Counting with *L*-functions 24th Jarník's Lecture

Gergely Harcos

Alfréd Rényi Institute of Mathematics https://users.renyi.hu/ \sim gharcos/

30 September 2025 Charles University, Prague

An ancient Diophantine problem

Diophantus: Arithmetica, Book V, Problem 11

Find three rational squares, each exceeding 3, whose sum is 10.

Some solutions

$$(1240/711)^2 + (1303/711)^2 + (1349/711)^2 = 10$$

$$(1259/711)^2 + (1273/711)^2 + (1360/711)^2 = 10$$

$$(1276/711)^2 + (1303/711)^2 + (1315/711)^2 = 10$$

$$(1285/711)^2 + (1288/711)^2 + (1321/711)^2 = 10$$

The last example is from Diophantus' book.

Smallest solutions

$$(33/19)^2 + (35/19)^2 + (36/19)^2 = 10$$
$$(85/49)^2 + (87/49)^2 + (96/49)^2 = 10$$
$$(100/57)^2 + (103/57)^2 + (109/57)^2 = 10$$

Lattice points on spheres

Let n be a positive integer, and consider the integral solutions of

$$x^2 + y^2 + z^2 = n.$$

A solution $(x, y, z) \in \mathbb{Z}^3$ is called primitive if gcd(x, y, z) = 1.

Geometrically, the solutions are the lattice points on the sphere of radius \sqrt{n} centered at the origin. The primitive solutions are the visible lattice points on this sphere.

Questions

- How many (primitive) solutions are there?
- 2 How are the (primitive) solutions distributed?

Examples for primitive solutions

Let r(n) be the number of integral solutions of

$$x^2 + y^2 + z^2 = n.$$

Let $r^*(n)$ be the number of primitive solutions.

n	radius	r*(n)	primitive solutions up to permutation
1	1	6	(±1,0,0)
9	3	24	$(\pm 2,\pm 2,\pm 1)$
25	5	24	$(\pm 4, \pm 3, 0)$
81	9	72	$(\pm 8, \pm 4, \pm 1), (\pm 7, \pm 4, \pm 4)$
225	15	96	$(\pm 14, \pm 5, \pm 2)$, $(\pm 11, \pm 10, \pm 2)$
2025	45	288	$(\pm 44, \pm 8, \pm 5), (\pm 40, \pm 19, \pm 8), (\pm 40, \pm 16, \pm 13), (\pm 37, \pm 20, \pm 16), (\pm 35, \pm 28, \pm 4), (\pm 29, \pm 28, \pm 20)$

Local density of primitive solutions (1 of 2)

Once can express $n \mapsto r(n)$ from $n \mapsto r^*(n)$, and vice versa:

$$r(n) = \sum_{m^2 \mid n} r^*(n/m^2), \qquad r^*(n) = \sum_{m^2 \mid n} \mu(m) r(n/m^2).$$

For example, by the table on the previous slide,

$$r(2025) = \sum_{k|45} r^*(k^2) = 6 + 24 + 24 + 72 + 96 + 288 = 510.$$

There is a beautiful formula for $r^*(n)$ due to Gauss (1801) and Dirichlet (1839). We shall understand it as a special case of the mass formula of Siegel (1935).

As a first approximation to $r^*(n)$, we consider

$$\sigma_{\infty}(n) = \lim_{h \to 0} \frac{\operatorname{vol}\left(\left\{\left(x, y, z\right) \in \mathbb{R}^3 : n \leqslant x^2 + y^2 + z^2 \leqslant n + h\right\}\right)}{h}$$
$$= \frac{d}{dt} \left(\frac{4}{3}\pi t^{3/2}\right)_{|t=n} = 2\pi\sqrt{n}.$$

Local density of primitive solutions (2 of 2)

The approximation $r^*(n) \approx \sigma_{\infty}(n)$ is very crude: it does not take into account the distribution of $x^2 + y^2 + z^2$ in various congruence classes. For example, $r^*(n) = 0$ for $n \equiv 0, 4, 7 \pmod 8$.

