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Overview

@ The problem

@ Connections and applications

© Evolution of results (2 slides)

@ Overview of the proof (2 slides)

@ Atkin—Lehner operators (3 slides)

@ Amplification and the pretrace formula (2 slides)
@ Counting integral matrices (4 slides)

© The endgame



The problem

Congruence subgroup

Fo(N) = {(i Z) € SLy(Z)

c=0 (mod N)}

Problem

Let f be a Hecke-Maass cuspidal newform on I'g(N)\H. Normalize
f so that it has L2-norm 1 with respect to dxdy/y?. Estimate
|fllo in terms of the Laplacian eigenvalue \ and the level N.

o Easy bounds are ||f||, <y A'/* (Seeger-Sogge 1989) and
1fll.c <ae N° (Abbes=Ulimo 1995).

@ Better bounds rely on extra symmetries of ['o(/N)\H, namely
the properties of Hecke operators and Atkin—Lehner operators.

e Optimal bounds would be ||f]|_, <n¢ AL/12+e 4pd
[f]lo e NTY/4F (cf. Templier 2012)? Not so clear.




Connections and applications

Quantum Unique Ergodicity

@ Behavior of LP-norms of cusp forms

Subconvex bounds for L-functions

@ Bounds for exponential sums associated with cusp forms

Bounds for shifted convolution sums of Hecke eigenvalues



Assume that N is square-free. Then the Atkin—Lehner operators
permute the cusps of [o(N)\H transitively.

1]l e /247

” f“oo e N—25/914+5

IF]loo e N7H/227E




Assume that N is square-free. Then the Atkin—Lehner operators
permute the cusps of [o(N)\H transitively.

IF]loo e N7H/20TE
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[1£]loe <re N7HEFE




Overview of the proof (1 of 2)

Original strategy (lwaniec—Sarnak, Blomer—Holowinsky, Templier):

@ Pick any z € H where you want to estimate |f(z)|.

@ Apply an Atkin—Lehner operator on z to ensure that z is not
too far from the cusp oco.

© Use the amplification method and some trace formula to
reduce the problem to a counting problem depending on z.

@ Do the counting based on the diophantine properties of z.

Improved steps in strategy (Harcos—Templier):
@ Apply an Atkin—Lehner operator on z to ensure that z is not
too close to any cusp but co.

@ Observe that z has good diophantine properties automatically,
allowing a more efficient counting.



Overview of the proof (2 of 2)

@ (f;)j>0 an orthonormal basis of Hecke-Maass eigenforms on
[o(N)\* with Laplacian eigenvalues } + r? > 0

o h:RU[—4,4] = (0,00) a fixed nice even function
@ a; > 0 is a suitable arithmetic weight for each f; (amplifier)

We can assume that f is one of the f;'s, then by positivity

h(r)ar |f(z Zhrj 2)P + cts
j=0

From here we aim to arrive at the conclusion
N (2 <o N
where A (the amplifier length) is not too small.

A= N3 — f(z) <o NTV/OHE



Atkin—Lehner operators (1 of 3)

Definition
Atkin—Lehner operators are matrices of the form

1
Wiy = —— <i 3) eSLy(R), M| N,

where a, b, c, d € Z are integers satisfying

ad — bc = M, a=0(M), d=0(M), c=0(N).

Lemma (standard)

Let N be square-free.
@ The Wy 's form a left and right To(N) coset for each M | N.
O WyWy = Wy with M" = MM

© Atkin—Lehner operators form a group Ao(N) containing To(N)
as a normal subgroup such that Ag(N)/To(N) = (Z/27)~(N).




Atkin—Lehner operators (2 of 3)

Ao(N) acts on f(z) by eigenvalues £1, hence we can restrict z to
the following fundamental domain for Ag(N).

Ford polygon
F(N):={zeH|0<Rez<1, Imz=>Imdz forall 6 € Ao(N)}
Key Lemma

Let N be square-free. For any z € F(N) the associated lattice
(1, z) satisfies the following properties.

@ The minimal distance is at least N=1/2.
@ The covolume is y = Imz > N1

© In any disc of radius R the number of lattice points is

< 14 RNY? 4+ R?y~ 1




Atkin—Lehner operators (3 of 3)

Proof of the Key Lemma

@ It suffices to show |cz + d| > N=Y/2 for any coprime c,d € Z.
We claim that there is a unique divisor M | N such that
Wy = ﬁ ( Mg ,ﬁd) is an Atkin—Lehner operator for suitable
a,beZ. We need N | Mc and Mad — bc = 1. The second
condition can be fulfilled iff (Md,c) =1 i.e. (M,c)=1. Hence

M := N/(N, c) is the unique divisor M | N that works. Now
Imz 1 1
=

Imz>2ImWyz=——" — cz—l—dz/—}—.
M |cz + d|? | | M~ N

@ The covolume is essentially the product of the two successive
minima. Hence y = Ilmz > N=1/2N-1/2 = N—1,

© Consider the lattice points in a disc of radius R. If the points
are collinear, then their number is < 1+ RN'/2. Otherwise
their number is < R?y~' by the usual Gauss argument.




