basic properties

@ For the trivial character xo of G, we have L(s, xo) = Ck(s).

@ L(s,x1+x2) = L(s, x1)L(s, x2)-
© For a subgroup H < G and a character 1) of H, we have
L(s, Ind§ ) = L(s, ). |
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Artin (1923) conjectured that the factors on the right-hand side
are entire functions. It follows from the celebrated reciprocity law
of Artin (1927) that the conjecture is true when G is abelian.



Chebotarev's density theorem via Artin reciprocity (1 of 2)

The definition of L(s, x) yields readily that
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Hence if gc € Cis any eIement, then we get by Schur orthogonality
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We claim that the last sum is meromorphic on C with simple
poles, and it has a simple pole at s = 1 with residue 1. By Artin
reciprocity, the claim holds when G is abelian. Hence it suffices to
show that the sum remains the same when G is replaced by (g¢).



Chebotarev's density theorem via Artin reciprocity (2 of 2)
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Master relation

For any subgroup H < G, we have Res% Ug(s, %) = Uy(s, *).

Let us fix s € Hi. For any character x of G, we have

/
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Hence for any character v of H, Frobenius reciprocity gives that
(Resf; Us(s, ), P)n = (Us(s, +), Ind $)6 =

= LI(s, Ind§ ) = LT(s,¢) = (Ug(s, %), P)H. O

.




The meromorphicity of L'(s, x)/L(s, x)

The previous proof used a fundamental idea of Heilbronn (1973).

For any character x € Irr(G), the function L'(s, x)/L(s, x) is
meromorphic on C with simple poles. Moreover, for x # xo, the
point s =1 is not a pole.

We have seen that Ug(s, g) is meromorphic on C with simple
poles, and it has a simple pole at s = 1 with residue —1. Hence
both statements follow upon noting that
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A supplement to Chebotarev's density theorem

For each conjugacy class C C G, consider the Dirichlet series

log N(p) [C|
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log N(p)
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This function is meromorphic on Hy o with simple poles. For any
point so € Hy o, the following statements are equivalent:

Q@ o is a zero of (1(s)/Ck(s);

Q s is a pole of Fg(s,{1});

Q s is a pole of Fg(s, C) for some conjugacy class C C G;

@ s is a pole of L'(s, x)/L(s, x) for some nontrivial x € Irr(G).

Moreover,
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The Foote-Murty inequality (1 of 2)

First we prove the key bound (*). Proceeding as in the proof of
Chebotarev’s density theorem, we see that
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Hence it suffices to prove the following inequality that is essentially
due to Foote-Murty (1989):
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The Foote-Murty inequality (2 of 2)

Let us work with an arbitrary sp € C. Since

Ve(s. g) = Us(s. g) - gg (s),

the bound is clear when sy = 1:

res Vi(s,g) = res Ug(s,g) +1=0.
s=1 s=1
For sp # 1, we combine the Master relation with Artin reciprocity:

res Ug(s,g)| =

s=sg ‘

Jres U(g)(S,g)‘ <
< Jtes Ugy(s,1) = Jes Uy (s, 1) = So:rg0 C(s).
We square this bound and average over G. We get that
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This is what we need, since the average of V(s, g) over G is zero.




The final equivalences

The Foote—Murty inequality yields in particular that
ord(k(s) <ord(i(s), s €C,
%0 %0

hence (;(s)/Ck(s) is an entire function. This is originally due to
Aramata (1931), and re-discovered by Brauer (1947).

Now we can prove that the statements (a), (b), (c) are equivalent.
If (a) holds, then sp is a pole of the logarithmic derivative

Sh(5)— S (5) = Uy 5. 2)~ (5) = Ul 1)~ () = Vil 1),
which then implies (b). Now (b) trivially implies (c), while (c)

implies (a) by (x). Finally, (c) is equivalent to (d), because the
functions V(s, g) for g € G span the same C-vector space as the

functions L'(s, x)/L(s, x) for x # Xxo-



A supplement to Chebotarev's density theorem (cont.)

In particular, by standard Mellin transform techniques, we obtain:

Suppose o > 1/2 is such that for any € > 0 we have

1
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Then for any conjugacy class C C G and any € > 0 we have

C g
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