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The problem

Congruence subgroup

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 (mod N)

}

Problem

Let f be a Hecke–Maass cuspidal newform on Γ0(N)\H. Normalize
f so that it has L2-norm 1 with respect to dxdy/y 2. Estimate
‖f ‖∞ in terms of the Laplacian eigenvalue λ and the level N.

Easy bounds are ‖f ‖∞ �N λ1/4 (Seeger–Sogge 1989) and
‖f ‖∞ �λ,ε Nε (Abbes–Ullmo 1995).

Better bounds rely on extra symmetries of Γ0(N)\H, namely
the properties of Hecke operators and Atkin–Lehner operators.

Optimal bounds would be ‖f ‖∞ �N,ε λ
1/12+ε and

‖f ‖∞ �λ,ε N−1/4+ε (cf. Templier 2012)? Not so clear.



Connections and applications

Quantum Unique Ergodicity

Behavior of Lp-norms of cusp forms

Subconvex bounds for L-functions

Bounds for exponential sums associated with cusp forms

Bounds for shifted convolution sums of Hecke eigenvalues



Evolution of results (1 of 2)

Assume that N is square-free. Then the Atkin–Lehner operators
permute the cusps of Γ0(N)\H transitively.

Theorem (Iwaniec–Sarnak 1995)

‖f ‖∞ �N,ε λ
5/24+ε

Theorem (Blomer–Holowinsky 2010)

‖f ‖∞ �λ,ε N−25/914+ε

Theorem (Templier 2010)

‖f ‖∞ �λ,ε N−1/22+ε



Evolution of results (2 of 2)

Assume that N is square-free. Then the Atkin–Lehner operators
permute the cusps of Γ0(N)\H transitively.

Theorem (Helfgott–Ricotta 2011)

‖f ‖∞ �λ,ε N−1/20+ε

Theorem (Harcos–Templier 2011)

‖f ‖∞ �λ,ε N−1/12+ε

Theorem (Harcos–Templier 2012)

‖f ‖∞ �λ,ε N−1/6+ε



Overview of the proof (1 of 2)

Original strategy (Iwaniec–Sarnak, Blomer–Holowinsky, Templier):

1 Pick any z ∈ H where you want to estimate |f (z)|.
2 Apply an Atkin–Lehner operator on z to ensure that z is not

too far from the cusp ∞.

3 Use the amplification method and some trace formula to
reduce the problem to a counting problem depending on z .

4 Do the counting based on the diophantine properties of z .

Improved steps in strategy (Harcos–Templier):

2 Apply an Atkin–Lehner operator on z to ensure that z is not
too close to any cusp but ∞.

4 Observe that z has good diophantine properties automatically,
allowing a more efficient counting.



Overview of the proof (2 of 2)

(fj)j>0 an orthonormal basis of Hecke–Maass eigenforms on
Γ0(N)\H with Laplacian eigenvalues 1

4 + r 2
j > 0

h : R ∪ [− i
2 ,

i
2 ]→ (0,∞) a fixed nice even function

aj > 0 is a suitable arithmetic weight for each fj (amplifier)

We can assume that f is one of the fj ’s, then by positivity

h(rf )af |f (z)|2 6
∑
j>0

h(rj)aj |fj(z)|2 + cts

From here we aim to arrive at the conclusion

Λ2−ε |f (z)|2 �rf ,ε Λ,

where Λ (the amplifier length) is not too small.

Λ := N1/3−ε =⇒ f (z)�λ,ε N−1/6+ε.



Atkin–Lehner operators (1 of 3)

Definition

Atkin–Lehner operators are matrices of the form

WM =
1√
M

(
a b
c d

)
∈ SL2(R), M | N,

where a, b, c , d ∈ Z are integers satisfying

ad − bc = M, a ≡ 0 (M), d ≡ 0 (M), c ≡ 0 (N).

Lemma (standard)

Let N be square-free.

1 The WM ’s form a left and right Γ0(N) coset for each M | N.

2 WMWM′ = WM′′ with M ′′ := MM′

(M,M′)2 .

3 Atkin–Lehner operators form a group A0(N) containing Γ0(N)
as a normal subgroup such that A0(N)/Γ0(N) ∼= (Z/2Z)ω(N).



Atkin–Lehner operators (2 of 3)

A0(N) acts on f (z) by eigenvalues ±1, hence we can restrict z to
the following fundamental domain for A0(N).

Ford polygon

F(N) := {z ∈ H | 0 6 Re z 6 1, Im z > Im δz for all δ ∈ A0(N)}

Key Lemma

Let N be square-free. For any z ∈ F(N) the associated lattice
〈1, z〉 satisfies the following properties.

1 The minimal distance is at least N−1/2.

2 The covolume is y = Im z � N−1.

3 In any disc of radius R the number of lattice points is

� 1 + RN1/2 + R2y−1.



Atkin–Lehner operators (3 of 3)

Proof of the Key Lemma

1 It suffices to show |cz + d | > N−1/2 for any coprime c , d ∈ Z.
We claim that there is a unique divisor M | N such that
WM = 1√

M

(
Ma b
Mc Md

)
is an Atkin–Lehner operator for suitable

a, b ∈ Z. We need N | Mc and Mad − bc = 1. The second
condition can be fulfilled iff (Md , c) = 1 i.e. (M, c)=1. Hence
M := N/(N, c) is the unique divisor M | N that works. Now

Im z > Im WMz =
Im z

M |cz + d |2
=⇒ |cz + d |2 >

1

M
>

1

N
.

2 The covolume is essentially the product of the two successive
minima. Hence y = Im z � N−1/2N−1/2 = N−1.

3 Consider the lattice points in a disc of radius R. If the points
are collinear, then their number is � 1 + RN1/2. Otherwise
their number is � R2y−1 by the usual Gauss argument.



