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Nonvanishing of Dirichlet L-functions (1 of 2)

Dirichlet (1837) and Riemann (1859) observed that the logarithm
of a Dirichlet L-function is supported on prime powers, hence it
can be used to study the distribution of primes up to a given
height in various residue classes.

One can define log L(s, ψ) as a holomorphic function in any simply
connected region where L(s, ψ) ̸= 0, but the derivative of this
function is more pleasant to work with:

−L′(s, ψ)
L(s, ψ) =

∞∑
m=1

Λ(m)ψ(m)
ms , Re(s) > 1.

Generalized Riemann hypothesis: L(s, ψ) ̸= 0 for Re(s) > 1/2.



Nonvanishing of Dirichlet L-functions (2 of 2)

Work of Hadamard (1896), de la Vallée Poussin (1896 & 1899),
Gronwall (1913), Landau (1918), Titchmarsh (1930), Page (1935),
Siegel (1935) led to the following zero-free region and more.

Theorem
There exists a constant c1 > 0 with the following property. If ψ is
a primitive Dirichlet character modulo q, then L(s, ψ) has at most
one zero (necessarily real and simple) in the region

Re(s) ⩾ 1 − c1/ log(q(|Im(s)| + 3)).

If the exceptional zero exists, then ψ is quadratic. In this case, for
all ε > 0, there exists a constant c2 = c2(ε) > 0 such that

L(σ, ψ) ̸= 0, σ ⩾ 1 − c2q−ε.

In fact this theorem comes with lower bounds (as opposed to just
nonvanishing) that we omit for simplicity.



Primes in arithmetic progressions

We extract the following estimate, especially because this is what
we shall generalize to GL1-twists of GLm × GLn L-functions.

Theorem (de la Vallée Poussin 1899, Siegel 1935)
For all ε > 0, there exists an ineffective constant c3 = c3(ε) > 0
such that for all primitive Dirichlet characters ψ modulo q,

|L(σ + it, ψ)| ⩾ c3(q + |t|)−ε, σ ⩾ 1 − c3(q + |t|)−ε.

Theorem (Walfisz 1936)
Let A > 0 be arbitrary. Let q ⩽ (log x)A be a positive integer, and
let a (mod q) be a reduced residue class modulo q. Then

∑
m⩽x

m≡a (mod q)

Λ(m) = x
φ(q) + OA

( x
(log x)A

)
.



Standard L-functions

Notation
Let Fn be the set of unitary cuspidal automorphic representations
of GLn over Q. Let F∗

n ⊂ Fn be the subset of representations in Fn
whose central character is trivial on the positive reals.

Each π ∈ Fn has a standard L-function

L(s, π) =
∏
p

n∏
j=1

1
1 − αj,π(p)p−s , Re(s) > 1.

By the results of Tamagawa (1963), Satake (1963), and
Kondo–Yasuda (2010), the coefficients of the denominator (as a
polynomial of p−s) are Hecke eigenvalues on newforms in π.

The L-function is completed with n gamma factors, and the
resulting Λ(s, π) satisfies a similar functional equation as Dirichlet
L-functions. (A product of n Dirichlet L-functions is the L-function
of an isobaric automorphic representation of GLn over Q.)



Twists of automorphic representations

Example
F1 is the abelian group of unitary Hecke characters acting on Fn
as follows. For each π ∈ Fn and χ ∈ F1, the representation
π ⊗ χ ∈ Fn given by g 7→ π(g)χ(det g) for g ∈ GLn(AQ).

Example
Each χ ∈ F1 corresponds bijectively to a pair (t, ψ), where t ∈ R
and ψ is a primitive Dirichlet character (including the trivial
character). Under this correspondence, L(s, χ) = L(s + it, ψ).
More generally, L(s, π ⊗ χ) = L(s + it, π ⊗ ψ) for all π ∈ Fn.



Nonvanishing of standard L-functions

The results of de la Vallée Poussin (1899) and Siegel (1935) for
Dirichlet L-functions have been extended to standard automorphic
L-functions. Important milestones include Jacquet–Shalika (1976),
Moreno (1985), Hoffstein–Ramakrishnan (1995), Iwaniec–Kowalski
(2014), Brumley (2019) and Jiang–Lü–Thorner–Wang (2021).

Theorem
There exists a constant c4 = c4(n) > 0 with the following property.
If π ∈ F∗

n, then L(s, π) has at most one zero (necessarily real and
simple) in the region

Re(s) ⩾ 1 − c4/ log(C(π)(|Im(s)| + 3)).

If the exceptional zero exists, then π is self-dual. If π is self-dual,
then for all ε > 0, there exists a constant c5 = c5(π, ε) such that
L(σ, π ⊗ χ) ̸= 0 for all quadratic χ ∈ F∗

1 and σ ⩾ 1 − c5C(χ)−ε



Rankin–Selberg L-functions

For each (π, ρ) ∈ Fn × Fm, there is a Rankin–Selberg L-function

L(s, π × ρ) =
∏
p

n∏
j=1

m∏
k=1

1
1 − αj,k,π×ρ(p)p−s , Re(s) > 1.