We adjust $\sigma_{\infty}(n)$ by the following *p*-adic densities (for *p* prime):

$$\sigma_p(n) = \lim_{j \to \infty} \frac{\#\left\{\text{primitive solutions of } x^2 + y^2 + z^2 \equiv n \pmod{p^j}\right\}}{p^{2j}}.$$

The fraction stabilizes on the right-hand side, and one obtains that

$$\sigma_2(n) = \begin{cases} 3/2, & n \equiv 1, 2, 5, 6 \pmod{8}; \\ 1, & n \equiv 3 \pmod{8}; \\ 0, & n \equiv 0, 4, 7 \pmod{8}; \end{cases}$$

$$\sigma_p(n) = \frac{1 - \frac{1}{p^2}}{1 - (\frac{-n}{2})\frac{1}{p}}, \qquad p > 2.$$

Siegel's maass formula for $r^*(n)$

Theorem (Siegel 1935)

$$r^*(n) = \sigma_{\infty}(n) \prod_{p} \sigma_{p}(n).$$

If $n \equiv 0, 4, 7 \pmod{8}$, then $\sigma_2(n) = 0$. Otherwise, let us introduce

$$D = \begin{cases} -4n, & n \equiv 1, 2, 5, 6 \pmod{8}; \\ -n, & n \equiv 3 \pmod{8}. \end{cases}$$

Then D is a negative discriminant, and $\chi_D(m) = \left(\frac{D}{m}\right)$ is a quadratic Dirichlet character modulo |D|. Let

$$L(s,\chi_D) = \sum_{m=1}^{\infty} \frac{\chi_D(m)}{m^s} = \prod_{p} \left(1 - \frac{\chi_D(p)}{p^s}\right)^{-1}$$

be the corresponding Dirichlet L-function. Then

$$\prod_{p} \sigma_{p}(n) = 2 \prod_{p} \frac{1 - \frac{1}{p^{2}}}{1 - \frac{\chi_{D}(p)}{p}} = \frac{12}{\pi^{2}} L(1, \chi_{D}).$$

The Dirichlet–Gauss formula for $r^*(n)$

Theorem (Gauss 1801, Dirichlet 1839)

Assume that $n \equiv 1, 2, 3, 5, 6 \pmod{8}$. Then

$$r^*(n) = \frac{24}{\pi} \sqrt{n} L(1, \chi_D).$$

Corollary

Assume that $n \equiv 1, 2, 3, 5, 6 \pmod{8}$ and $k \equiv 1 \pmod{2}$. Then

$$r^*(nk^2) = r^*(n)k \prod_{p \mid k} \left(1 - \frac{\chi_D(p)}{p}\right).$$

Example

Let n = 1 and k = 45. Then D = -4, and we infer that

$$r^*(2025) = 6 \cdot 45 \cdot \left(1 + \frac{1}{3}\right) \cdot \left(1 - \frac{1}{5}\right) = 288.$$

Estimating $r^*(n)$ and r(n)

We can estimate $r^*(n)$ and r(n) by bounding $L(1, \chi_D)$.

Theorem (Siegel 1935)

If D is a fundamental discriminant, then

$$L(1,\chi_D) = |D|^{o(1)}.$$

Here o(1) abbreviates a quantity that tends to zero as $|D| o \infty$.

Corollary

Assume that $n \equiv 1, 2, 3, 5, 6 \pmod{8}$. Then

$$r^*(n) = n^{1/2 + o(1)}$$
 and $r(n) = n^{1/2 + o(1)}$.

Theorem (Tatuzawa 1951)

Fix $\varepsilon > 0$, and let D be a fundamental discriminant. Then

- $L(1,\chi_D) < \log |D| < (1/\varepsilon)|D|^{\varepsilon}$;
- $L(1,\chi_D) > (\varepsilon/10)|D|^{-\varepsilon}$ with one possible exception.

Distribution of lattice points on a large sphere

It turns out that if a large sphere contains many lattice points, then those points are approximately equidistributed in solid angles.

Theorem (Iwaniec 1987, Golubeva-Fomenko 1987)

Assume that $n \equiv 1,2,3,5,6 \pmod 8$, and let P be a non-constant harmonic polynomial. Consider

$$r(n,P) = \sum_{x^2+y^2+z^2=n} P\left(\frac{x}{\sqrt{n}}, \frac{y}{\sqrt{n}}, \frac{z}{\sqrt{n}}\right).$$

There exists an absolute constant $\delta > 0$ such that

$$r(n,P) \ll_P n^{1/2-\delta}.$$

The same result holds for the primitive version $r^*(n, P)$. The proof utilizes the fact that $n^{(\deg P)/2}r(n, P)$ is the *n*-th Fourier coefficient of a cusp form of weight $3/2 + \deg P$. The Shimura correspondence is used to reduce the case of general n to the case of square-free n.

Stronger bounds for equidistribution

The work of Iwaniec (1987) shows that any $\delta < 1/28$ is admissible.

