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Integral binary quadratic forms

(a,b,c) == az? + bry + cy® € Zz, ]
discriminant d := b2 — 4ac € Z
possible discriminantsared = 0,1 (mod 4)
form reducible if and only if d is a square
form positive definite if d < 0 and a,¢c > 0
form negative definiteifd < 0O and a,c < 0O

form indefinite if d > 0



Fundamental discriminants, primitive forms

(a,b,c) := az? 4 bxy + cy® € Z[x, ]

d:=b%—4accZ

e discriminant fundamental if d % d'e?
for all discriminants d’ < d and e € Z

e fundamental discriminant implies form
{(a,b,c) is primitive, i.e. gcd(a,b,c) =1

e possible fundamental discriminants are d
square-free =1 (mod 4) and 4 times
square-free = 2,3 (mod 4); they parame-
trize the quadratic extensions Q(v/d)

e first values are —20, —19, —15, —11, -8,
-7, -4, —-3: 5,8, 12, 13, 17, 21, 24, 28



Equivalence of integral binary quadratic forms

For M = (j ?) € SL»(Z) consider the actions

(z,y) »5 (o) <L (@', y") = (az + By, vz + 5y)

(a,b,c) M, (a/, v, c/> <d:f> a'z? + v'x'y' + c’y/2 = ax? + bxy + cy2

e {(a,b,c) and {(d/,b’,c) as above are called equivalent

e cquivalent forms have the same discriminant



Finiteness of class number

Fix fundamental discriminant d, and consider

s {0 -1
(a,b,c) — (c,—b,a), S = <1 O) :

<a,b,c>ll>(a,b—2a,c—|—a—b>, T .= <(1) 1)
Applying T=1, S finitely many times we achieve
b] < |a| < ¢l b — dac = d.
Then
d| = |b% — 4ac| > 4|ac| — b° > 3b2
shows there are
h(d) <e |d|Y/2Te

inequivalent forms (a, b, c) of discriminant d.

For example, in the case of d = —23 we ob-
tain h(—23) = 3 different classes represented
by the forms (1,1,6) and (2,+1, 3).



Geometric picture

Conformal automorphisms of the Riemann
sphere C U {0} fixing R U {co} are given by
fractional linear transformations

z=g>3zi§, g=<?; ?)ESLQ(R).

Decompose each form of discriminant d as
az? + bry + cy? = a(z — uy)(z — wy),

_ —b—d _ —b++d

u = : W
2a 2a

and embed Q(v/d) into CU {co}. Then the
action of SL»(Z) on forms induces on the
roots precisely the action given by fractional
linear transformations above. In particular,

s (o -1
(u,w) — (=1/u,—1/w), S:= (1 O) :

(u,w)L(u—l—l,w—l—l), T .= <(1) 1)
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Geometric picture (cont.)

C —R is the disjoint union of 'H and H, where

Hi={z2=x4+iyecC:y>0}
is the upper half-plane equipped with SL5(IR)-
invariant line element and area element

dz? + dy? 3 dxd
u ng J and  du(z) := — Ty

T y2
Geodesics in ‘'H are the half-lines and semi-
circles orthogonal to R. The SL»(Z)-orbits
in H form a noncompact surface SLo(Z)\'H
of curvature —1 and area 1.

d?s(z) 1=

Let {(a,b,c) run through all forms of discrimi-
nant d and consider the roots as before,

_ —b—d _ —b+vd

u = T
2a 2a

For d < O the various roots w € H give rise
to h(d) points in SL>(Z)\'H. For d > 0 the
geodesics joining the various pairs {u,w} C R
give rise to h(d) geodesics in SL>(Z)\'H.






Geometric picture (cont.)

Any geodesic Gy joining the roots of an
indefinite form (a,b,c) becomes closed when
projected to SLo(Z)\'H. Namely, for any g €
SL>(R) mapping the pair (0,>) to (u,w) the
motions in SLo(Z) fixing Gy are given by

A0 1 mabn —nc

where

d
A:m+2nf7 m,n € 2, m2—d7?,2:4,
runs through the totally positive units in the
ring of integers of Q(v/d). If Ag > 1 generates
the group of totally positive units then the

length of the projected geodesic is 2In(\y).

For a fixed X\ and a fixed closed geodesic in
SL>(Z)\'H the above motions for the various
g € SL>(R) form a hyperbolic conjugacy class
in SL»>(Z). All hyperbolic conjugacy classes in
SL»(Z) arise in this way, and primitive classes
correspond to A = iA:—lrl.
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Eisenstein series on SL,(Z)\'H

0(s) ;=27 °T (s)((2s), ns(n) = Z (a/b)?

ab=n
" 0(s) y°
E , = 0 FE ; =
G = 0BG = Y
gcd(m,n)=1
= ()" + 01~ )y +4yT Y 0, 1 (nDK, 3 (nlnly)e™"
n7#0

e For any s € C —{0,1}, E*(z,s) is real-analytic in z € ‘H and
invariant under z — ~z for any v € SL»(Z).

e For any z € H, E*(z,s) is holomorphic in s € C—{0, 1}, invariant
under s — 1 — s, and has a simple pole at s = 1 (resp. s = 0)
with constant residue 1 (resp. —1).



Dirichlet’s class number formula via Eisenstein series

e /\;: the set of special points or closed geodesics on SL>(Z)\'H
representing the h(d) classes of forms (a, b, c) of discriminant d

e wy. the number of roots of unity in Q(v/d)

S E*(z,8) = wgld|2 (27) 75 (s) ((s)L(s, (£)), d <0,
ZE/\d

s .
S LB ) ds(z) = wald? 77T (2)7 ¢ (s, (), d> 0.

