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Arithmetic Quantum Chaos (1 of 3)

Consider a freely moving particle on a compact manifold M.

In classical mechanics, the particle corresponds to an orbit of
the geodesic flow on the unit cotangent bundle S∗M.

In quantum mechanics, the particle corresponds to a solution
ψ : M × R→ C of the Schrödinger equation 4ψ + i ∂ψ∂t = 0.
|ψ(m, t)|2 is the probability density of the particle. Any nice
solution is a linear combination of the stationary waves
(m, t) 7→ φ(m)e−iλt , where φ : M → C satisfies 4φ+λφ = 0.

Assume that M has negative sectional curvature.

The geodesic flow on S∗M is ergodic (Anosov–Sinai 1967).

|φ(m)|2dvol(m)→ dvol(m) holds for almost all φ
(Schnirelman 1974, Colin de Verdière 1985, Zelditch 1987).

The limit should hold for all φ (QUE, Rudnick–Sarnak 1994).

Any weak star limit of the measures |φ(m)|2dvol(m) has a lift
to S∗M which has positive entropy (Anantharaman 2008).



Arithmetic Quantum Chaos (2 of 3)

Arithmetic Quantum Unique Ergodicity Conjecture

Let M be a compact Riemannian manifold of negative sectional
curvature. Assume that M = Γ\S, where S is a globally symmetric
space and Γ 6 Isom+(S) is an arithmetic subgroup of isometries.
Let φ : M → C run through a complete orthonormal sequence of
Hecke eigenforms. Then the probability measures |φ(m)|2dvol(m)
tend in the weak star topology to the uniform measure dvol(m).

AQUE is true for compact arithmetic hyperbolic surfaces
Γ\H2 (Lindenstrauss 2006), and also for the modular surface
SL2(Z)\H2 (Soundararajan 2010). In these cases, GRH
implies an optimal rate of convergence (Watson 2001).

The conjecture generalizes to higher rank. AQUE is true for
S = PGLn(R)/POn(R), n prime (Silberman–Venkatesh 2007).

Hecke operators are key in all these results.



Arithmetic Quantum Chaos (3 of 3)

Theorem (Sarnak 2004)

Let M = Γ\S, where S is a Riemannian globally symmetric space
and Γ 6 Isom+(S) is a co-compact discrete subgroup of isometries.
Let φ : M → C be an L2-normalized joint eigenfunction of the
invariant differential operators on S. If λ denotes the Laplacian
eigenvalue of φ, then

‖φ‖∞ �S,Γ λ
(dim S−rankS)/4.

Problem

Fix S. Assume that Γ is arithmetic and φ is a Hecke eigenform.

1 Estimate ‖φ‖∞ in terms of λ.

2 Estimate ‖φ‖∞ in terms of Γ.

3 Examine what happens when M = Γ\S is not compact.



Results for the sup-norm problem on arithmetic manifolds

group eigenvalue aspect level aspect

GL2(R) Iwaniec–Sarnak 95 Abbes–Ullmo 95, Michel–Ullmo 98

Rudnick 05, Xia 07 Jorgenson–Kramer 04

Friedman–Jorgenson–Kramer 14+ Blomer–Holowinsky 10

Templier 10, Helfgott–Ricotta 11

Templier 14+ Harcos–Templier 13

Das–Sengupta 14+, Steiner 14+ Ye 14+, Kiral 14+, Saha 14+

Sarnak 04, Milićević 10 Lau 10, Templier 14, Saha 14+

GL2(C) Koyama 95

Blomer–Harcos–Milićević 14+ Blomer–Harcos–Milićević 14+

Rudnick–Sarnak 94, Milićević 11

SOn(R) VanderKam 97, Blomer–Michel 13 Blomer–Michel 13

Sp4(R) Blomer–Pohl 14+

GLn(R) Holowinsky–Ricotta–Royer 14+

Blomer–Maga 14+, Marshall 14+

Brumley–Templier 14+



Hyperbolic plane and hyperbolic space

• Consider H2 := {x + yi : x ∈ R, y > 0} with the GL2(R)-action

gz = (az + b)(cz + d)−1 g =

(
a b
c d

)
∈ GL+

2 (R)

gz = −z̄ g =

(
−1

1

)
• Consider H3 := {z + rj : z ∈ C, r > 0} with the GL2(C)-action

gP = (aP + b)(cP + d)−1 g =

(
a b
c d

)
∈ GL+

2 (C)

gP = P g =

(
a

a

)
∈ Z (C)

• H2 ∼= Z(R)\GL2(R)/O2(R) and H3 ∼= Z(C)\GL2(C)/U2(C)



Results for H2 and square-free level N ∈ Z

Congruence subgroup

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 (mod N)

}

Theorem (Iwaniec–Sarnak 1995)

‖φ‖∞ �N,ε λ
5

24
+ε

Theorem (Blomer–Holowinsky 2010)

‖φ‖∞ �λ,ε N−
25

914
+ε

Theorem (Templier 2013)

‖φ‖∞ �ε λ
5

24
+εN−

1
6

+ε



Results for H3 and square-free level N ∈ Z[i ]

Congruence subgroup

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z[i ])

∣∣∣∣ c ≡ 0 (mod N)

}

Theorem (Koyama 1994)

‖φ‖∞ �N,ε λ
37
76

+ε

Theorem (Blomer–Harcos–Milićević 2013)

‖φ‖∞ �ε (λ|N|)ε min(λ
5

12 , λ
1
2 |N|−

1
3 )

Theorem (Blomer–Harcos–Milićević 2013)

‖φ‖∞ �ε λ
4
9

+ε|N|−
1
9

+ε



The five pillars of the proof

1 Amplification method (Duke–Friedlander–Iwaniec)

2 Pretrace formula (Selberg)

3 Arithmetic symmetries (Hecke, Atkin–Lehner)

4 Geometry of numbers (Gauss, Minkowski)

5 Diophantine approximation (Dirichlet)



The Key Lemma

Theorem (Blomer–Harcos–Milićević 2013)

Let φ be an L2-normalized Hecke–Maass newform on H3 of
square-free level N ∈ Z[i ]. Then

|φ(P)| �ε (λ|N|)ε min(λ
5

12 , λ
1
2 |N|−

1
3 ), P ∈ H3.