The work of Waldspurger (1981, 1991) and Baruch–Mao (2007) implies that $\delta > 0$ is admissible as long as the following $\mathrm{GL}_2 \times \mathrm{GL}_1$ -type subconvex bound is valid over \mathbb{Q} :

$$L(1/2, \pi \otimes \chi_D) \ll_{\pi} |D|^{1/2-2\delta}.$$

Blomer–Harcos (2008) allows $\delta < 1/16$; see also Yang (2023). Conrey–Iwaniec (2000) allows $\delta < 1/12$; see also Nelson (2019).

We can also make a nice connection to the opening slide. Let us restrict n to the square class $10k^2$: then the above bounds yield

$$r(10k^2, P) \ll_P k^{1-2\delta}$$
.

In fact, for this special case, the results of Shimura (1973) and Deligne (1974) yield directly that any $\delta < 1/4$ is admissible. Hence for every sufficiently large odd k, there are plenty of reduced triples $(x/k,y/k,z/k) \in \mathbb{Q}^3$ that solve Diophantus' problem.

Primes in arithmetic progressions

The convergence and non-vanishing of

$$L(1,\chi_D) = \sum_{m=1}^{\infty} \frac{\chi_D(m)}{m} = \prod_{p} \left(1 - \frac{\chi_D(p)}{p}\right)^{-1}$$

shows that $\chi_D(p) = 1$ happens for about half of the primes p.

Dirichlet (1837) realized that generalizing this statement to all Dirichlet characters $\chi: (\mathbb{Z}/q\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ yields the equidistribution of primes in reduced residue classes modulo q. In fact, for all $\varepsilon > 0$, there exists an ineffective constant $c_1 = c_1(\varepsilon) > 0$ such that $|L(\sigma + it, \chi)| \ge c_1(q + |t|)^{-\varepsilon}$, $\sigma \ge 1 - c_1(q + |t|)^{-\varepsilon}$.

Let A > 0 be arbitrary, and let a \pmod{q} be a reduced residue class modulo q. Then

$$\sum_{\substack{p \leqslant x \\ p \equiv a \pmod{q}}} \log p = \frac{x}{\varphi(q)} + O_A\left(\frac{x}{(\log x)^A}\right).$$

Chebotarev's density theorem

Chebotarev (1923) proved a far-reaching generalization of Dirichlet's theorem, originally conjectured by Frobenius (1896).

Let L/K be a Galois extension of number fields with Galois group G. To each prime ideal $\mathfrak p$ in K, we can associate a conjugacy class $\mathsf{Frob}(\mathfrak p) \subset G$. The theorem states that if $C \subset G$ is any conjugacy class, then $\{\mathfrak p : \mathsf{Frob}(\mathfrak p) = C\}$ has relative density |C|/|G|.

Using the L-functions of Artin (1923), which are associated to (characters of) the representations of G, we can formulate and prove Chebotarev's density theorem as follows.

Theorem (Chebotarev 1923, Artin 1923 & 1927)

For any $g \in G$, consider the complex function

$$U_G(s,g) = \sum_{\chi \in Irr(G)} \frac{L'}{L}(s,\chi)\overline{\chi}(g).$$

Then $U_G(s, G)$ is meromorphic on \mathbb{C} with simple poles, and it has a simple pole at s = 1 with residue -1.

A refinement of Chebotarev's density theorem (1 of 2)

The key idea of the proof is that $U_G(s,g)=U_{\langle g\rangle}(s,g)$, which can be proved by Frobenius reciprocity. Hence we can assume $G=\langle g\rangle$, in which case the statement follows from Artin reciprocity.

Along these lines, one can also show that each residue of $U_G(s,g)$ is upper bounded in absolute value by the corresponding residue of $\zeta_L(s)$. This then leads to the following refinement.

Theorem (Foote-Murty 1989, Harcos-Soundararajan 2023)

For any conjugacy class $C \subset G$, consider the Dirichlet series

$$F_G(s,C) := \sum_{\mathsf{Frob}(\mathfrak{p}) = C} \frac{\log N(\mathfrak{p})}{N(\mathfrak{p})^s} - \frac{|C|}{|G|} \sum_{\mathfrak{p}} \frac{\log N(\mathfrak{p})}{N(\mathfrak{p})^s}.$$

Then $F_G(s,C)$ has a meromorphic continuation to $\operatorname{Re}(s) > 1/2$ with simple poles. For any point $s_0 \in \mathbb{C}$ with $\operatorname{Re}(s_0) > 1/2$,

$$\sum_{C} \frac{|G|}{|C|} \left| \underset{s=s_0}{\text{res}} F_G(s,C) \right|^2 \leq \left(\underset{s=s_0}{\text{ord}} \zeta_L(s) \right)^2 - \left(\underset{s=s_0}{\text{ord}} \zeta_K(s) \right)^2.$$

A refinement of Chebotarev's density theorem (2 of 2)

Corollary (Aramata 1931, Brauer 1947)

If L/K is a Galois extension, then $\zeta_L(s)/\zeta_K(s)$ is an entire function.

