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Arithmetic Quantum Chaos (1 of 3)

Consider a freely moving particle on a compact manifold M.

@ In classical mechanics, the particle corresponds to an orbit of
the geodesic flow on the unit cotangent bundle $*M

@ In quantum mechanics, the particle corresponds to a solution
1 : M x R — C of the Schrodinger equation Ay + /%ﬁ’ =
|4)(m, t)|? is the probability density of the particle. Any nice
solution is a linear combination of the stationary waves
(m, t) — ¢(m)e~"*t, where ¢ : M — C satisfies A+ A = 0.

Assume that M has negative sectional curvature.

@ The geodesic flow on $*M is ergodic (Anosov-Sinai 1967).

o |¢(m)|*>dvol(m) — dvol(m) holds for almost all ¢
(Schnirelman 1974, Colin de Verdiere 1985, Zelditch 1987).

@ The limit should hold for all ¢ (QUE, Rudnick—Sarnak 1994).

@ Any weak star limit of the measures |¢(m)|?>dvol(m) has a lift
to S*M which has positive entropy (Anantharaman 2008).



Arithmetic Quantum Chaos (2 of 3)

Arithmetic Quantum Unique Ergodicity Conjecture

Let M be a compact Riemannian manifold of negative sectional
curvature. Assume that M =T\S, where S is a globally symmetric
space and I < Isom™(S) is an arithmetic subgroup of isometries.
Let ¢ : M — C run through a complete orthonormal sequence of
Hecke eigenforms. Then the probability measures |¢(m)|>dvol(m)
tend in the weak star topology to the uniform measure dvol(m).

@ AQUE is true for compact arithmetic hyperbolic surfaces
M\#?2 (Lindenstrauss 2006), and also for the modular surface
SL»(Z)\H? (Soundararajan 2010). In these cases, GRH
implies an optimal rate of convergence (Watson 2001).

@ The conjecture generalizes to higher rank. AQUE is true for
S = PGL,(R)/ PO,(R), n prime (Silberman—Venkatesh 2007).

@ Hecke operators are key in all these results.




Arithmetic Quantum Chaos (3 of 3)

Theorem (Sarnak 2004)

Let M =T\S, where S is a Riemannian globally symmetric space
and I < Isom™(S) is a co-compact discrete subgroup of isometries.
Let ¢ : M — C be an L2-normalized joint eigenfunction of the
invariant differential operators on S. If A denotes the Laplacian
eigenvalue of ¢, then

||¢||oo <sr )\(dim S—rank 5)/4‘

Problem

Fix S. Assume that I is arithmetic and ¢ is a Hecke eigenform.
@ Estimate ||¢||, in terms of \.
@ Estimate ||¢||,, in terms of .
© Examine what happens when M = T\S is not compact.




Results for the sup-norm problem on arithmetic manifolds

group eigenvalue aspect level aspect
GL(R) Iwaniec-Sarnak 95 Abbes-Ullmo 95, Michel-Ullmo 98
Rudnick 05, Xia 07 Jorgenson—Kramer 04
Friedman—Jorgenson—Kramer 14+ Blomer—Holowinsky 10

Templier 10, Helfgott—Ricotta 11

Templier 14+ Harcos—Templier 13
Das—Sengupta 141, Steiner 14" Ye 141, Kiral 14T, Saha 141
Sarnak 04, Mili¢evi¢ 10 Lau 10, Templier 14, Saha 14+
GLQ((C) Koyama 95
Blomer—Harcos—Mili¢evi¢ 14T Blomer—Harcos—Mili¢evi¢ 14T

Rudnick—=Sarnak 94, Miliéevi¢ 11

SO,,(R) VanderKam 97, Blomer—Michel 13 Blomer—Michel 13
Sp4(R) Blomer—Pohl 14+
GL,,(R) Holowinsky—Ricotta—Royer 14+

Blomer—-Maga 141, Marshall 14*

Brumley—Templier 141




Hyperbolic plane and hyperbolic space

e Consider H? := {x+yi: x € R, y > 0} with the GL,(IR)-action

gz = (az+ b)(cz+d)* g= (i Z) € GLy (R)

- -1
(")

e Consider H3:={z+1rj: z€ C, r > 0} with the GLp(C)-action

gP =(aP+b)(cP+d)™"  g= (i 3) € GL3(C)

gP=P = (a a) e Z(C)

o | H2 = Z(R)\ GLo(R)/ O2(R) |and | H3 = Z(C)\ GL,(C)/ U,(C)




To(N) = {(i 2) € SLy(2)

c=0 (mod N)}

6]l <ne e

”QSHOO <<)\,6 N_92T54+5




Fo(N) := {(j 3) € SLa(Z[i]) | ¢ =0 (mod N)}

1]l <ne AT

4]l <= (AIN])? min(AT2, AZ|N|~3)

