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Introducing prime gap graphs

Definition

Let p, denote the n-th prime number, and let pg = 1.

We call a simple graph on n > 2 vertices a prime gap graph if its
vertex degrees are p1 — po,---,Pn — Pn—1-

Example (n = 10)
1 2 3 5 7 11 13 17 19 23 29




Prime gap graphs generated by a DPG-process
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Imagine that we made to 30 vertices...

@ A gap of 14 occurs between p3p = 113 and p3; = 127.
The earlier gaps are smaller, in fact they do not exceed 8.

@ Imagine that we made to 30 vertices with the DPG-process.
Then our prime gap graph has (p3o — 1)/2 = 56 edges.

e To continue, we want to remove 14/2 = 7 independent edges,
and connect their 14 ends to a new vertex, creating a prime
gap graph with 31 vertices and (p31 — 1)/2 = 63 edges.

@ How can we guarantee 14/2 = 7 independent edges without
actually looking at the graph?

Theorem (Vizing 1964)

The edges of a simple graph with maximal vertex degree /A can be
colored with A + 1 colors.

v

The 56 edges of a prime gap graph on 30 vertices can be colored
with 9 colors. The largest color class has at least 7 members,
because 9 - 6 < 56, and it consists of independent edges.

.




Main conjectures and main theorem

Conjecture (Toroczkai 2016)

For every n > 2, there exists a prime gap graph on n vertices.

Conjecture (Toroczkai 2016)

In every prime gap graph on n vertices, there exist (pp+1 — pn)/2
independent edges.

.

The second conjecture says that, starting with the prime gap graph
on 2 vertices, the DPG-process runs indefinitely. Hence it implies
the first conjecture.

.

Theorem (EHKMMT 2022)

The above conjectures are true for every sufficiently large n.
Assuming the Riemann hypothesis, they are true for every n > 2.

v




Existence of prime gap graphs under RH

We shall denote by G,, any prime gap graph on n > 2 vertices. It
has (p, — 1)/2 edges.

Theorem (EHKMMT 2022)

Assume the Riemann hypothesis. In every prime gap graph G, on
n vertices, there exist (p,+1 — pn)/2 independent edges. Hence the
DPG-process creates an infinite sequence (Ga, Gs, ..., ) of prime

gap graphs.

.

Skeleton of the proof

Let N be a parameter. Delete all vertices of degree at least N (and
the incident edges) from G,. The remaining graph H, admits an
edge coloring with N colors, by the theorem of Vizing (1964). For
suitable NV, the largest color class has size at least (p,+1 — pn)/2.




(Pns1 — Pn)/2 independent edges for p, < 10%8

We can assume n > 5. For p, < 108, we choose

N := 1 — pr—1).
lrgzagn( + pr— pe-1)

That is, we apply Vizing's theorem to H, = G,. It suffices that

pn_]- > pn—l—l_pn‘
2N 2

For n < 44, this can be checked by a simple computer program.
For n > 45, the statement is a consequence of the following

Lemma (cf. T. Oliveira e Silva, S. Herzog, S. Pardi 2014)

For any x € [117,10%8], there is a prime number in [x, x + v/x].

Indeed, let k > 15 be the integer satisfying (k — 1) < p, < k2.
The lemma implies that p,+1 — pn < k — 1 and N < k, hence

[pn_l—‘ >k_1>pn+1_pn'
2N 2 2




(Pns1 — Pn)/2 independent edges for p, > 10

For p, > 1018, we choose

V= {3@} |

So we delete at most

> (pe— pe-1)

I<n
pe—pe—1=N

edges from G, and we apply Vizing's theorem to the remaining
graph H,. We shall see that the sum above is less than (p, — 1)/3,
hence H, has more than (p, —1)/6 edges. Now it suffices to invoke

Theorem (Carneiro—Milinovich—Soundararajan 2019)

Assume the Riemann hypothesis. Then, for any x > 4, there is a
prime number in [x, x + %\/}Iog x].

Indeed, these results imply that

Pn — 1 Pn+1 — Pn
[ 6N w > 0.499./p,, log pp, > — 5




Main analytic input under RH (1 of 3)

The claimed lower bound (p, — 1)/6 for the number of edges of
H,, follows from an explicit version of a result by Selberg (1943):

Theorem (EHKMMT 2022)

Assume the Riemann hypothesis. Then, for any x > 2 and N > 0,

we have p
163x log” x
> (pey1—po) < — N
X<Pp<2x
Pey1—pe=N
Indeed, for
pn > 108 and N::[ VP w,
log pn
this theorem readily gives that
Pn — 1

> (pe— pe-1) < 489/pylog> pp <

/<n
pe—pe—1=N
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Main analytic input under RH (2 of 3)

The proof relies on ideas of Heath-Brown (1978) and
Saffari-Vaughan (1977). First, one can restrict to x > 10*® and

8llog?x < N < %ﬁlogx.
Then, writing N = 49x, the statement can be reduced to
70+ 8) —000) by dy < 20652 log?x.
Now we employ an explicit version of a result by Goldston (1983):

Theorem (EHKMMT 2022)

For any z > x > 10%® we have

P(x) = x — Z X + O0*(5log x log log x),

[Spl<z

where the sum is over the nontrivial zeros of the Riemann zeta
function (counted with multiplicity).