Corollary (Harcos-Soundararajan 2023)

For $Re(s_0) > 1/2$, the following statements are equivalent:

- **1** s_0 is a zero of $\zeta_L(s)/\zeta_K(s)$;
- **2** s_0 is a pole of $F_G(s, \{1\})$;
- \bullet s₀ is a pole of $F_G(s,C)$ for some conjugacy class $C\subset G$.

Corollary (Harcos-Soundararajan 2023)

For any conjugacy class $C \subset G$, consider the following hypothesis:

$$\sum_{\substack{N(\mathfrak{p}) \leq x \\ \operatorname{Frob}(\mathfrak{p}) = C}} \log N(\mathfrak{p}) = \frac{|C|}{|G|} \sum_{N(\mathfrak{p}) \leq x} \log N(\mathfrak{p}) + O_{C,\varepsilon}(x^{1/2+\varepsilon}).$$

If this holds for $C = \{1\}$, then it holds for the other C's as well.

A new zero-free region for Rankin–Selberg *L*-functions

Let \mathfrak{F}_n be the set of unitary cuspidal automorphic representations of GL_n over \mathbb{Q} . Each $(\pi, \rho) \in \mathfrak{F}_n \times \mathfrak{F}_m$ gives rise to an L-function $L(s, \pi \times \rho)$ of degree nm, called the Rankin–Selberg L-function.

Theorem (Harcos-Thorner 2025)

Let $(\pi, \rho) \in \mathfrak{F}_n \times \mathfrak{F}_m$. For all $\varepsilon > 0$, there exists an ineffective constant $c_2 = c_2(\pi, \rho, \varepsilon) > 0$ such that if $\chi \in \mathfrak{F}_1$, then

$$|L(\sigma, \pi \times (\rho \otimes \chi))| \geqslant c_2 C(\chi)^{-\varepsilon}, \qquad \sigma \geqslant 1 - c_2 C(\chi)^{-\varepsilon}.$$

Theorem (Harcos-Thorner 2025, Jiang 2025+)

Let $(\pi, \rho) \in \mathfrak{F}_n \times \mathfrak{F}_m$. If $\rho = \widetilde{\pi} \otimes |\cdot|^{it}$ for some $t \in \mathbb{R}$, then put $\mathcal{M}_{\pi \times \rho}(x) = x^{1-it}/(1-it)$; otherwise, put $\mathcal{M}_{\pi \times \rho}(x) = 0$. Let A > 0. Let $q \leqslant (\log x)^A$ be coprime to the conductors of π , ρ , and let a (mod q) be a reduced residue class modulo q. Then

$$\sum_{\substack{p \leqslant x \\ p \leqslant x}} \lambda_{\pi \times \rho}(p) \log p = \frac{\mathcal{M}_{\pi \times \rho}(x)}{\varphi(q)} + O_{\pi,\rho,A}\left(\frac{x}{(\log x)^A}\right).$$

Tatuzawa's theorem for Rankin–Selberg L-functions

Theorem (Harcos-Thorner 2025+)

Let $(\pi, \rho, \chi) \in \mathfrak{F}_n \times \mathfrak{F}_m \times \mathfrak{F}_1$ and $\varepsilon > 0$. There exist an effectively computable constant $c_3 = c_3(n, m, \varepsilon) > 0$ and a character $\psi = \psi_{\pi, \rho, \varepsilon} \in \mathfrak{F}_1$ such that if $L(s, \pi \times (\rho \otimes \chi))$ differs from $L(s, \pi \times (\rho \otimes \psi))$, then

$$L(\sigma, \pi \times (\rho \otimes \chi)) \neq 0, \qquad \sigma \geqslant 1 - c_3(C(\pi)C(\rho)C(\chi))^{-\varepsilon}.$$

Moreover, $L(s, \pi \times (\rho \otimes \psi))$ has at most one zero (necessarily simple) in the interval $\sigma \geqslant 1 - c_3(C(\pi)C(\rho)C(\psi))^{-\varepsilon}$.

Corollary

If $(\pi, \rho) \in \mathfrak{F}_n \times \mathfrak{F}_m$ and $\varepsilon > 0$, then $L(\sigma + it, \pi \times \rho)$ has at most one zero (necessarily simple) in the region

$$\sigma \geqslant 1 - c_3(C(\pi)C(\rho)(|t|+3))^{-\varepsilon}$$
.