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Jacobi's four-square theorem (1 of 2)

@ p is an odd prime number

@ m is a positive integer

Theorem (Jacobi 1834)

The number of integral solutions of p™ = x? + x3 + x3 + x2 equals
8(p" +pm L+ L pt1).

Theorem (Jacobi 1834)

The number of integral solutions of p™ = x? + x3 + X3 + xZ, with
ged(x1, X0, X3, x4) = 1, equals 8(p™ + p™1).




Jacobi's four-square theorem (2 of 2)

@ pis a prime number congruent to 1 mod 4

@ m is a positive integer

Theorem (Jacobi 1834)

The number of integral solutions of p™ = xl2 + x22 + xg + xf, with
x1 >0 and 2 | x2,x3,xs, equals p™ + pT L4 ... 4 p+ 1.

Theorem (Jacobi 1834)

The number of integral solutions of p™ = x? + x3 + X3 + xZ, with
x1 > 0 and 2 | x2, x3, x4 and ged(x1, x2, x3,xa) = 1, equals

pm +pm—1_

A\

Example (p =37 and m=1)

The 38 solutions are: (1,+6,0,0), (1,0,+6,0), (1,0,0,£6),
(1,44, +4,+2), (1,24, £2, +4), (1,£2, +4, £4), (5, £2, +2, £2).




Structure of the solution set (1 of 2)

Definition

Let p be a prime number congruent to 1 mod 4.
Let G be the set of integral vectors (x1, x2, x3, x4) € 7* such that:

o the norm x? + x5 + x32 + x2 is a power of p;
@ x1 >0 and 2| x2, x3, xa;

o gcd(xy, x2, x3,x1) = 1.

Definition

We define the product of two vectors (a1, az, a3, a4) and

(b1, ba, b3, ba) lying in G as follows. We multiply the integral
quaternions aj + axi + asj + agsk and by + boi + b3j + byk, and we
factor out + gcd of the coordinates to arrive at a unique
quaternion ¢; + cpi + c3f + cak with (c1, &, ¢3,¢4) lying in G.

Example (p = 37)
(27,—172,54,—132)(61, 4, —146,160) = (847, —568,712,572)




Structure of the solution set (2 of 2)

Observation

We defined a group law on G with identity element (1,0,0,0) € G,
because (x1,x2,x3,%s) € G has inverse (x1, —x2, —x3,—xs) € G.

Theorem (after Dickson 1922)

Every element of G of norm p™ can be written uniquely as a
product of m elements of G of norm p, none of which is inverse to
its neighbors. In particular, G is a free group of rank (p + 1)/2.

Example (p = 37)

(27,-172,54, —132) = (1,2,4,4)(1,0,0,6)(5, =2, 2, —2)
(61,4, —146,160) = (5,2, —2,2)(1,4,4,2)(1,—6,0,0)
(847,568, 712,572) = (1,2,4,4)(1,0,0,6)(1,4,4,2)(1, —6,0,0)




Cayley graphs (1 of 2)

Definition

Let p be a prime number congruent to 1 mod 4. Let S be the set
of elements of G of norm p. The Cayley graph of G has vertex set
G and edge set {(sg,g): g € G,s € S}.

Observation

@ The Cayley graph of G is a (p + 1)-regular tree on which G
acts freely (from the right).

@ The number of paths of length m starting at a given vertex is
pm & pmfll

© The number of paths of length in {m,m —2 m—4,...}
starting at a given vertex is p” 4+ p™ 1 4 ...+ p+ 1.




Cayley graphs (2 of 2)

Definition
Let g > p be two prime numbers satisfying p,g =1 (mod 4) and
<§> = 1. Let H be the set of (x1,x2, x3,x4) € Z* such that:

o the norm x? + x3 + x3 + x3 is a power of p;
e x1 >0 and 2q | x2, x3, Xa;

o gcd(xy, x2, x3,x1) = 1.

H is a maximal normal subgroup of G with index equal to
N = q(g? — 1)/2. In fact G/H is isomorphic to PSLy(F).

.

Observation

Consider the Cayley graph of G, and fix a vertex g € G.

There is a bijection between the paths from g to gH with length
in{m,m—2,m—4,...}, and the integral solutions of

p™ = X2 + x5 + x2 + x3 with x1 > 0 and 2q | x2, x3, Xa.




Ramanujan graphs (1 of 2)

Definition
Let g > p be two prime numbers satisfying p,g =1 (mod 4) and

g = 1. The graph XP9 has vertex set G/H and edge set

{(sgH,gH) : g € G,s € 5§}.