GE/\d
Taking residues at s = 1 of both sides we obtain
1
h(d) = wqld|2 (2m) "1 L(1, (9)), d <0,
1
h(d) 2In(Ng) = wgq|d|2 L(1,(%)), d < 0.



Siegel’s theorem

e /\;: the set of special points or closed geodesics on SL>(Z)\'H
representing the h(d) classes of forms (a, b, c) of discriminant d

e w,. the number of roots of unity in Q(v/d)

h(d) = wyld|2 (2m) " L(1, (4)), d <0,
h(d)21n(\y) = wy|d|2 L(1, (%), d < 0.

Siegel’'s theorem from 1934 states that

d| ¢ < L(1, (%) <« |df,
sO that

1 1

d|27°¢ <. h(d) < |d|27TE, d < 0,
1 1

d|27F < h(d) In(0y) <e |d|27TE, d> 0.



The spectral decomposition of L2(SL>(Z)\H)

The space L2(SL>(Z)\'H) is defined by the inner product

(o1,02) = [ 91(2) 920 du(=),

Smooth and compactly supported functions g : SLy(Z)\'H — C
are dense. They have a decomposition (Selberg, 1956)

0(2) = @ 1)+ Y {0, ()4 o= [ (9. BC, 5 +it) Bz b+in) at
j=1 o

which converges uniformly on compact sets. The functions (o
here form an orthonormal basis of the so-called cuspidal subspace
and possess very nice harmonic properties, along with the func-
tions E(-,%—l—z’t}. Precisely, they are simultaneous eigenfunctions
of various “averaging operators’” on SLo>(Z)\'H.



Laplacian and Hecke operators on L2(SLo(Z)\'H)

® g: some u; or E(-,%—I—it) with t € R
e p. any prime number

. 8%g | 0% 1, .2
Ag = —y° 874‘@ = <Z+tg)g7 tg € R
1 L b
Tpg = 7 adzp g (a'z;— ) =: (ag(®) + Bs(p))g,  ag(P)By(p) =1
0<b<d
T 19 = g(-%) =: (—1)"g, pe€{0,1}
N(s,g) = n °T (S_I_pz_itg) r (S_I_p;_itg) L(s,g)
S s+p—itg r s+p+ityg 1
" ( 2 ) ( 2 )1} (1 — ag(P)p—*)(1 — By(P)p—")

= (1)’ A1 -s,9)



Weyl sums and central twisted L-values

e g: some wu; or E(-,%—I—it) with t € R

e /\;: the set of special points or closed geodesics on SL>(Z)\'H
representing the h(d) classes of forms (a,b,c) of discriminant d

g(z +iy) = geonst(¥) + ¥ Z Pg(n)Kz'tg(27T|’”f|y)f327rimC
n7#=0
The following identity (developed by Waldspurger, Kohnen—Zagier,
Katok—Sarnak, Guo, Zhang, Popa from 1985 to 2006) is deep:

2
> 92| = ealdi? |og(D)PA (9) A (R a® (D), d<o,
ZE/\d
. 1
> [LoGds)| = caldElog(DIPA (39) A (9@ (D), d>o.
GG/\d




Weyl sums and subconvexity bounds

® g. some u; or E(-,%—I— it) with t € R
By work of Burgess (1963) and Duke—Friedlander—Iwaniec (1994),

1
36>0,A>0: L(3,90 (D) < @+ tg))*d27°,

hence by crude bounds on pg(1) and A(s,g) we conclude, for
some B > 0,

2
N og(2)| < @+t P10, d <0,
ZE/\d
2
B 1-6
> o) ds()| < (1 [tg))P a7, d> 0.
GE/\d G




Equidistribution on the modular surface

e g: any smooth and compactly supported function on SL,(Z)\'H

9(=) = (9. 1)+ 3 g () [ {0, BC, 3 +it) B, b+in) de
2 x

] _
Au; = (3+17)u; AEG,5+it) = (3+1°)EC,5+it)

(g,u;) g0+ 1tD7C, (g, EC.A+i)) <,0 A+ [t)C

1
Wy 2 9 Loy 9 ), A o
1
h(d) 2In(\,) G%/:\d /GQ(Z) ds(z) — /SLQ(Z)\HQ(Z) du(z), d — 400



Refinement: equidistribution in shorter orbits

There is a natural bijection from A, to the narrow ideal class
group H, of Q(v/d) which induces an action of H; on A;. Equidis-
tribution in orbits of size > |d|1/2—9/2F¢ follows from a bound

> (o)g(28)

JEHd

> (o) [ g(z)ds(z)

Go

2

2

< A+ tghPlat=?, d<o,

< (L+tghB 1t  d>o,

where g is any u; or E(-,5 + it) with t € R, zg (resp. Gp) is any
element of Aj when d < 0 (resp. d >0), and ¢ : H; — C* is any

ideal class character.



Refinement: equidistribution in shorter orbits (cont.)

By deep formulae of Zhang (2001) and Popa (2006) the left
hand side equals

2
— 1
> w(0)..| = cqld2lpg(LPA (5,9 fy),
O'EHd
where f, is the Jacquet—Langlands lift of ¢, a modular form

on ‘H of level |d| and nebentypus (4) with the same completed

L-function as ¢. If ¢ : H; — C* is real-valued then there is a
factorization d = d1d» into fundamental discriminants such that

A(s,9 ® fp) = N(s,9 ® (1)) A(s, 9 @ (2)).
Otherwise f,, is a cusp form and the necessary subconvex bounds

were proved by Duke—Friedlander—Iwaniec (2002) and Harcos—
Michel (2006). Equidistribution follows in orbits of size > |d|9-4997 .