Key Lemma

The supremum of |φ(P)| is attained at a point P = z + rj ∈ H3

such that the associated lattice Z[i ] + Z[i ]P ⊂ R + Ri + Rj + Rk
and its successive minima m1 6 m2 6 m3 6 m4 satisfy:

1 |N|−
1
2 6 m1 = m2 6 m3 = m4

2 m1m2m3m4 � r 2 and r � |N|−1

3 In any ball of radius R the number of lattice points is

� 1 + R2|N|+ R4r−2.



Reduction to a matrix counting problem

Notation

X 4 Y
def⇐⇒ X �ε Y (λ|N|)ε

Proposition

There is λ−1 6 δ 4 1 such that

|φ(P)|2 4
√
λ√
δ

(
r 2δ +

1

L
+

M(P, L, δ)

L3
+

M̃(P, L, δ)

L4

)
,

where

M(P, L, δ) is the number of matrices γ ∈ M2(Z[i ]) such that

cosh(dist(γP,P)) 6 1 + δ,

the lower left entry of γ is nonzero and divisible by N, and
det γ = l1l2 with split primes l1, l2 �

√
L from the first octant;

M̃(P, L, δ) is same with det γ = l2
1 l2

2 (instead of det γ = l1l2).



The distance condition

We write P = z + rj ∈ H3 and det γ = l �
√
L.

cosh(dist(γP,P)) 6 1 + δ, γ =

(
a b
c d

)
∈ M2(Z[i ])

m

‖a′P + b′ − Pc ′P − Pd ′‖2 6 2r 2δ,

(
a′ b′

c ′ d ′

)
:=

1√
l

(
a b
c d

)
Geometric principle

Asssume cosh(dist(γP,P)) 6 1 + δ. Then

‖cP + d‖, ‖cP − a‖ = |l |1/2 + O(L1/4
√
δ).

Moreover, if c is fixed and the angle of l varies only O(
√
δ), then

1 (a− d)z + b lies in a disk of radius O(rL1/4
√
δ);

2 a + d lies in a rectangle R of size O(L1/4
√
δ)× Õ(L1/4);

3 a− d lies in the rotated rectangle 2cz + iR.



M(P , L, δ) for all δ, and M̃(P , L, δ) for δ � L−4

Goal

M(P, L, δ) 4 L2 + L4 min(
√
δ, |N|−2)

M̃(P, L, δ) 4 L3 + L6 min(
√
δ, |N|−2)

Idea (c  a− d  b  a + d)

For fixed c, the lattice point (a− d)P + b ∈ Z[i ] + Z[i ]P lies in a
small ball. If, in addition, l lies in a small angular sector, then
a− d and a + d lie in thin rectangles. Finally, for l square, a + d is
essentially determined by (c , a− d , b) via

(a− d)2 + 4bc = (a + d − 2
√

l)(a + d + 2
√

l).

Idea (c  a l  d)

If c and a are fixed, then the rational integer |l |2 lies in a small
interval. If l is also fixed, then d is restricted to a small disk.



M̃(P , L, δ) for δ � L−4 (1 of 2)

Idea

In this case l = det γ is a square, so λ :=
√

l is a Gaussian integer.
The lattice triangle 0, a + d , λ has tiny height by the distance
condition, so its area is zero. Arithmetic in Gaussian integers shows
that a + d ∈ {0,±λ,±2λ}, hence λ essentially determines a + d.

Idea

Approximate Nz by a Gaussian fraction:

Nz =
p

q
+ O

(
1

|q|L2

)
,

where p, q ∈ Z[i ] and 1 6 |q| 6 L2 and (p, q) = 1. Proceed
differently for |q| 6 L and for |q| > L.



M̃(P , L, δ) for δ � L−4 (2 of 2)

Idea (for |q| 6 L)

Write c = Nc ′. The matrix
(
a b
c d

)
∈ M2(Z[i ]) is essentially

determined by the product (2c ′p − aq + dq)λ which lies in a
rectangle of size O(1 + |q|L2

√
δ)× O(|q|L2). Hence

M̃(P, L, δ)� (1 + |q|L2
√
δ)|q|L2 � L3 + L6

√
δ.

Idea (for |q| > L)

The matrix
(
a b
c d

)
∈ M2(Z[i ]) is essentially determined by the

product c ′(a− ac ′) which lies in � (1 + |q|L2
√
δ)|q|/|(q, q)|

translates of a 2-dimensional lattice with minimal length
� |q|/|(q, q)| and covolume � |q|2/|(q, q)|. Hence

M̃(P, L, δ)� (1 + |q|L2
√
δ)
|q|
|(q, q)|

(
1 +

L2|(q, q)|
|q|

+
L4|(q, q)|
|q|2

)
� L3 + L6

√
δ.


