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Theorem 1. For every positive integer n we have
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Proof. We present a proof due to Noam D. Elkies [1] and David E. Speyer [2]. The starting
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By this identity, it suffices to show that√
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For the lower bound, we rewrite the integral in terms of u := tanx, and estimate it as∫
π/2

−π/2
(cosx)2n dx =

∫
∞

−∞

1
(1+u2)n+1 du >

∫
∞

−∞

e−(n+1)u2
du =

√
π

n+1
.

Here we used that 1+ t < et for t ̸= 0, which is a consequence of the strict convexity of the
function t 7→ et on R. For the upper bound, we estimate the integral as∫
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Here we used that cosx < e−x2/2 for 0 < |x| < π/2, which is a consequence of the strict
concavity of the function x 7→ logcosx+ x2/2 on (−π/2,π/2). □

Theorem 2. We have, as n → ∞,
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.

Proof. Let n → ∞. First we prove the weaker statement that
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holds for some constant c > 0. Equivalently,
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To prove this, we write the left-hand side as a Riemann–Stieltjes integral (using log1 = 0)
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where x 7→ [x] is the integer part function. We decompose
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where x 7→ {x} is the fractional part function, then we get
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On the right-hand side, we evaluate the first integral explicitly, and we apply integration by
parts on the second integral. We obtain
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We estimate the integral on the right-hand side by rewriting it as∫ n
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It is clear that S(x) is bounded (in fact −1/8 ⩽ S(x)⩽ 0), therefore we infer∫ n
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where the last improper integral converges. Choosing c > 0 such that −1+ logc equals
this improper integral, we conclude (2):
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We have established (1), and it remains to show that in this asymptotic formula the
constant c equals

√
2π . To see this, we observe the following consequence of (1):(
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However, by Theorem 1, (
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.

Comparing the right-hand sides, the claim c =
√

2π follows. □
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