If p is an unramified prime for π and ρ, then we can take
αj,k,π×ρ(p) = αj,π(p)αk,ρ(p).

The L-function is completed with nm gamma factors, and the
resulting Λ(s, π × ρ) satisfies a similar functional equation as
standard L-functions.

Langlands functoriality predicts that every Rankin–Selberg
L-function as above is a standard L-function.
Hoffstein–Ramakrishnan (1995) used this hypothesis to prove
the non-existence of Landau–Siegel zeros other than those of
Dirichlet L-functions.



Nonvanishing of Rankin–Selberg L-functions

Shahidi (1981) proved that L(s, π × ρ) ̸= 0 for Re(s) ⩾ 1. This
has been strengthened in various ways by Moreno (1985), Sarnak
(2004), Goldfeld–Li (2018), Humphries (2019) and Zhang (2023).

Theorem (Brumley 2006–2019, Humphries–Thorner 2022)
There exists c6 = c6(n,m) > 0 with the following property.
If (π, ρ) ∈ F∗

n × F∗
m, then L(s, π × ρ) has no zero in the region

Re(s) ⩾ 1 − c6(C(π)C(ρ))−n−m(|Im(s)| + 1)−nm.

Moreover, if π = π̃ or ρ = ρ̃ or ρ = π̃, then L(s, π× ρ) has at most
one zero (necessarily real and simple) in the region

Re(s) ⩾ 1 − c6/ log(C(π)C(ρ)(|Im(s)| + 3)).

If the exceptional zero exists, then (π, ρ) = (π̃, ρ̃) or ρ = π̃.



A new zero-free region

We extended the celebrated lower bound of Siegel (1935) to all
GL1-twists of general Rankin–Selberg L-functions. Special cases
were established earlier by Jiang–Lü–Thorner–Wang (2021) and
Humphries–Thorner (2024).

Theorem (Harcos–Thorner)
Let (π, ρ) ∈ Fn × Fm. For all ε > 0, there exists an ineffective
constant c7 = c7(π, ρ, ε) > 0 such that if χ ∈ F1, then

|L(σ, π × (ρ⊗ χ))| ⩾ c7C(χ)−ε, σ ⩾ 1 − c7C(χ)−ε.

The proof relies on the group structure of F1, and it utilizes an
auxiliary L-function with nonnegative coefficients that extends the
constructions of de la Vallée Poussin (1899) and Siegel (1935).



An analogue of the Siegel–Walfisz theorem
The new zero-free region allows us to prove an analogue of the
Siegel–Walfisz theorem for Rankin–Selberg L-functions.

Notation
For (π, ρ) ∈ Fn × Fm, let Λπ×ρ(m) denote the m-th Dirichlet
coefficient of −L′(s, π × ρ)/L(s, π × ρ). Moreover, let

Mπ×ρ(x) =
{

x1−iu/(1 − iu), ρ = π̃ ⊗ | · |iu

0, otherwise

Theorem (Harcos–Thorner)
Let (π, ρ) ∈ Fn × Fm. Let A > 0 be arbitrary. Let q ⩽ (log x)A be
a positive integer coprime to the conductors of π and ρ, and let a
(mod q) be a reduced residue class modulo q. Then∑

m⩽x
m≡a (mod q)

Λπ×ρ(m) = Mπ×ρ(x)
φ(q) + Oπ,ρ,A

( x
(log x)A

)
.



Symmetric power L-functions

Our second application is based on cases of functoriality established
by Gelbart–Jacquet (1978), Kim–Shahidi (2002) and Kim (2003).

Theorem (Harcos–Thorner)
Let π ∈ F2 and n ∈ {1, . . . , 8}. Assume that L(s, π,Symn ⊗ χ) has
no pole in the half-plane Re(s) ⩾ 1. There exists c8 = c8(π, ε) ⩾ 1
such that for all χ ∈ F1 and σ ⩾ 1 − c−1

8 C(χ)−ε,

c−1
8 C(χ)−ε ⩽ |L(σ, π,Symn ⊗ χ)| ⩽ c8C(χ)ε.

For n ∈ {5, 6, 7, 8}, the idea is to use the identity

L(s, π,Symn ⊗ χ) = L(s, Sym4(π) × (Symn−4(π) ⊗ χ))
L(s,Sym3(π) × (Symn−5(π) ⊗ χωπ))

.



Strategy of the proof

By the convexity bound for L′(s, π × (ρ⊗ χ)), it suffices to prove

|L(1, π × (ρ⊗ χ))| ≫π,ρ,ε C(χ)−ε, χ ∈ F1.