Main analytic input under RH (3 of 3)

Then it remains to show that

2
Z yPC(p)| dy < 9.9426x° log? x,
X 1Spl<3x
where (14 o)
—(1+
c(p) = =1L,

Here the calculation becomes technical. In big steps:

2
2xv
LHS<// yPC(p)| dydv
xv/2 |\sp|<3x
224272 1| 2341
2 2
< X C(p
%' ) 24p=rp|[3+p—/

4 1 Sp
15.616x> in (02 )( lo )
< 15.616x Z m|n( " (3p) 2+ gzﬂ

Sp>0



Graphicality of the prime gap sequence without RH (1 of 5)

Theorem (EHKMMT 2022)

Let n > 2 be sufficiently large. There exists a prime gap graph on
n vertices. Moreover, in every prime gap graph on n vertices, there
exist (pn+1 — pn)/2 independent edges. Hence the DPG-process
creates an infinite sequence (G, Gmy1, ..., ) of prime gap graphs.

We deduce the first part from the following classical result.

Theorem (Erdés—Gallai 1960)

Let dy > --- > d, > 0 be integers. Then the sequence (d,...,d,)
is graphic if and only if di + - - - + d, is even and for every
k e {1,...,n} we have

k n
dodi < k(k—1)+ > min(k,dp).
/=1 l=k+1

Interestingly, we can apply this result to a long initial segment of
the prime gap sequence even though this sequence is not ordered.



Graphicality of the prime gap sequence without RH (2 of 5)

Theorem (EHKMMT 2022)

Let D = (di,...,d,) be a sequence of positive integers such that
|ID|l; = >_¢—1de is even. Let 1 < p < oo be a parameter, and
assume that the following LP-norm bound holds:

1 1
12+ DJ|, < n2*%.

Then there is a simple graph G with degree sequence D.

.

Proof (sketch).

By symmetry, we can assume that d; > --- > d,. Denoting

D¥ := (di,...,dy), we strengthen the Erdés—Gallai condition to
12+ DX||; < k2 + n. This stronger condition follows from the
initial assumption and Hélder's inequality, hence we are done:

1 1

|12+ DK[l, < K524+ DX, < K Fni B < k2. O

A




Graphicality of the prime gap sequence without RH (3 of 5)

Applying the previous theorem with p = 2, it remains to verify that

n

S 2+ pe— pe-1)® < 0¥

(=1
By Heath-Brown (1978), the left-hand side is at most n*/3+o(1),
hence we are done.
We deduce the existence of (pp+1 — pn)/2 independent edges in G,
from the theorem of Vizing (1964). In general, we have

Theorem (EHKMMT 2022)

Let D = (di,...,dn) be a sequence of positive integers such that
|ID||; = >_f—1 dp is even. Let 1 < p < oo be a parameter, and let
G be any simple graph with degree sequence D. Assume that

d > 2 is an even integer satisfying

11
4d™ 7 |Dl|, <Dl

Then G contains d/2 independent edges.




Graphicality of the prime gap sequence without RH (4 of 5)

Proof (sketch).

By Vizing's theorem, it suffices to verify that the following
condition holds for some integer 6 > 1:

N[ Q

( Zdz Zdz) >

(=1 )

If p = o0, then we can choose § :== 1 + ||D|| . So let us focus on
the case 1 < p < co. For any integer § > 1, we have

ng —2 ) d; > D]l — 26*~7|ID||7,

de>6

hence it suffices that

_ 1 1
#PIDIE < IPl,  and  8d < 5[y




Graphicality of the prime gap sequence without RH (5 of 5)

Proof (sketch, continued).

In other words, it suffices to find an integer 0 satisfying

1
4HDH£)m 1
<9 < 5 |DJ];.
<||D||1 2d "

The left-hand side exceeds 1, hence ¢ exists as long as

1
4||D||P>ﬁ 1
2(==2)" < |D||,. O
(HDul 24"

Applying the previous theorem with p = 2, it remains to verify that

v,

n

16(pnt1 — pn) >_(pe — pe-1)° < (pn — 1)%.
/=1
By Ingham (1937) and Heath-Brown (1978), the left-hand side is
at most n®/8+4/3+0(1) — 47/24+0(1) hence we are done.



