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An ancient Diophantine problem

Diophantus: Arithmetica, Book V, Problem 11

Find three rational squares, each exceeding 3, whose sum is 10.

Some solutions

(1240/711)2 4 (1303/711)2 4 (1349/711)% = 10
(1259/711) + (1273/711)2 + (1360/711)% = 10
(1276,/711)? + (1303/711)? + (1315/711)* = 10
(1285/711)? + (1288/711)? + (1321/711)* = 10

The last example is from Diophantus’ book.

(33/19) + (35/19)% + (36/19)% = 10
(85/49)? + (87/49)? + (96/49)% = 10
(100/57)% 4 (103/57)2 4 (109/57) = 10

\




Lattice points on spheres

Let n be a positive integer, and consider the integral solutions of
x? + y2 +2z2=n.

A solution (x,y,z) € Z3 is called primitive if gcd(x,y,z) = 1.

Geometrically, the solutions are the lattice points on the sphere of
radius \/n centered at the origin. The primitive solutions are the
visible lattice points on this sphere.

@ How many (primitive) solutions are there?

@ How are the (primitive) solutions distributed?




Examples for primitive solutions

Let r(n) be the number of integral solutions of
x? + y2 + 22 =n.

Let r*(n) be the number of primitive solutions.

n radius | r*(n) | primitive solutions up to permutation
1 1 6 (+£1,0,0)
9 3 24 (£2, 42, +1)
25 5 24 (+4, +3,0)
81 9 72 (£8, 14, +1), (£7, +£4, +4)
225 15 96 (£14, 45, £2), (£11,£10, £2)
(+44, +8, +5), (+40, £19, +8),
2025 | 45 288 | (+40,=+16,+13), (+37,£20, +16),
(£35, £28, +4), (£29, £28, +20)




Local density of primitive solutions (1 of 2)

Once can express n > r(n) from n+— r*(n), and vice versa:
r(n)= % r(n/m?),  r"(n)=3_ u(m)r(n/m?).
m2|n m2|n

For example, by the table on the previous slide,

r(2025) = > r*(k®) = 6+ 24 + 24 + 72 + 96 + 288 = 510.
k|45

There is a beautiful formula for r*(n) due to Gauss (1801) and
Dirichlet (1839). We shall understand it as a special case of the
mass formula of Siegel (1935).

As a first approximation to r*(n), we consider

0oo(n) = lim vol ({(x,y,2) €eR® : n <hx2 +y?+22 < n+thY)
_>

d (4 3/2)
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Local density of primitive solutions (2 of 2)

The approximation r*(n) &~ oo(n) is very crude: it does not take
into account the distribution of x? 4 y? 4 z2 in various congruence
classes. For example, r*(n) =0 for n =0,4,7 (mod 8).

We adjust 0,(n) by the following p-adic densities (for p prime):

oo(n) = fim # {primitive solutions of x2 —.|—y2 +2z2=n (mod p’)}
P j—o0 p2~’

The fraction stabilizes on the right-hand side, and one obtains that

3/2, n=1,2,5,6 (mod 8);
oa(n) =141, n=3 (mod 8);
0, n=0,47 (mod 8);
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, p>2.
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Siegel's maass formula for r*(n)

Theorem (Siegel 1935)

r*(n) = o0(n) Hap(n).

p

If n=0,4,7 (mod 8), then o2(n) = 0. Otherwise, let us introduce
p— —4n, n=1,2,56 (mod 8);
“l=n, n=3 (mod8).
Then D is a negative discriminant, and xp(m) = (%) is a
quadratic Dirichlet character modulo |D|. Let

L(s,\p) = o~ xo(m) _ 11 <1 B XD(P))l

s s
m=1 m P P

be the corresponding Dirichlet L-function. Then

1-
Hap(n) = 2H1% = ;L(laXD)-
P p =5



The Dirichlet—Gauss formula for r*(n)

Theorem (Gauss 1801, Dirichlet 1839)
Assume that n=1,2,3,5,6 (mod 8). Then

P(n) = %\/FL(LXD).

