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Let m be a Markov number, i.e. a solution of the diophantine equation

m2
1 + m2

2 + m2
3 = 3m1m2m3.

LetMm denote the set of x satisying F (x, 1) = 0 for some quadratic form F corresponding
to m. WriteM for the union of the variousMm. See [1] for details. Call two real numbers
equivalent if they belong to the same orbit under the action of GL2(Z) by fractional linear
transformations. Also, call two real numbers strongly equivalent if their sum or difference
is an integer. Finally, introduce the functions

ν(ξ) df= lim inf
q→∞

q‖qξ‖,

χ(ξ) df= inf
q>0

q‖qξ‖.

I prove an analogue for χ of a well-known result about the spectrum of ν. I learned only
later that the result also appeared in Gurwood’s unpublished Ph.D. thesis [2]. However,
the proofs are different.

Theorem 1 (Perron [4], Heawood [3], Shibata [5]).
(1) If ν(ξ) > 1

3 then ξ is equivalent to an element of M.
(2) Conversely, if ξ is equivalent to an element of Mm then

ν(ξ) =
1√

9− 4m−2
>

1
3
,

and the inequality q‖qξ‖ < ν(ξ) has infinitely many integer solutions q.
(3) There are continuum many pairwise inequivalent ξ with ν(ξ) = 1

3 .

Theorem 2.
(1) If χ(ξ) > 1

3 then ξ is strongly equivalient to an element of M.
(2) Conversely, if ξ is strongly equivalent to an element of Mm then

χ(ξ) =
2

3 +
√

9− 4m−2
>

1
3
,

and the equation q‖qξ‖ = χ(ξ) has the only positive integer solution q = m.
(3) There are continuum many pairwise inequivalent ξ with χ(ξ) = 1

3 .
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