Amplification and the pretrace formula (1 of 2)

Amplifier

aj :=

(∑
p

x(p)λj(p)

)2

+

(∑
p

x(p2)λj(p2)

)2

sums run through the primes Λ < p < 2Λ not dividing N

λj(n) is the n-th Hecke eigenvalue of fj

x(n) abbreviates sgn(λf (n))

λf (p)2 − λf (p2) = 1 =⇒ |λf (p)|+
∣∣λf (p2)

∣∣ > 1/2

af =

(∑
p

|λf (p)|
)2

+

(∑
p

∣∣λf (p2)
∣∣)2

>
1

2

(∑
p

|λf (p)|+
∣∣λf (p2)

∣∣)2

�ε Λ2−ε.



Amplification and the pretrace formula (2 of 2)

Λ2−ε |f (z)|2 �rf ,ε

∑
j>0

h(rj)aj |fj(z)|2 + cts

=
∑
l>1

y(l)

(∑
j>0

h(rj)λj(l) |fj(z)|2 + cts

)

=
∑
l>1

y(l)√
l

∑
(a,b,c,d)∈Z4

ad−bc=l
c≡0 (N)

k

(
az + b

cz + d
, z

)

� Λ M(z , 1,N) +
1

Λ

∑
p1,p2

M(z , p1p2,N) +
1

Λ2

∑
p1,p2

M(z , p2
1p2

2 ,N)

where Λ < p1, p2 < 2Λ are primes, and M(z , l ,N) denotes the
number of lattice points (a, b, c , d) ∈ Z4 satisfying

ad − bc = l , c ≡ 0 (N),
∣∣−cz2 + (a− d)z + b

∣∣ 6 Nεl1/2y .



Counting integral matrices (1 of 4)

We estimate the various sums of M(z , l ,N)’s via∣∣−cz2 + (a− d)z + b
∣∣ 6 Nεl1/2y .

We treat separately the three ranges for l = ad − bc:
L = 1 for l = 1, L = Λ2 for l = p1p2, L = Λ4 for l = p2

1p2
2 .

If c = 0, then ad = l , and for any pair (a, d) the number of
choices for b is � 1 + NεL1/2y .

Hence the total contribution of Mc=0(z , l ,N) is

� Λ(1 + y) +
1

Λ
Λ2(1 + Λy) +

1

Λ2
Λ2(1 + Λ2y)� Λ + Λ2y ,

apart from factors of Nε.



Counting integral matrices (2 of 4)

From now on we assume c 6= 0. We prove first that

max(|cz + d | , |cz − a|)� NεL1/2.

This implies that

#c � NεL1/2

Ny
and a + d � NεL1/2.

We proceed in two steps, both starting from∣∣−cz2 + (a− d)z + b
∣∣ 6 Nεl1/2y .

Multiplying by c , |(cz + d)(cz − a) + l | 6 Nεl1/2cy , hence

min(|cz + d | , |cz − a|) 6 |(cz + d)(cz − a)|1/2 � NεL1/2.

Taking imaginary part, |2cx + d − a| 6 Nεl1/2, hence∣∣|cz + d | − |cz − a|
∣∣ 6 |cz + d + cz − a| � NεL1/2.



Counting integral matrices (3 of 4)

We are still using∣∣−cz2 + (a− d)z + b
∣∣ 6 Nεl1/2y .

For each c , the possible pairs (a− d , b) correspond to lattice
points from 〈1, z〉 in a disk of radius R � NεL1/2y . Hence for
each c the number of choices for (a− d , b) is

� Nε(1 + N1/2L1/2y + Ly).

By the bounds on c and a + d we see immediately that

∑
l�L

Mc 6=0(z , l ,N)� NεL1/2

Ny
L1/2(1 + N1/2L1/2y + Ly).

Note that here L = 1 or L = Λ2 or L = Λ4.



Counting integral matrices (4 of 4)

In the range L = Λ4 we can do better by noting that l = p2
1p2

2 is a
square and the triple (c , a− d , b) determines

(a + d)2 − 4l = (a− d)2 + 4bc.

Under the assumption l < N−εy−2 we can show that the right
hand side is a nonzero integer � NεL, and we observe that a + d
is the mean of the divisor pair a + d ± 2

√
l . Hence for each triple

(c , a− d , b) the number of choices for a + d is � Nε. This
furnishes the improved bound

∑
l�L

Mc 6=0(z , l ,N)� NεL1/2

Ny
(1 + N1/2L1/2y + Ly)

in the range L = Λ4, at least when 16Λ4 < N−εy−2.



The endgame

The total contribution of Mc 6=0(z , l ,N) is

� Λ
1

Ny
(1 + N1/2y + y) +

1

Λ

Λ

Ny
Λ(1 + N1/2Λy + Λ2y)

+
1

Λ2

Λ2

Ny
(1 + N1/2Λ2y + Λ4y)� Λ

Ny
+

Λ2

N1/2
+

Λ4

N
,

apart from factors of Nε. Collecting all terms,

Λ2−ε |f (z)|2 �λ,ε Λ + Λ2y +
Λ

Ny
+

Λ2

N1/2
+

Λ4

N
.

For N−1 � y 6 N−2/3 and Λ := N1/3−ε the condition
16Λ4 < N−εy−2 is satisfied and we obtain the desired bound:

Λ2−ε |f (z)|2 �λ,ε Λ =⇒ f (z)�λ,ε N−1/6+ε.

For y > N−2/3 we use the rapid decay of the Fourier expansion:

f (z)�λ,ε Nε(Ny)−1/2 =⇒ f (z)�λ,ε N−1/6+ε.



Happy Birthday!