Assume that n =1,2,3,5,6 (mod 8) and k =1 (mod 2). Then

r*(nk?) = r*(n)kH (1 — XD—(p)> .

plk p

Let n=1 and k =45. Then D = —4, and we infer that

r*(2025) = 6 - 45 - (1 + %) : <1 - %) = 288.




Estimating r*(n) and r(n)
We can estimate r*(n) and r(n) by bounding L(1, xp).
Theorem (Siegel 1935)

If D is a fundamental discriminant, then

L(1,xp) = |D|°D.

Here o(1) abbreviates a quantity that tends to zero as |D| — co.

Assume that n=1,2,3,5,6 (mod 8). Then

r*(n) = el and r(n) = pl/2+o(1),

Theorem (Tatuzawa 1951)

Fix e > 0, and let D be a fundamental discriminant. Then
o L(1,xp) < log|D| < (1/¢)|D[*;
e L(1,xp) > (¢/10)|D|~¢ with one possible exception.




Distribution of lattice points on a large sphere

It turns out that if a large sphere contains many lattice points,
then those points are approximately equidistributed in solid angles.

Theorem (Iwaniec 1987, Golubeva—Fomenko 1987)

Assume that n=1,2,3,5,6 (mod 8), and let P be a non-constant
harmonic polynomial. Consider

wn= X r()

x2+4y2+22=n

There exists an absolute constant § > 0 such that
1/2—6

r(n,P) <pn

o’

The same result holds for the primitive version r*(n, P). The proof
utilizes the fact that n(4€P)/2r(n, P) is the n-th Fourier coefficient
of a cusp form of weight 3/2+ deg P. The Shimura correspondence
is used to reduce the case of general n to the case of square-free n.



Stronger bounds for equidistribution

The work of lwaniec (1987) shows that any 6 < 1/28 is admissible.

The work of Waldspurger (1981, 1991) and Baruch—-Mao (2007)
implies that > 0 is admissible as long as the following
GLy x GL1-type subconvex bound is valid over QQ:

L(1/2,7 ® xp) <x |D[*/>~%.

Blomer—Harcos (2008) allows § < 1/16; see also Yang (2023).
Conrey—lwaniec (2000) allows 6 < 1/12; see also Nelson (2019).

We can also make a nice connection to the opening slide. Let us
restrict n to the square class 10k?: then the above bounds yield

r(10k%, P) <p k12,

In fact, for this special case, the results of Shimura (1973) and
Deligne (1974) yield directly that any § < 1/4 is admissible. Hence
for every sufficiently large odd k, there are plenty of reduced triples
(x/k,y/k,z/k) € Q3 that solve Diophantus’ problem.



Primes in arithmetic progressions

The convergence and non- vanishing of

)= 35280 (3 1))

shows that xp(p) =1 happens for about half of the primes p.

Dirichlet (1837) realized that generalizing this statement to all
Dirichlet characters x : (Z/qZ)* — C* yields the equidistribution
of primes in reduced residue classes modulo q. In fact, for all

e > 0, there exists an ineffective constant ¢; = ¢1(g) > 0 such that

|L(o +it,x)| = alqg+ |t])~°, oz1l—al(g+]t])*

Theorem (Siegel 1935, Walfisz 1936)

Let A > 0 be arbitrary, and let a (mod q) be a reduced residue
class modulo q. Then

Z Iogp:L—l—OA(LA).

= ©(q) (log x)
p=a(mod q)




Chebotarev's density theorem

Chebotarev (1923) proved a far-reaching generalization of
Dirichlet’s theorem, originally conjectured by Frobenius (1896).

Let L/K be a Galois extension of number fields with Galois group

G. To each prime ideal p in K, we can associate a conjugacy class
Frob(p) C G. The theorem states that if C C G is any conjugacy

class, then {p : Frob(p) = C} has relative density |C|/|G].

Using the L-functions of Artin (1923), which are associated to
(characters of) the representations of G, we can formulate and
prove Chebotarev's density theorem as follows.