We prove the above bound in three steps. In each step, we prove it
for a certain subgroup of characters G ⩽ F1 containing the vertical
shift characters.

In each step, we treat separately the characters χ ∈ G for which
L(s, π × (ρ⊗ χ)) has a pole. So let us focus on the case when
L(s, π × (ρ⊗ χ)) has no pole. If all these entire twists by χ ∈ G
satisfy a quasi Riemann hypothesis, then we are done.

So we can assume that there exists an exceptional χ̃ ∈ G such that
L(s, π × (ρ⊗ χ̃)) is entire and has a real zero close to 1. We fix
χ̃ ∈ G in terms of (π, ρ,G , ε). At this point we rename ρ⊗ χ̃ to ρ,
so the assumption is really that L(s, π × ρ) is entire and has a real
zero close to 1. This assumption is quite powerful as we shall see.



The Key Proposition
The three subgroups G ⩽ F1 corresponding to the three steps are:

1 the subgroup of vertical shifts
2 the subgroup generated by vertical shifts and quadratic

characters
3 the full group of unitary Hecke characters

In each of the three steps we apply the following

Key Proposition
Let (π, ρ, χ) ∈ Fn × Fm × F1, ε ∈ (0, 1/2), and β ∈ (1 − ε/8, 1).
Assume that the following L-functions are entire:

L(s, π × ρ), L(s, π × (ρ⊗ χ)), L(s, π × (ρ⊗ χ2)).

If L(β, π × ρ) = 0, then

|L(1, π × (ρ⊗ χ))| ≫π,ρ,β,ε C(χ)−(n+m)2ε.



The auxiliary L-function

The proof of the Key Proposition utilizes the auxiliary L-function

D(s) = L(s,Π × Π̃), Π = π ⊞ π ⊗ χ⊞ ρ̃⊞ ρ̃⊗ χ.

This auxiliary L-function has nonnegative Dirichlet coefficients by a
result of Hoffstein–Ramakrishnan (1995), and it factors as

L(s, π × π̃)2L(s, ρ× ρ̃)2L(s, π × (ρ⊗ χ))2L(s, π̃ × (ρ̃⊗ χ))2

L(s, π × (π̃ ⊗ χ))L(s, ρ× (ρ̃⊗ χ))L(s, π̃ × ρ̃)L(s, π × (ρ⊗ χ2))
L(s, π × (π̃ ⊗ χ))L(s, ρ× (ρ̃⊗ χ))L(s, π × ρ)L(s, π̃ × (ρ̃⊗ χ2)).

This auxiliary L-function can have three distinct poles (with various
multiplicities), but what makes the proof work is the following.
If s0 is a pole of D(s) of multiplicity k, then there are at least k
factors above whose size at s = s0 equals |L(1, π × (ρ⊗ χ))|.



Back to de la Vallée Poussin (1899) and Siegel (1935)

Let us look at the auxiliary L-function D(s) = L(s,Π × Π̃) again:

L(s, π × π̃)2L(s, ρ× ρ̃)2L(s, π × (ρ⊗ χ))2L(s, π̃ × (ρ̃⊗ χ))2

L(s, π × (π̃ ⊗ χ))L(s, ρ× (ρ̃⊗ χ))L(s, π̃ × ρ̃)L(s, π × (ρ⊗ χ2))
L(s, π × (π̃ ⊗ χ))L(s, ρ× (ρ̃⊗ χ))L(s, π × ρ)L(s, π̃ × (ρ̃⊗ χ2)).

In the special case π = ρ = 1, this becomes

D(s) = ζ(s)6L(s, χ)4L(s, χ)4L(s, χ2)L(s, χ2).

Moreover, in the special case when π = 1, ρ = ψ ∈ F1 is quadratic
and χ ∈ F1 is quadratic,

D(s) = ζ(s)4L(s, ψ)4L(s, χ)4L(s, ψχ)4.

So our auxiliary L-function D(s) generalizes the classical auxiliary
L-functions used by de la Vallée Poussin (1899) and Siegel (1935).
We only observed this in retrospect...



Surprise: Generalizing Tatuzawa’s theorem

Jesse Thorner visited me the past week (he is flying back home
right now), and it seems that we can prove the following
generalization of Tatuzawa’s theorem (over any fixed number field).

Theorem (Harcos–Thorner, announcement only)
For every ε > 0 and n,m ∈ Z⩾1, there exists an effective constant
c9 = c9(n,m, ε) > 0 with the following property.

Let (π, ρ) ∈ Fn × Fm. Then there exists χ̃ ∈ F1 such that, for
every χ ∈ F1, either

L(s, π × (ρ⊗ χ)) = L(s + it, π × (ρ⊗ χ̃))

holds for some t ∈ (−ε, ε), or

L(σ, π × (ρ⊗ χ)) ̸= 0, σ ⩾ 1 − c9(C(π)C(ρ)C(χ))−ε.