Observation
@ XP9 is a(p+ 1)-regular connected graph on N vertices.

@ G acts transitively on XP9 (from the right).

© Fix a vertex v of XP9. There is a bijection between the
non-backtracking walks from v to v with length in
{m,m—2,m—4,...}, and the integral solutions of
p™ = x2 + x5 + X2 + xZ with x; > 0 and 2q | x2, X3, xa.

@ The girth of XP9 js at least Iogp(4q2).




Ramanujan graphs (2 of 2)

Definition

We label the eigenvalues of the adjacency matrix of XP9 as
pHl=X2=2X>...2 M.
We write A; = /p(kj + K; 1), where ; € C*. E.g., k1 = ,/p.

Theorem (Lubotzky—Phillips—Sarnak 1988)

For j > 2 we have |\j| < 2,/p. Equivalently, |x;| = 1.

Proof (sketch).

We count, in two ways, the number of closed non-backtracking
walks in XP-9 with length in {m,m —2,m—4,...}. Using deep
results of Siegel (1935) Eichler (1954), Igusa (1959), we get
_ K,_m 1 m+1 1
m/ZZ J _ p — + Og,q(Pm/2P6m)-
J
The contrlbutlon ij = 1 equals the main term on the RHS. O

4




Choosing the primes p and g (1 of 3)

Theorem (Lubotzky—Phillips—Sarnak 1988)
Let g > p be two prime numbers satisfying p,q =1 (mod 4) and
2) =1. Then XP9 is (p + 1)-regular on q(g? — 1)/2 vertices,

the girth of XP9 is at least 2log, q, and each eigenvalue of XP1
besides \1 = p + 1 is of absolute value at most 2,/p.

Question (Soltész 2018)

Let kK > 0 and € > 0 be fixed real numbers. Let x > 0 be large.
Can we find two prime numbers, p and g, such that:

@ p,g=1 (mod 4) and (g) =1

o x< pk<g<(l+e)x?

Answer (Harcos 2018)
Yes!




Choosing the primes p and g (2 of 3)

Choose p ~ x/k first, and then try to choose g ~ p* such that

g =1 (mod 4p). Works for k > 2 under GRH.

Unconditionally, the Linnik type theorem of Xylouris (2011) allows
one to choose g € (p*53, p51?) such that g = 1 (mod 4p).

Second Idea

For k > 2, deduce from the Bombieri—Vinogradov theorem that for

most p ~ x'/¥ there exists g ~ pX such that g =1 (mod 4p).

Third Idea

Apply the quadratic large sieve inequality of Heath-Brown (1995):
2

S an ()| <o (MNYE(M 4 N) D a2

m<M | n<N n<N




Choosing the primes p and g (3 of 3)

Consider the following expression under x — oo:

> NG
(14+e/2)x<g<(14€)x | x<p<t/(1+e/2)x q

g=1 (mod 4) is a prime p=1 (mod 4) is a prime

@ By Heath-Brown's quadratic large sieve inequality, the above
expression is smaller than xmax(1+1/k.2/k)+o(1)

@ Assume that the required prime pair (p, g) does not exist.
Then (5) is never 1 in the inner sum, hence the above

expression is larger than x*+2/k—o(1),

The two bounds contradict each other, hence the required prime
pair (p, q) exists.



A combinatorial application (1 of 2)

Definition

We say that two graphs on the same vertex set are G-creating if
their union (the union of their edges) contains G as a not

necessarily induced subgraph. Let H,(G) and H,(G) be the
maximum number of pairwise G-creating and pairwise
non-G-creating Hamiltonian paths of K,,, respectively.

For every integer n > 2, we have H,(G)H,(G) < n!/2.

For every integer k > 3, we have Hy(Cax) < n(1=3ete@)n,




A combinatorial application (2 of 2)

Let kK > 3 and € > 0 be given, and let n > 0 be large. There exists
a Ramanujan graph XP9 on N = q(g? — 1)/2 vertices such that
n<N<(l+e)n and pk < g < (1+¢)p~.

By a result of Krivelevich (2012), the number of Hamiltonian

N
cycles in XP9 is N! (p—J,\rIl) (14 o(1))N. Hence, trivially, Hy(Cox)
is at least that large. It follows that

N1/2 N \" N
Hn(Cak) < Hn(Cok) < Fn(Go0) < (p+ 1) (14 o(1)".

Here p > Nﬁ, so that in the end

Ha(Cor) < N(1=3)N+o(N) (155 )nen.




Thanks for your attention!