Amplification and the pretrace formula (1 of 2)

Amplifier
2

2
5= (o) + (Sxe?)
2 2
@ sums run through the primes A < p < 2N\ not dividing N

@ \j(n) is the n-th Hecke eigenvalue of f;
@ x(n) abbreviates sgn(\r(n))

AP =M =1 = M(p) + [M(pY)] > 1/2

g ()



Amplification and the pretrace formula (2 of 2)

N2 (@)1 <o Y h(5)a 6i(2)]7 + cts

j=0
=S N0 5P + e
>1 j=0
b
DI DY k("” )
cz+d
=1 (a,b,c,d)eZ4
ad—bc=/
c=0(N)
1
< N M(z,1,N) Z M(z, pip2, N ﬁ Z M(z, p3p3, N)
p1,p2 P1,p2

where A < p1, p2 < 2/ are primes, and M(z, I, N) denotes the
number of lattice points (a, b, ¢, d) € Z* satisfying

ad —bc=1, c=0(N), ‘—czz—I—(a—d)z—l—b‘gNE/l/zy.



Counting integral matrices (1 of 4)

We estimate the various sums of M(z, I, N)'s via

|—cz? + (a—d)z + b| < N°IM2y.

We treat separately the three ranges for | = ad — bc:
L=1for /=1, L=Afor|=pipy, L=NA*for | = p?p3.

If ¢ =0, then ad =/, and for any pair (a, d) the number of
choices for b is < 14 NeLY/2y.

Hence the total contribution of M.—o(z,/, N) is
A1 LA2(1 1A L2142 A+ A2
KAL)+ AL+ Ay) + AL+ Ay) <A+ Ay,

apart from factors of N¢.



Counting integral matrices (2 of 4)
From now on we assume ¢ # 0. We prove first that
max(|cz + d|, |cz — a]) < N°LY/2,

This implies that

1/2

L
#c<</v€N—y and a4 d< NELY2,

We proceed in two steps, both starting from
|—cz? + (a— d)z + b| < N°/*2y.
Multiplying by ¢, |(cz + d)(cz — a) + /| < N°I*/2cy, hence
min(|cz + d|, |cz — a|) < |(cz + d)(cz — a)[|}? < NeLY/2.
Taking imaginary part, |2cx + d — a| < N°/Y/2, hence

|lcz +d| — |cz — a|| < |cz + d + cz — a| < N°LY2.



Counting integral matrices (3 of 4)

We are still using
|—cz? + (a— d)z + b| < N°IM2y.

For each ¢, the possible pairs (a — d, b) correspond to lattice
points from (1, z) in a disk of radius R < N°L1/2y. Hence for
each ¢ the number of choices for (a — d, b) is

< NE(14 NY2[12) 4 1y,

By the bounds on ¢ and a + d we see immediately that

Ll/2
> Meso(z,1,N) < NaN—yLl/Q(l + N2 12y 4y,
=L

Note that here L =1 or L = A2 or L = A%,



Counting integral matrices (4 of 4)

In the range L = A* we can do better by noting that / = p?p3 is a
square and the triple (c,a — d, b) determines

(a+d)? — 4l = (a— d)? + 4bc.

Under the assumption / < N=¢y~2 we can show that the right
hand side is a nonzero integer < N°L, and we observe that a 4+ d
is the mean of the divisor pair a + d 4 2v/I. Hence for each triple
(c,a— d, b) the number of choices for a+ d is < N¢. This

furnishes the improved bound

L1/2
Z Mcxo(z,1, N) < NEITy(l Y22 4 1y
I<L

in the range L = A%, at least when 16A% < N—¢y—2.



The endgame

The total contribution of Mco(z,/, N) is

1 1A
A——(1 + N2 = A1+ NY2Ay 4 N2
< Ny( + y+y)+,\,vy (1+ y +A\%y)

+ i/\—zu + NY2A2y + A%y) < A
A2 Ny Y Ny N2

A? A*
+ 5

apart from factors of N¢. Collecting all terms,

A /\2 /\4
2—¢ 2

For N"'<y <N 23 andA:= N1/3_6 the condition
16A* < N~¢y~2 is satisfied and we obtain the desired bound:

N (2))? <ae N = f(z) <o NTVOTE
For y > N—2/3 we use the rapid decay of the Fourier expansion:

f(Z) K)\e NE(Ny)*1/2 — f(z) e N71/6+€'



Happy Birthday!