]l e ASH|N| 5+




The five pillars of the proof

@ Amplification method (Duke—Friedlander—lwaniec)
@ Pretrace formula (Selberg)

© Arithmetic symmetries (Hecke, Atkin—Lehner)

@ Geometry of numbers (Gauss, Minkowski)

© Diophantine approximation (Dirichlet)



The Key Lemma

Theorem (Blomer—Harcos—Mili¢evi¢ 2013)

Let ¢ be an L%-normalized Hecke—Maass newform on H3 of
square-free level N € Z[i]. Then

6(P)| <e (AIN|)° min(AT2, A2|N|"3), P e M3

Key Lemma

The supremum of |¢(P)| is attained at a point P = z + rj € H3
such that the associated lattice Z[i] + Z[i]P C R + Ri + Rj + Rk
and its successive minima my < mp < m3 < my satisfy:

o |N|_%<m1:m2<m3:m4
@ mimomzmy =< r? and r > |N|™!
© In any ball of radius R the number of lattice points is

< 1+ R?|N|+ R*r2.




Reduction to a matrix counting problem

Notation

X<y & X< YON)F
Proposition
There is A1 < § < 1 such that

2 VX[ oo 1 M(P,LS)  M(P,LJ)
where

e M(P,L,0) is the number of matrices v € My(Z[i]) such that
cosh(dist(yP, P)) < 1+,

the lower left entry of ~y is nonzero and divisible by N, and
dety = hl with split primes Iy, l, < V/L from the first octant;

o M(P,L,0) is same with dety = 1213 (instead of dety = I1h).




The distance condition

We write P =z +rj € H3 and dety = | < VL.

cosh(dist(yP, P)) < 143,  ~v— (a b) € Ma(Zi])
i}
/ / 1
|a'P + b — Pc'P — Pd'||? < 2r%5, (i, b> = <"" b>

Geometric principle
Asssume cosh(dist(yP, P)) < 1+ 6. Then
lcP +dll, llcP — all = |1]/? + O(£/*V5).
Moreover, if c is fixed and the angle of | varies only O(\/§), then
@® (a— d)z + b lies in a disk of radius O(rLY/*\/6);
@ a+ d lies in a rectangle R of size O(LY/*\/5) x O(LY*);
© a — d lies in the rotated rectangle 2cz + iR.




M(P, L, ) for all §, and M(P, L,§) for 6 > L™

Goal
M(P, L,8) < L% + L* min(V/8,|N|~2)
M(P, L,8) < L + Lo min(V/8,|N|~?)

Idea (c v~ a—d~» b~ a+d)

For fixed c, the lattice point (a — d)P + b € Z[i] + Z[i]P lies in a
small ball. If, in addition, | lies in a small angular sector, then
a—d and a—+ d lie in thin rectangles. Finally, for | square, a+ d is
essentially determined by (c,a — d, b) via

(a—d)?+4bc = (a+d—2VI)(a+d+2VI).

Idea (¢ ~» a~> [~ d)

If ¢ and a are fixed, then the rational integer |I|? lies in a small
interval. If | is also fixed, then d is restricted to a small disk.



~

M(P,L,d) for 6 < L= (1 of 2)

Idea

In this case | = det~y is a square, so \ := /I is a Gaussian integer.
The lattice triangle 0,a + d, A has tiny height by the distance
condition, so its area is zero. Arithmetic in Gaussian integers shows
that a+ d € {0, £\, £2\}, hence X\ essentially determines a + d.

Idea
Approximate Nz by a Gaussian fraction:

P 1
Nz:—{—O( >,
q |q|L2

where p,q € Z[i] and 1 < |q| < L? and (p,q) = 1. Proceed
differently for |q| < L and for |q| > L.




~

M(P,L,d) for 6 < L=* (2 of 2)

Idea (for |q| < L)
Write ¢ = Nc'. The matrix (2 5) € Ma(Z[i]) is essentially

determined by the product (2¢'p — aq + dq)\ which lies in a
rectangle of size O(1 + |q|L?V/§) x O(|q|L?). Hence

M(P, L,8) < (1 + |q|L2V)|q|L? < L3 + L°V/3.

Idea (for |q| > L)

The matrix (2 5) € My(Z[i]) is essentially determined by the
product c'(a — az7) which lies in < (1 + |q|L?V/6)|q|/|(q,9)|
translates of a 2-dimensional lattice with minimal length

> [41/1(a, )| and covolume > [qP/|(q,7)|. Hence

M(P,L,8) < (1 + [q|L?V/5) g <1+L2\(q,q)l L*|(g,9)|

I(9,9)| gl lq|2
< L3+ 15V,

)