Theorem (Chebotarev 1923, Artin 1923 & 1927)

For any g € G, consider the complex function

/

Usls.8)= Y Tls0x(a)

XElrr(G)

Then Ug(s, G) is meromorphic on C with simple poles, and it has
a simple pole at s = 1 with residue —1.

.




A refinement of Chebotarev's density theorem (1 of 2)

The key idea of the proof is that Ug(s, g) = U (s, g), which can
be proved by Frobenius reciprocity. Hence we can assume G = (g),
in which case the statement follows from Artin reciprocity.

Along these lines, one can also show that each residue of Ug(s, g)
is upper bounded in absolute value by the corresponding residue of
C1(s). This then leads to the following refinement.

Theorem (Foote-Murty 1989, Harcos-Soundararajan 2023)

For any conjugacy class C C G, consider the Dirichlet series

log N(p) |C]| IogN(p)
Fe(s, C) =
6= 2 TNy 1612 M

Then Fg(s, C) has a meromorphic continuation to Re(s) > 1/2
with simple poles. For any point sy € C with Re(sg) > 1/2,

Z :gl i < (so:rgo CL(S)>2 - <50:rg|0 CK(S)>2-

res Fg(s, C)

5=50




A refinement of Chebotarev's density theorem (2 of 2)

Corollary (Aramata 1931, Brauer 1947)

If L/K is a Galois extension, then (;(s)/Ck(s) is an entire function.

Corollary (Harcos—Soundararajan 2023)

For Re(sp) > 1/2, the following statements are equivalent:
@ s is a zero of (1 (s)/Ck(s);
@ s is a pole of Fg(s,{1});
© s is a pole of Fg(s, C) for some conjugacy class C C G.

.

Corollary (Harcos—Soundararajan 2023)

For any conjugacy class C C G, consider the following hypothesis:

C

3 IogN(p)=% S log N(p) + Oc.(x¥/2).
N(p)<x N(p)<x

Frob(p)=C

If this holds for C = {1}, then it holds for the other C's as well.




A new zero-free region for Rankin—Selberg L-functions

Let §, be the set of unitary cuspidal automorphic representations
of GL, over Q. Each (7, p) € §n X §m gives rise to an L-function
L(s, 7 x p) of degree nm, called the Rankin—Selberg L-function.

Theorem (Harcos—Thorner 2025)

Let (m,p) € §n X §m. For all ¢ > 0, there exists an ineffective
constant ¢ = c(m, p,€) > 0 such that if x € §1, then

|IL(o,m % (p®x))| = 2C(x)"*, oc>1-alC(x) "

Theorem (Harcos—Thorner 2025, Jiang 2025+)

Let (m,p) €EFn X Sm. If p=7®@|-|" for some t € R, then put
Max,p(x) = x17 /(1 — it); otherwise, put My ,(x) = 0.

Let A> 0. Let g < (logx)” be coprime to the conductors of 7, p,
and let a (mod q) be a reduced residue class modulo q. Then

My p(x) b%
S Arpl(p)logp = ) o (—)
= <e(Plogp == ) P4\ (log x)A

p=a (mod q)




Tatuzawa's theorem for Rankin—Selberg L-functions

Theorem (Harcos—Thorner 2025+)

Let (m,p,x) € §n X §m X F1 and € > 0. There exist an effectively
computable constant c3 = c3(n, m,e) > 0 and a character

W =Yg e € §1 such that if L(s, 7 x (p ® X)) differs from

L(s,m x (p® 1)), then

Loymx (0@ X)) £0, o> 1—c(C(m)C(p)C(x)) .

Moreover, L(s,m x (p ® 1)) has at most one zero (necessarily
simple) in the interval o > 1 — c3(C(m)C(p)C(y))~=.

\.

If (m,p) € §n X Fm and € > 0, then L(o + it, ™ X p) has at most
one zero (necessarily simple) in the region

o > 1—c3(C(m)C(p)([t] +3))"




